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Abstract. A tree t-spanner T in a graph G is a spanning tree of G
such that the distance in T between every pair of vertices is at most ¢
times their distance in G. The TREE t-SPANNER problem asks whether a
graph admits a tree t-spanner, given t. We substantially strengthen the
hardness result of Cai and Corneil [SIAM J. Discrete Math. 8 (1995) 359—
387] by showing that, for any ¢ > 4, TREE t-SPANNER is NP-complete
even on chordal graphs of diameter at most t+1 (if ¢ is even), respectively,
at most ¢ 4+ 2 (if ¢ is odd). Then we point out that every chordal graph
of diameter at most ¢t — 1 (respectively, ¢ — 2) admits a tree t-spanner
whenever ¢ > 2 is even (respectively, ¢ > 3 is odd), and such a tree
spanner can be constructed in linear time.

The complexity status of TREE 3-SPANNER still remains open for chordal
graphs, even on the subclass of undirected path graphs that are strongly
chordal as well. For other important subclasses of chordal graphs, such
as very strongly chordal graphs (containing all interval graphs), 1-split
graphs (containing all split graphs) and chordal graphs of diameter at
most 2, we are able to decide TREE 3-SPANNER efficiently.

1 Introduction and Results

All graphs considered are connected. For two vertices in a graph G, dg(z,y)
denotes the distance between x and y; that is, the number of edges in a shortest
path in G joining x and y. The value diam(G) := maxdg(z,y) is the diameter
of the graph G.

Let t > 2 be a fixed integer. A spanning tree T of a graph G is a tree t-
spanner of G if, for every pair of vertices x,y of G, dr(z,y) < t-da(z,y). TREE
t-SPANNER is the following problem: Given a graph G, does G admit a tree
t-spanner?

There are many applications of tree spanners in different areas; especially
in distributed systems and communication networks. In [1], for example, it was
shown that tree spanners can be used as models for broadcast operations; see
also [21]. Moreover, tree spanners also appear in biology [2], and in [25], tree
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spanners were used in approximating the bandwidth of graphs. We refer to [76]
22]24] for more background information on tree spanners.

In [6] Cai and Corneil gave a linear time algorithm solving TREE 2-SPANNER
and proved that TREE ¢-SPANNER is NP-complete for any ¢ > 4. A graph is
chordal if it does not contain any chordless cycle of length at least four. For a
popular subclass of chordal graph, the strongly chordal graphs, Brandstadt et
al. [B] proved that, for every t > 4, TREE ¢-SPANNER is solvable in linear time.
Indeed, they show that every strongly chordal graph admits a tree 4-spanner. In
contrast, one of our results is

Theorem 1 For anyt > 4, TREE t-SPANNER is NP-complete on chordal graphs
of diameter at most t+ 1 (if t is even), respectively, of at most t+2 (if t is odd).

Comparing with a recent result due to Papoutsakis [20)], it is interesting to note
that the union of two tree t-spanners, ¢ > 4, may contain chordless cycles of any
length. This perhaps indicates the difficulty in proving Theorem [ Indeed, our
reduction from 3SAT to TREE t-SPANNER given in Section 2 is quite involved.

Moreover, to the best of our knowledge, Theorem [is the first hardness result
for TREE t-SPANNER on a restricted, well-understood graph class. Notice that in
[12] it is shown that TREE ¢-SPANNER, t > 4, is NP-complete on planar graphs
if the integer ¢ is part of the input.

In view of the diameter constraints in Theorem [Il we note that TREE ¢-
SPANNER remains open on chordal graphs of diameter ¢ (¢ is even) and of diam-
eter t — 1, t or t + 1 (if t is odd). For "smaller” diameter we have

Theorem 2 For any even integer t, every chordal graph of diameter at most
t — 1 admits a tree t-spanner, and such a tree spanner can be constructed in
linear time. For any odd integer t, every chordal graph of diameter at most t — 2
admits a tree t-spanner, and such a tree spanner can be constructed in linear
time.

We were able also to show that chordal graphs of diameter at most ¢ — 1
(t is odd) admit tree t-spanners if and only if chordal graphs of diameter 2
admit tree 3-spanners. This result is used to show that every chordal graph of
diameter at most ¢t — 1 (¢ is odd), if it is planar or a k-tree, for k < 3, has a tree
t-spanner and such a tree spanner can be constructed in polynomial time. Note
that, for any fixed ¢, there is a 2-tree without a tree t-spanner [I6]. So, even
those kind of results are of interest. Unfortunately, the reduction above (from
arbitrary odd ¢ to ¢ = 3) is of no direct use for general chordal graphs because
not every chordal graph of diameter at most 2 admits a tree 3-spanner. One
of our theorems characterizes those chordal graphs of diameter at most 2 that
admit such spanners.

We now discuss TREE ¢-SPANNER on important subclasses of chordal graphs.
It is well-known that chordal graphs are exactly the intersection graphs of sub-
trees in a tree [13]. Thus, intersection graphs of paths in a tree, called path
graphs, form a natural subclass of chordal graphs. TREE t-SPANNER remains
unresolved even on this natural subclass of chordal graphs.

The complexity status of TREE 3-SPANNER remains a long standing open
problem. However, it can be solved efficiently for many particular graph classes,
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such as cographs and complements of bipartite graphs [5], directed path graphs [17]
(hence for all interval graphs [I6I18)23]), split graphs [BII6125)], permutation
graphs and regular bipartite graphs [18], convez bipartite graphs [25], and re-
cently for planar graphs [12]. In [HT920], some properties of graphs admitting
a tree 3-spanner are discussed.

On chordal graphs, however, TREE 3-SPANNER remains even open on path
graphs which are strongly chordal as well. For some important subclasses of
chordal graphs we can decide TREE 3-SPANNER efficiently. Graphs considered
in the theorem below are defined in Section

Theorem 3 All very strongly chordal graphs and all 1-split graphs admit a tree
3-spanner, and such a tree 3-spanner can be constructed in linear time.

Theorem 4 For a given chordal graph G = (V, E) of diameter at most 2, TREE
3-SPANNER can be decided in O(|V||E|) time. Moreover, a tree 3-spanner of G,
if it exists, can be constructed within the same time bound.

Theorem Blimproves previous results on tree 3-spanners in interval graphs [16/18]
23] and on split graphs [5/16)25]. The complexity status of TREE ¢-SPANNER on
chordal graphs considered in this paper is summarized in Figure [[land Table [[}

chordal
NP-c (¢t > 4)
t = 3: open
path t > 3: open
strongly
chordal diameter < 3 .
chordal 2-split
tree 4-spanner
strongly admissible
path
t = 3: open
directed 1-split
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chor afl

f
spiit tree 3-spanner
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Fig. 1. The complexity status of TREE t-SPANNER on chordal graphs and important
subclasses
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Table 1. The complexity status of TREE t-SPANNER on chordal graphs under diameter

constraints

lDiameter at most[ Complexity

t+2,t>5o0dd
t+1,t> 4 even
t+1,t>3o0dd
t,t>3
t—1,t>5o0dd
t—1,t=3
t—1,t> 2 even
t—2,t>3o0dd

NP-complete
NP-complete
?

?

?
polynomial time
linear time
linear time

Notations and definitions not given here may be found in any standard text-
book on graphs and algorithms. We write zy for the edge joining vertices z, y; «
and y are also called endvertices of xy. For a set C of vertices, N(C) denotes the
set of all vertices outside C adjacent to a vertex in C; N(z) stands for N({z})
and deg(x) stands for |N(z)|. We set d(v,C) := min{d(v, z) x € C}. The
eccentricity of a vertex v in G is the maximum distance from v to other vertices
in G. The radius r(G) of G is the minimum of all eccentricities and the diameter
diam(G) of G is the maximum of all eccentricities. A cutset of a graph is a set
of vertices whose deletion disconnects the graph. A graph is non-separable if it
has no one-element cutset, and triconnected if it has no cutset with < 2 vertices.
Blocks in a graph are maximal non-separable subgraphs of that graph.

Clearly, a graph contains a tree t-spanner if and only if each of its blocks
contains a tree t-spanner. Note also that dividing a graph into blocks can be
done in linear time. Thus, in this paper, we consider non-separable graphs only.
Graphs having a tree t-spanner are called tree t-spanner admissible.

Finally, we will use of the following fact in checking whether a spanning tree
is a tree t-spanner.

Proposition 1 ([6]) A spanning tree T of a graph G is a tree t-spanner if and
only if, for every edge xy of G, dr(x,y) < t.

2 NP-Completeness, t > 4

In this section we will show that, for any fixed ¢ > 4, TREE {-SPANNER is NP-
complete on chordal graphs. The proof is a reduction from 3SAT, for which the
following family of chordal graphs will play an important role.

First, S1[z,y] stands for a triangle with two labeled vertices « and y. Next,
for a fixed integer k > 1, Sk41[z,y] is obtained from Si[z,y] by taking to every
edge e # zy in Si[z,y] that belongs to exactly one triangle a new vertex v, and
joining v, to exactly the two endvertices of e. We write also Sy, for Si[z,y] for
some suitable labeled vertices x,y. See Figure
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Fig. 2. The graph Si[z,y] obtained from Si_1[a,b] and Si_1][c, d] by identifying b = d
and joining x = a with y = ¢

Equivalently, Si41[z,y] is obtained from two disjoint Sk[a, b] and Si[c, d] by
identifying the two vertices c¢,d to a vertex z and joining the vertices z := a
and y := b by an edge. With this notation, z is the common neighbor of x and
y in Sgy1[x,y], and we call Sg[z,z] and Sily, z] the two corresponding Sy in
Sk+1 [1‘, y] .

We denote by Si[z,y) the graph Sk [z, y] —y, that is, the graph obtained from
Sk[z,y] by deleting the vertex y. The following observations collect basic facts
on S used in the reduction later.

Observation 1

(1) For every v € Sk[z,y], ds,[w.y (v, {z,y}) < [5],

(2) Sklz,y] has a tree (k + 1)-spanner containing the edge xy,

(3) Sk[w,y) has a tree k-spanner T such that, for each neighbor y' of y in Sklz,y),
dT(:C7y,) S k.

Proofs of these and all other results are omitted in this extended abstract.
They will be given in the journal version.

Observation 2 Let H be an arbitrary graph and let e be an arbitrary edge of
H. Let K be an Sk[z,y] disjoint from H. Let G be the graph obtained from H
and K by identifying the edges e and xvy; see Figure [ Suppose that T is a tree
t-spanner in G, t > k, such that the xy-path in T belongs to H. Then

(1) dr(z,y) <t—k, and
(2) there exists an edge uv € K with dr(u,v) > dr(x,y) + k.

Part (1) of Observation Rlindicates a way to force an edge zy to be a tree edge,
or to force a path of the tree to belong to certain part of the graph: Choosing
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Fig. 3. The graph obtained from H and Si[z,y] by identifying the edge e = zy

k =t — 1 shows that xy must be an edge of T, or else the xy-path in T must
belong to the part Sy_1[z,y].
We now describe the reduction. Let F' be a 3SAT formula with m clauses
Cj = (cj1,¢j2, ¢;3) over n variables v;. Set £ := |£] —2 and A := [£]. Since t > 4,
£>0and A > 0.
For each variable v; create the graph G(v;) as follows.
— Set ¢¥ = v;, qf+1 = 7;. We will use u € {¢?, qf“} as a vertex in our graph as well
as a literal in the given 3SAT formula F'.
— Take a clique Q; on £ + 2 vertices ¢!, ..., q’, qf“.
— For each edge zy € {qqu'*'1 1 0 <k </} create an Si—1[z,y]. No two of the Si—1
have a vertex in common unless those in {xz,y}.
— Take a chordless path on vertices s9,s},..., s} and edges sfsf“, 0<k<A
— Connect each s¥, 0 < k < )\, to exactly ¢? and qf“.
— For each edges zy € {s¥s"™ . 0 <k < A} create an S;_»[z,y].

— For each edges zy € {s0¢,5q; ", 57¢0, s7q/ "'} create an S (¢4 [z, 9]

Note that the clique Q; is a cutset of G(v;) and the components of G(v;) — Q;
are chordal. Thus, G(v;) is a chordal graph. See also Figure [

For each clause C; create the graph G(C;) as follows. If ¢ is even, G(Cj) is
simply a single vertex a;. If t is odd, G(C}) is the graph Sy, [a;, a?]. In any case,
G(Cj) is a chordal graph.

Finally, the graph G = G(F') is obtained from all G(v;) and G(C}) by iden-
tifying all vertices s? to a single vertex s, and adding the following additional
edges:

— connect every vertex in @); with every vertex in Q;/, i # ¢'. Thus, the cliques

Q;, 1 <i <n, form together a clique @ in G,

— for each literal u; € {q?,qf“}, if u; € C; then connect u; with a;, respec-
1

tively, with aj and a3, according to the parity of ¢.

The description of the graph G = G(F) is complete. Clearly, G can be
constructed in polynomial time.

t+1ift is even,

Lemma 1 G is chordal, and diam(G) < {t+ 9if t is odd.
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Fig. 4. The graph G(v;)

Lemma 2 Suppose G admits a tree t-spanner. Then F is satisfiable.

Lemma 3 Suppose I is satisfiable. Then G admits a tree t-spanner.

Theorem [ follows from Lemmas We remark that the chordal graph G
constructed above always admits a tree (¢ + 1)-spanner.

3 Tree Spanners in Chordal Graphs of “Smaller”
Diameter

It is known [819] that for a chordal graph G, diam(G) > 2r(G) — 2 holds. This
already yields the following.

Theorem 5 Let t > 2 be an even integer. Fvery chordal graph of diameter at
most t — 1 admits a tree t-spanner, and such a tree spanner can be constructed
in linear time.

We remark that there are chordal graphs of diameter ¢ without tree t-spanner.
Thus, Theorem [Blis best possible under diameter constraints.

Corollary 1 Fwvery chordal graph of diameter at most 3 has a tree 4-spanner,
and such a tree spanner can be constructed in linear time.

It remains an interesting open question whether existence of a tree 3-spanner
in a given chordal graph of diameter at most 3 can be tested in polynomial time.

Lemma 4 Fuvery chordal graph G admits a tree (2r(G))-spanner, and such a
tree spanner can be constructed in linear time.
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Let now ¢ be an odd integer (¢ > 3). From Lemmal[ and the fact that 2r(G) >
diam(G) > 2r(G) — 2 holds for any chordal graph G, we immediately deduce.

Theorem 6 Fvery chordal graph of diameter at most t — 2 admits a tree t-
spanner, and such a tree spanner can be constructed in linear time.

It would be nice to show also that, if ¢ > 3 is an odd integer, then every
chordal graph of diameter at most ¢ — 1 admits a tree t-spanner. But, although
for chordal graphs with diam(G) > 2r(G) — 1 this is true, it fails to hold for
chordal graphs of diameter 2r(G) — 2. There are even chordal graphs of diameter
2 without tree 3-spanners. In what follows we will show that the existence of a
tree (2r(G) — 1)-spanner in a chordal graph of diameter 2r(G) — 2 ”depends” on
the existence of a tree 3-spanner in a chordal graph of diameter 2.

First we present some auxiliary results. A subset S C V is m—convez if S
contains every vertex on every chordless path between vertices of S. For a
subset S C V and a vertex v € V, let proj(v,S) ={u € S : dg(v,u) = dg(v, S)}
be the metric projection of v to S. For a subset X C V, let proj(X,S) =
Upex Proj(v,S). A subset A C V is a two-set in G if dg(v,u) < 2 holds for
every v,u € A.

Lemma 5 Let G be a (not necessarily chordal) graph. The metric projection
proj(A,S) of any two-set A to an m—convex set S of G is a two-set.

Lemma 6 In every chordal graph G = (V, E) of diameter 2r(G) —2 there exists
a two-set S such that dg(v,S) < r(G) — 2 for every v € V. Moreover such a
two-set can be determined within time O(|V|3).

Lemma 7 FEvery mazimal by inclusion two-set of a chordal graph is m-convexz.

Theorem 7 Chordal graphs of diameter 2r(G) — 2 admit tree (2r(G) — 1)-
spanners if and only if chordal graphs of diameter 2 admit tree 3-spanners.
Moreover, if a tree 3-spanner of any chordal graph of diameter 2 can be found in
polynomial time, then a tree (2r(G) — 1)-spanner of a chordal graph of diameter
2r(G) — 2 can be found in polynomial time, too.

We do not know how to use this theorem for general chordal graphs (since not
all chordal graphs of diameter 2 have tree 3-spanners), but this theorem could be
very useful for those hereditary subclasses of chordal graphs where each graph
of diameter 2 is tree 3-spanner admissible. Then, for every graph of diameter at
most t — 1 from those classes, a tree t-spanner will exist and it could be found in
polynomial time if corresponding tree 3-spanner is constructable in polynomial
time. For an arbitrary chordal graph G with diam(G) = 2r(G) —2, it can happen
that a chordal graph of diameter at most 2, generated by a two-set of G (found as
described in Lemma [l and Theorem [7), does not have a tree 3-spanner, but yet
G itself admits a (2r(G) — 1)-spanner. We are still working on TREE (2r(G) —1)-
SPANNER problem in chordal graphs of diameter 2r(G) — 2. It is natural to ask
whether a combination of Theorem [ and Theorem [9 works.
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4 Tree 3-Spanners in Chordal Graphs of Diameter 2

In this section, we give an application of Theorem [7] as well as a criterion for the
tree 3-spanner admissibility of chordal graphs of diameter at most 2.
A graph G is non-trivial if it has at least one edge.

Lemma 8 Let G be a non-trivial chordal graph of diameter at most 2. If G does
not contain a clique K5 on five vertices, then G has a dominating edge, i.e., an
edge e € E such that dg(v,e) <1 for anyv € V.

Since neither planar graphs nor 3-trees have cliques on 5 vertices and any graph
with a dominating edge is trivially tree 3-spanner admissible, we conclude.

Corollary 2 Let G be a non-trivial graph of diameter at most 2. If G is a planar
chordal graph or a k-tree for k < 3, then G has a dominating edge and hence a
tree 3-spanner.

As we mentioned in introduction, there is no constant ¢ such that planar chordal
graphs or k-trees (k > 2) are tree t-spanner admissible. So, it is interesting to
mention the following result.

Theorem 8 FEwvery chordal graph of diameter at most t — 1, if it is planar or a
k-tree (k < 3), has a tree t-spanner and such a tree spanner can be constructed
in polynomial time.

In what follows we will assume that G is an arbitrary chordal graph which admits
a tree 3-spanner 7. Note that any tree of diameter at most 2 is a star and any
tree of diameter 3 has a dominating edge (in this case T is called a bistar).

Lemma 9 For any mazimal (by inclusion) clique C of G one of the following
conditions holds.

a) C induces a star in T,
b) either C induces a bistar in T or there is a vertex v ¢ C such that C U {v}
induces a bistar in T

Clearly, T is a star only if G has an universal vertex, and the diameter of T" is 3
only if G has a dominating edge. The following theorem handles the case of all
chordal graphs of diameter at most 2. Unfortunately, not every such graph has
a dominating edge. There are chordal graphs of diameter 2 which do not have
any tree 3-spanners, and there are chordal graphs of diameter 2 that have a tree
3-spanner but all those spanners are of diameter 4. Theorem B will follow from
this theorem.

Theorem 9 A chordal graph G of diameter at most 2 admits a tree 3-spanner
if and only if there is a vertex v in G such that any connected component of the
second neighborhood of v has a dominating vertex in N(v).
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5 Tree Spanners in Strongly Chordal Graphs and k-Split
Graphs

For an integer k > 3, a k-sun consists of a k-clique {v1,...,v;} and a k-vertex
stable set {u1,...,ur}, and edges w;v;, u;vi41, 1 < i < k, and ugvg, ugvy. A
chordal graph is strongly chordal [11] if it does not contain a k-sun as an induced
subgraph. In [3], it is proved that every strongly chordal graph admits a tree 4-
spanner and such a tree spanner can be constructed in linear time. Not every
strongly chordal graph has a tree 3-spanner. Actually, TREE 3-SPANNER remains
open on strongly chordal graphs.

A k-planet is obtained from a k-path vivevs---v and a triangle abc by
adding edges av;, 1 <i <k —1 and bv;, 2 <1i < k; see Figure[d.

1 2 3 k—1 &k

Fig. 5. A k-planet

Definition 1 A chordal graph is called very strongly chordal if it does not con-
tain a k-planet as an induced subgraph.

As a 3-sun is a 3-planet and every k-sun (k > 4) contains an induced 4-planet, the
class of very strongly chordal graphs is properly contained in the class of strongly
chordal graphs. Moreover, the class of very strongly chordal graphs contains
all interval graphs and all distance hereditary chordal graphs, called ptolemaic
graphs [15]. The nice feature of this subclass of strongly chordal graphs is

Theorem 10 Every very strongly chordal graph admits a tree 3-spanner and
such a tree spanner can be constructed in linear time.

Another well-known subclass of strongly chordal graphs consists of the in-
tersection graphs of directed paths in a rooted directed tree, called directed path
graphs. The class of directed path graphs generalizes interval graphs naturally,
and contains all ptolemaic graphs, and is tree 3-spanner admissible [I7].

The intersection graphs of paths in a tree are called (undirected) path graph.
We call shortly a graph strongly path graph if it is strongly chordal as well as a
path graph. Clearly, every directed path graph is a strongly path graph, but not
vice versa. Indeed, there are many strongly path graphs having no tree 3-spanner
(while every directed path graph does [I7]). Moreover, in contrast to strongly
chordal graphs, for every ¢, there is a path graph having no tree t-spanner [16].

A split graph is one whose vertex set can be partitioned into a clique and a
stable set. Split graphs are exactly those chordal graphs whose complements are
chordal as well. It is known (and easy to see; cf. [B[16/25)]) that every split graph
admits a tree 3-spanner. We are going to describe a new subclass of chordal
graphs containing all split graphs and still are tree 3-spanner admissible.
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First, for an arbitrary graph G let S(G) be the set of all simplicial vertices
of G. We also use S(G) for the subgraph of G induced by S(G).

Lemma 10 If G\ S(G) has a tree (t — 1)-spanner then G has a tree t-spanner.

Definition 2 For an arbitrary graph G and an integer k > 0 let G := Gi—1 \
S(Gr-1); Go :=G. A graph G is called k-split if G, is a clique.

Clearly, 0-split graphs are exactly the cliques, and all split graphs are 1-split but
not vice versa. The following fact is probably known.

Proposition 2 A graph G is chordal if and only if G is k-split for some k.
Theorem 11 Fuvery k-split graph admits a tree (k + 2)-spanner.

Corollary 3 All 1-split graphs, hence all split graphs, admit a tree 3-spanner,
and a such a tree 3-spanner can be constructed in linear time, given the set of
all simplicial vertices.

Note that the existence of a tree (k+2)-spanner in k-split graphs is best possible:
there are many k-split graphs without tree (k+1)-spanner; for example, the 3-sun
is 1-split (even split) and has no tree 2-spanner.

6 Conclusion

In this paper we have proved that, for any ¢t > 4, TREE t-SPANNER is NP-
complete on chordal graphs of diameter at most ¢t + 1 (if ¢ is even), respectively,
at most t+2 (if ¢ is odd), improving the hardness result in [6] on a restricted well-
understood graph class. We have shown that every chordal graph G of diameter
at most t — 1 is tree t-spanner admissible if diam(G) # 2r(G) — 2.

The complexity of TREE ¢-SPANNER remains unresolved on chordal graphs
of diameter ¢ (if ¢ is even) and of diameter ¢ or ¢ + 1 (if ¢ is odd). TREE -
SPANNER remains also open on path graphs and the case ¢ = 3 remains even
open on path graphs that are strongly chordal graphs as well. However, we have
shown that all very strongly chordal graphs, a subclass of strongly chordal graphs
that contains all interval graphs and all ptolemaic graphs, are tree 3-spanner
admissible, and a tree 3-spanner for a given very strongly chordal graph can
be constructed in linear time. This improves known results on tree 3-spanners
in interval graphs [1618]23]. We have also improved known results on tree 3-
spanners in split graphs [BIT625] by showing that all 1-split graphs, a subclass
of chordal graphs containing all split graphs, are tree 3-spanner admissible, and
a tree 3-spanner for a 1-split graph can be constructed in linear time, given the
set of its simplicial vertices. We presented a polynomial time algorithm for the
TREE 3-SPANNER problem on chordal graphs of diameter at most 2.

Many questions remain still open. Among them:

(1) Can TREE 3-SPANNER be decided efficiently on (strongly) chordal graphs?

(2) Can TREE (2r(G) — 1)-SPANNER be decided efficiently on chordal graphs of diam-
eter 2r(G) — 27

(3) What is the complexity of TREE t-SPANNER for chordal graphs of diameter at most
t7.
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