Navigating in a graph by aid of its spanning tree

- Feodor Dragan
- Kent State University, USA.
- Martín Matamala
- Universidad de Chile, Chile.

Navigating in a graph

- Rules to advance in a graph from a given vertex towards a target vertex along a path close to shortest.
- Communication networks: a mechanism that can deliver packets of information from any vertex of a network to any other vertex.

Routing from v to y.

- A vertex v needs to decide:
- If the packet has reached its destination y.
- And if not, to which of its neighbors v^{*} forward the packet.
- Information locally available at v.
- Full knowledge of its neighborhood.
- A piece of global information; A sense of direction to each destination.
- Address of the destination vertex y.

Routing Strategies

- Full-tables.
- For each destination y the next vertex v^{*} is known.
- Routing is along shortest paths.
- O(n log(A)) local memory requierement.
- Routing along shortest needs $\Omega(n \log (\Delta))$.
- Low local memory requires
- Restricted classes of graphs.
- Routing along sub-optimal paths.

Routing Strategies

- (greedy) Geographic routing from v to y
- v^{*} is chosen as the geographically closest to y.
- Coordinates in the underlying physical space are known.
- No delivery guarantee (existence of lakes).

Routing Strategies

- Virtual geographic routing in a metric space (X, d).
- Delivery guaranted when G admits a greedy embedding:
- a function f such that for every x and y, there is a neighbor u of x such that $d(f(u), f(y))<d(f(x), f(y))$.
- Routing using suboptimal paths.

Routing Strategies

Greedy embedding in a metric space (X,d)

X a d-dimensional normed vector spaces.

- Euclidean plane: some simple graphs have not g.e.
- $d=c \log (n)$ allows greedy embedding for all graph on n vertices (tight up to a mutiplicative factor).
X the Hyperbolic plane.
- Every graph admits a greedy embedding.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v o to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

Routing stops when $v=y$.
Routing steps =
distance in G

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following
go to a neighbor of v in
G closest to y in T.

Our approach: Greedy routing by aid of a spanning tree

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

Routing stops when $v=y$.
Routing steps \neq
distance in G.

Greedy routing by aid of a spanning tree

- Greedy routing by aid of a spanning tree is a virtual geographic routing in the metric space $\left(V(G), d_{T}\right)$, where d_{T} is the distance defined by the spanning tree T of G.

Greedy routing by aid of a spanning tree

- Delivery is guarantee:
- Canonical injection is a greedy embedding.
- Full local knowledge:
- Each vertex knows its whole neighborhood.
- Global (metric) information:
- Distances in a spanning tree.

Greedy routing by aid of a spanning tree

- Definition: Greedy Routing Path (T-GRP)
- A path generated by greedy routing by aid of a spanning tree T.
- Properties:
- T-GRPs are induced paths.
- A tale of a $T-G R P$ is a $T-G R P$.

Greedy routing by aid of a spanning tree

- Definition: Greedy length: $\operatorname{gr} r_{T}(x, y)$.
- Length of a longest T-GRP from x to y using tree T.
- Property:
- $\operatorname{gr}(v, y) \leq d_{T}(v, y)$, for every v, y : Not worse than T.

Carcasses

- Definition: An spanning tree T is a r-additive carcass if

$$
g r_{T}(x, y) \leq d_{G}(x, y)+r \text {, for every pair } x \text { and } y \text {. }
$$

When $r=0$ the tree T is an optimal carcass.

Carcasses

- Theorem

The following classes of graphs admits additive r-carcass.

- Chordal bipartite graphs: $r=4$.
- 3-sun-free chordal graphs: $r=4$.
- Chordal graphs:
- $r=w(G)+1, w(G)$ size of the maximum clique of G.
- In particular, k-trees: $r=k+2$.

Carcasses

- Theorem

The following classes of graphs admits an optimal carcass.

- Distance-hereditary graphs.
- Grids.
- Hypecubes.
- Dually chordal.

Distance Hereditary graphs

Theorem

Every spanning tree is an optimal carcass for a distance hereditary graph G.

Proof

- In G every induced path is a shortest path.
- GRPs are induced paths.

Grids

Two special Hamiltonian paths

By columns

By rows

Grids

Theorem: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)
y and v are in different columns.
$v^{*}=$
down neighbor of v if y is below v. up neighbor of v if y is above v.

Grids

Theorem: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)
y and v are in different columns.
again
$v^{*}=$
down neighbor of v if y is below v. up neighbor of v if y is above v.

Grids

Theorem: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)
y and v are in different columns.
again
$v^{*}=$
down neighbor of v if y is below v. up neighbor of v if y is above v.

Grids

Theorem: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)
y and v are in the same column.
$v^{*}=$
right neighbor of v if y is to the right of v. left neighbor of v if y is to the left of v.

Grids

Theorem: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)
y and v are in the same column.
$v^{*}=$
right neighbor of v if y is to the right of v. left neighbor of v if y is to the left of v.

Grids

Theorem: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)
y and v are in the same column.
$v^{*}=$
right neighbor of v if y is to the right of v. left neighbor of v if y is to the left of v.

Grids

Theorem: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)
y and v are in the same column.
$v^{*}=$
right neighbor of v if y is to the right of v. left neighbor of v if y is to the left of v.

Grids

Theorem: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)

Routing stops when $v^{*}=y$

Locally connected spanning trees

An spanning tree T is locally connected if the neighborhood of each vertex induces a subtree of T.

Locally connected spanning trees

Theorem: Every locally connected spanning tree is an optimal carcass.

Proof: By induction we prove that v^{*} belongs to a $v-y$ shortest path.

- Let $P=(v, a, b, \ldots, y)$ a shortest $v-y$ path.
- By assuming that b^{*} belong to a $b-y$
shortest path, we prove that $v^{*} \sim b$.

Locally connected spanning trees

Theorem: Every locally connected spanning tree is an optimal carcass.

Proof: By induction we prove that v^{*} belongs to a $v-y$ shortest path.

- Let $P=(v, a, b, \ldots, y)$ a shortest $v-y$ path.
- By assuming that b^{*} belong to a $b-y$
shortest path, we prove that $v^{*} \sim b$.
- By definition of a GRP, v^{*}, b^{*} are in $a T y$.

Locally connected spanning trees

Theorem: Every locally connected spanning tree is an optimal carcass.

Proof: By induction we prove that v^{*} belongs to a $v-y$ shortest path.

- Let $P=(v, a, b, \ldots, y)$ a shortest $v-y$ path.
- By assuming that b^{*} belong to a $b-y$ shortest path, we prove that $v^{*} \sim b$.

- By definition of a GRP, v^{*}, b^{*} are in $a T y$.
- b^{*} belongs to $v^{*} T y$:
- a $\sim v$ and $v^{*} \sim v$. Then, $a T v^{*}$ is included in $N(v)$. (T is I.c.)

Locally connected spanning trees

Theorem: Every locally connected spanning tree

 is an optimal carcass.Proof: By induction we prove that v^{*} belongs to a $v-y$ shortest path.

- Let $P=(v, a, b, \ldots, y)$ a shortest $v-y$ path.
- By assuming that b^{*} belong to a $b-y$ shortest path, we prove that $v^{*} \sim b$.

- By definition of a GRP, v^{*}, b^{*} are in $a T y$.
- b^{*} belongs to $v^{*} T y$:
- a~v and $v^{*} \sim v$. Then, $a T v^{*}$ is included in $N(v)$. (T is l.c.)
- b^{*} cannot be a neighbor of v. (P is a shortest path).

Locally connected spanning trees

Theorem: Every locally connected spanning tree

 is an optimal carcass.Proof: By induction we prove that v^{*} belongs to a $v-y$ shortest path.

- Let $P=(v, a, b, \ldots, y)$ a shortest $v-y$ path.
- By assuming that b^{*} belong to a $b-y$ shortest path, we prove that $v^{*} \sim b$.

- By definition of a GRP, v^{*}, b^{*} are in $a T y$.
- b^{*} belongs to $v^{*} T y$:
- $a \sim v$ and $v^{*} \sim v$. Then, $a T v^{*}$ is included in $N(v)$. (T is I.c.)
- b^{*} cannot be a neighbor of v. (P is a shortest path).
- $a \sim b, b^{*} \sim b$ and v^{*} belongs to $a T b^{*}$. Then $v^{*} \sim b$. (T is I.c.)

Dually chordal graphs and locally connected spanning trees

Definition: A graph is dually chordal if it is the intersection graph of maximal cliques of a chordal graph.

Theorem: A graph is dually chordal if and only if it admits a locally connected spanning tree.

Corollary: Dually chordal graphs admit optimal carcass.

An invitation to SouthAmerica

LAGOS 2009
 Gramados, Brazil, November 2009.

THANKS!

