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Navigating in a graph

 Rules to advance in a graph from a given 
vertex towards a target vertex along a path 
close to shortest.

 Communication networks: a mechanism that 
can deliver packets of information from any 
vertex of a network to any other vertex.



  

Routing from v to y.

 A vertex v needs to decide:
− If  the packet has reached its destination y.
− And if not, to which of its neighbors v* forward the 

packet.

 Information locally available at v.
− Full knowledge of its neighborhood. 
− A piece of global information; A sense of direction 

to each destination.
− Address of the destination vertex y. 



  

Routing Strategies

 Full-tables. 
− For each destination y the next vertex v* is known.
− Routing is along shortest paths.
− O(n log(Δ)) local memory requierement. 

 Routing along shortest  needs Ω(n log (Δ)).
 Low local memory requires

− Restricted classes of graphs. 
− Routing along sub-optimal paths. 



  

Routing Strategies

 (greedy) Geographic routing from v to y 
− v* is chosen as the geographically closest to y.
−  Coordinates in the underlying physical space are 

known. 
− No delivery guarantee (existence of lakes). 



  

Routing Strategies

 Virtual geographic routing in a metric space 
(X,d).

− Delivery guaranted  when G admits a greedy 
embedding: 

 a function f such that for every x and y, there is a 
neighbor u of x such that d(f(u),f(y))<d(f(x),f(y)).

− Routing using suboptimal paths.



  

Routing Strategies

Greedy embedding in a metric space (X,d)

X a d-dimensional normed vector spaces.
 Euclidean plane: some simple graphs have not g.e.
 d=c log(n) allows greedy embedding for all graph on n 

vertices (tight up to a mutiplicative factor). 

X the Hyperbolic plane.
 Every graph admits a greedy embedding.



  

Our approach: Greedy routing 
by aid of a spanning tree

 Given a graph G  
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Routing steps = 

distance in G
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Our approach: Greedy routing 
by aid of a spanning tree

 Given a graph G  and a spanning tree T of G.
 To route from v to y do the following

Routing stops when v=y.

Routing steps ≠

distance in G.



  

Greedy routing 
by aid of a spanning tree

 Greedy routing by aid of a spanning tree is a 
virtual geographic routing in the metric space 
(V(G),d

T
), where d

T
 is the distance defined by 

the spanning tree T of G. 



  

Greedy routing 
by aid of a spanning tree

 Delivery is guarantee:
− Canonical injection is a greedy embedding.

 Full local knowledge: 
− Each vertex knows its whole neighborhood.

 Global (metric) information:  
− Distances in a spanning tree. 



  

Greedy routing 
by aid of a spanning tree

 Definition: Greedy Routing Path (T-GRP)
− A path generated by greedy routing by aid of a 

spanning tree T.

 Properties:
− T-GRPs are induced paths.
− A tale of a T-GRP is a T-GRP.



  

Greedy routing 
by aid of a spanning tree

 Definition: Greedy length: gr
T
(x,y). 

− Length of a longest T-GRP from x to y using tree T.  
 

 Property:
− gr

T
(v,y) ≤ d

T
(v,y), for every v,y: Not worse than T. 



  

Carcasses

 Definition: An spanning tree T is a r-additive 
carcass if 

gr
T
(x,y) ≤ d

G
(x,y)+r, for every pair x and y.

When r=0     the tree T is an  optimal carcass.



  

Carcasses

 Theorem

The following classes of graphs admits additive 

r-carcass.

 Chordal bipartite graphs: r=4.
 3-sun-free chordal graphs: r=4.
 Chordal graphs: 

− r=w(G)+1, w(G) size of the maximum clique of G.
− In particular, k-trees: r=k+2.



  

Carcasses

 Theorem

The following classes of graphs admits an optimal

carcass.

 Distance-hereditary graphs.
 Grids.
 Hypecubes.
 Dually chordal.



  

Distance Hereditary graphs

Theorem

Every spanning tree is an optimal carcass for a

distance hereditary graph G.

Proof
 In G every induced path is a shortest path.
 GRPs are induced paths.



  

Grids

Two special Hamiltonian paths

       

By columns                       By rows



  

Grids

y and v are in different columns.

v*=

down neighbor of v if y is below v.

up neighbor of v if y is above v.

Theorem:  row and column Hamiltonian paths are optimal 
carcasses for a grid.

Proof (Row Hamiltonian path) 
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Grids
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Grids
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Grids

Routing stops when v*=y

Theorem: row and column Hamiltonian paths are optimal 
carcasses for a grid.

Proof (Row Hamiltonian path)  



  

Locally connected spanning trees

   An spanning tree T  is locally connected  if the 
neighborhood of each vertex induces a subtree 
of T.



  

Locally connected spanning trees

Theorem: Every locally connected spanning tree 
is an optimal carcass.

Proof: By induction we prove that v* belongs to a v-y shortest path.

 Let P=(v,a,b,...,y) a shortest v-y path.

 By assuming that b* belong to a b-y 

shortest path, we prove that v*~b.
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Locally connected spanning trees

Theorem: Every locally connected spanning tree 
is an optimal carcass.

Proof: By induction we prove that v* belongs to a v-y shortest path.

 Let P=(v,a,b,...,y) a shortest v-y path.

 By assuming that b* belong to a b-y 

shortest path, we prove that v*~b.

 By definition of a GRP,  v*,b* are in aTy.

 b*  belongs to v*Ty:

− a~v and v*~v. Then, aTv* is included in N(v). (T is l.c.)

− b* cannot be a neighbor of v. (P is a shortest path).

 a~b, b*~b and v* belongs to aTb*. Then  v*~b. (T is l.c.)



  

Dually chordal graphs and locally 
connected spanning trees

Definition: A graph is dually chordal if it is the 
intersection graph of maximal cliques of a 
chordal graph.

Theorem: A graph is dually chordal if and only if it 
admits a locally connected spanning tree.

Corollary: Dually chordal graphs admit optimal 
carcass. 
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