Navigating in a graph by aid of its spanning tree

- Feodor Dragan
 - Kent State University, USA.

- Martín Matamala
 - Universidad de Chile, Chile.

Navigating in a graph

 Rules to advance in a graph from a given vertex towards a target vertex along a path close to shortest.

 Communication networks: a mechanism that can deliver packets of information from any vertex of a network to any other vertex.

Routing from v to y.

- A vertex v needs to decide:
 - If the packet has reached its destination *y*.
 - And if not, to which of its neighbors v* forward the packet.
- Information locally available at v.
 - Full knowledge of its neighborhood.
 - A piece of global information; A sense of direction to each destination.
 - Address of the destination vertex y.

- Full-tables.
 - For each destination y the next vertex v^* is known.
 - Routing is along shortest paths.
 - $O(n \log(\Delta))$ local memory requierement.
- Routing along shortest needs $\Omega(n \log (\Delta))$.
- Low local memory requires
 - Restricted classes of graphs.
 - Routing along sub-optimal paths.

- (greedy) Geographic routing from v to y
 - $-v^*$ is chosen as the geographically closest to y.
 - Coordinates in the underlying physical space are known.
 - No delivery guarantee (existence of lakes).

- Virtual geographic routing in a metric space (X,d).
 - Delivery guaranted when G admits a greedy embedding:
 - a function f such that for every x and y, there is a neighbor u of x such that d(f(u),f(y))<d(f(x),f(y)).
 - Routing using suboptimal paths.

Greedy embedding in a metric space (X,d)

X a *d*-dimensional normed vector spaces.

- *Euclidean plane:* some simple graphs have not g.e.
- d=c log(n) allows greedy embedding for all graph on n vertices (tight up to a mutiplicative factor).

X the Hyperbolic plane.

• Every graph admits a greedy embedding.

• Given a graph G

• Given a graph G and a spanning tree T of G.

- Given a graph G and a spanning tree T of G.
- To route from **v** to **y** do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

Routing stops when v=y. Routing steps = distance in *G*

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

- Given a graph G and a spanning tree T of G.
- To route from v to y do the following

Routing stops when v=y. Routing steps \neq distance in *G*.

Greedy routing by aid of a spanning tree

• Greedy routing by aid of a spanning tree is a virtual geographic routing in the metric space $(V(G), d_{\tau})$, where d_{τ} is the distance defined by the spanning tree *T* of *G*.

Greedy routing by aid of a spanning tree

- Delivery is guarantee:
 - Canonical injection is a greedy embedding.
- Full local knowledge:
 - Each vertex knows its whole neighborhood.
- Global (metric) information:
 - Distances in a spanning tree.

Greedy routing by aid of a spanning tree

- <u>Definition:</u> Greedy Routing Path (T-GRP)
 - A path generated by greedy routing by aid of a spanning tree *T*.
- **Properties:**
 - T-GRPs are induced paths.
 - A tale of a *T*-GRP is a *T*-GRP.

Greedy routing by aid of a spanning tree

- <u>Definition</u>: Greedy length: $gr_{\tau}(x,y)$.
 - Length of a longest T-GRP from x to y using tree T.
- <u>Property:</u>
 - $-gr_{T}(v,y) \leq d_{T}(v,y)$, for every v,y: Not worse than T.

Carcasses

<u>Definition</u>: An spanning tree *T* is a *r*-additive carcass if

 $gr_{\tau}(x,y) \leq d_{G}(x,y)+r$, for every pair x and y.

When *r*=0 the tree *T* is an optimal carcass.

• <u>Theorem</u>

The following classes of graphs admits additive r-carcass.

- Chordal bipartite graphs: *r*=4.
- 3-sun-free chordal graphs: *r*=4.
- Chordal graphs:
 - -r=w(G)+1, w(G) size of the maximum clique of G.
 - In particular, *k*-trees: r=k+2.

• <u>Theorem</u>

The following classes of graphs admits an optimal carcass.

- Distance-hereditary graphs.
- Grids.
- Hypecubes.
- Dually chordal.

Distance Hereditary graphs

<u>Theorem</u>

Every spanning tree is an optimal carcass for a distance hereditary graph **G**.

<u>Proof</u>

- In G every induced path is a shortest path.
- GRPs are induced paths.

Grids

Two special Hamiltonian paths

By columns

By rows

<u>Theorem</u>: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)

y and v are in different columns.

v*=

down neighbor of v if y is below v. up neighbor of v if y is above v.

<u>Theorem</u>: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)

y and *v* are in different columns. *again*

v*=

down neighbor of v if y is below v. up neighbor of v if y is above v.

<u>Theorem</u>: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)

y and *v* are in different columns. *again*

v*=

down neighbor of v if y is below v. up neighbor of v if y is above v.

<u>Theorem</u>: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)

y and v are in the same column.

v*=

<u>Theorem</u>: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)

y and v are in the same column.

v*=

<u>Theorem</u>: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)

y and v are in the same column.

v*=

<u>Theorem</u>: row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)

y and v are in the same column.

v*=

<u>Theorem:</u> row and column Hamiltonian paths are optimal carcasses for a grid.

Proof (Row Hamiltonian path)

Routing stops when v*=y

An spanning tree T is *locally connected* if the neighborhood of each vertex induces a subtree of T.

Theorem: Every locally connected spanning tree is an optimal carcass.

<u>Proof</u>: By induction we prove that v^* belongs to a *v*-*y* shortest path.

- Let P=(v,a,b,...,y) a shortest v-y path.
- By assuming that *b** belong to a *b*-*y*

shortest path, we prove that $v^* \sim b$.

Theorem: Every locally connected spanning tree is an optimal carcass.

y

- Let P=(v,a,b,...,y) a shortest v-y path.
- By assuming that b* belong to a b-y
 ^a shortest path, we prove that v*~b.
- By definition of a GRP, v^*, b^* are in *aTy*.

Theorem: Every locally connected spanning tree is an optimal carcass.

- Let P=(v,a,b,...,y) a shortest v-y path.
- By assuming that b* belong to a b-y shortest path, we prove that v*~b.
- By definition of a GRP, v^*, b^* are in aTy.
- *b** belongs to *v***Ty*:
 - $a \sim v$ and $v^* \sim v$. Then, aTv^* is included in N(v). (*T* is l.c.)

Theorem: Every locally connected spanning tree is an optimal carcass.

- Let *P*=(*v*,*a*,*b*,...,*y*) a shortest *v*-*y* path.
- By assuming that b* belong to a b-y
 shortest path, we prove that v*~b.
- By definition of a GRP, v^*, b^* are in aTy.
- b^* belongs to v^*Ty :
 - $a \sim v$ and $v^* \sim v$. Then, aTv^* is included in N(v). (T is l.c.)
 - b^* cannot be a neighbor of v. (P is a shortest path).

Theorem: Every locally connected spanning tree is an optimal carcass.

- Let P=(v,a,b,...,y) a shortest v-y path.
- By assuming that b* belong to a b-y shortest path, we prove that v*~b.

- By definition of a GRP, v^*, b^* are in aTy.
- b^* belongs to v^*Ty :
 - $a \sim v$ and $v^* \sim v$. Then, aTv^* is included in N(v). (*T* is l.c.)
 - b^* cannot be a neighbor of v. (P is a shortest path).
- $a \sim b$, $b^* \sim b$ and v^* belongs to aTb^* . Then $v^* \sim b$. (*T* is l.c.)

Dually chordal graphs and locally connected spanning trees

Definition: A graph is dually chordal if it is the intersection graph of maximal cliques of a chordal graph.

Theorem: A graph is dually chordal if and only if it admits a locally connected spanning tree.

<u>Corollary:</u> Dually chordal graphs admit optimal carcass.

An invitation to SouthAmerica

LAGOS 2009 Gramados, Brazil, November 2009.

THANKS!