
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 10, no. 2, pp. 97–122 (2006)

Collective Tree Spanners and Routing in

AT-free Related Graphs

Feodor F. Dragan Chenyu Yan

Department of Computer Science
Kent State University

Kent, Ohio, USA
{dragan,cyan}@cs.kent.edu

Derek G. Corneil

Department of Computer Science
University of Toronto

Toronto, Ontario, Canada
dgc@cs.toronto.edu

Abstract

In this paper we study collective additive tree spanners for families of
graphs that either contain or are contained in AT-free graphs. We say
that a graph G = (V, E) admits a system of µ collective additive tree r-

spanners if there is a system T (G) of at most µ spanning trees of G such
that for any two vertices x, y of G a spanning tree T ∈ T (G) exists such
that dT (x, y) ≤ dG(x, y) + r. Among other results, we show that AT-free
graphs have a system of two collective additive tree 2-spanners (whereas
there are trapezoid graphs that do not admit any additive tree 2-spanner).
Furthermore, based on this collection, we derive a compact and efficient
routing scheme. Also, any DSP-graph (there exists a dominating shortest
path) admits an additive tree 4-spanner, a system of two collective additive
tree 3-spanners and a system of five collective additive tree 2-spanners.

Article Type Communicated by Submitted Revised

regular paper S. Khuller January 2005 January 2006

Results of this paper were partially presented at the WG’04 conference [5].

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 98

1 Introduction

Given a graph G = (V,E), a spanning subgraph H is called a spanner if H
provides a “good” approximation of the distances in G. More formally, for t ≥ 1,
H is called a multiplicative t–spanner of G [2, 18, 17] if dH(u, v) ≤ t · dG(u, v)
for all u, v ∈ V. If r ≥ 0 and dH(u, v) ≤ dG(u, v) + r for all u, v ∈ V, then H
is called an additive r–spanner of G [12]. The parameters t and r are called,
respectively, the multiplicative and the additive stretch factors. Clearly, every
additive r-spanner of G is a multiplicative (r + 1)-spanner of G (but not vice
versa). In this paper, we continue the approach taken in [6] of studying collective
tree spanners. We say that a graph G = (V,E) admits a system of µ collective
additive tree r-spanners if there is a system T (G) of at most µ spanning trees
of G such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ dG(x, y) + r (a multiplicative variant of this notion can be
defined analogously). Clearly, if G admits a system of µ collective additive tree
r-spanners, then G admits an additive r-spanner with at most µ× (n−1) edges
(take the union of all those trees), and if µ = 1 then G admits an additive tree
r-spanner. Note also that any graph on n vertices admits a system of at most
n− 1 collective additive tree 0-spanners (take n− 1 Breadth-First-Search–trees
rooted at different vertices of G). In particular, we examine the problem of
finding small systems of additive r-spanners for small values of r on classes of
graphs that are related to the well known asteroidal triple-free (AT-free) graphs,
notably the restricted families: permutation graph and trapezoid graphs, and
the generalizations: DSP-graphs and graphs with bounded asteroidal number.
(All graph class definitions appear in Subsection 1.2.)

Once one has determined a system of collective additive tree spanners, it is
interesting to see if such a system can be used to design compact and efficient
routing schemes for the given graph. Following [16], one can give the following
formal definition. A family ℜ of graphs is said to have an l(n)-bit routing labeling
scheme if there is a function L labeling the vertices of each n-vertex graph in
ℜ with distinct labels of up to l(n) bits, and there exists an efficient algorithm,
called the routing decision, that given the label of a source vertex v and the label
of the destination vertex (the header of the packet), decides in time polynomial
in the length of the given labels and using only those two labels, whether this
packet has already reached its destination, and if not, to which neighbor of v
to forward the packet. The quality of a routing scheme is measured in terms
of its additive stretch, called deviation, (or multiplicative stretch, called delay),
namely, the maximum surplus (or ratio) between the length of a route, produced
by the scheme for some pair of vertices, and their distance.

1.1 Our results

After introducing the notation and definitions used throughout the paper, we ex-
amine various families of graphs related to AT-free graphs from the perspective
of determining whether they have a small constant number of collective additive
tree c-spanners for small constant c. In Section 2 we show that AT-free graphs

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 99

have a system of two collective additive tree 2-spanners, permutation graphs
have a single additive tree 2-spanner but there are trapezoid graphs that do
not admit any additive tree 2-spanner (thereby disproving a conjecture of [19]).
All of these tree spanners can be easily constructed in linear time. For families
that strictly contain AT-free graphs we prove that any DSP-graph admits one
additive tree 4-spanner, a system of two collective additive tree 3-spanners and
a system of five collective additive tree 2-spanners. Furthermore, any graph G
with asteroidal number an(G) admits a system of an(G)(an(G)− 1)/2 collective
additive tree 4-spanners and a system of an(G)(an(G) − 1) collective additive
tree 3-spanners.

In Section 3, we show how the system of two collective additive tree 2-
spanners for AT-free graphs can be used to derive a compact and efficient routing
scheme. In particular we show that any AT-free graph with diameter D and
maximum vertex degree ∆ admits a (3 log2 D +6 log2 ∆+3)-bit routing labeling
scheme of derivation at most 2. Moreover, the scheme is computable in linear
time, and the routing decision is made in constant time per vertex. The routing
scheme for AT-free graphs can be adapted to permutation graphs, DSP-graphs
and to graphs with bounded asteroidal number.

1.2 Basic notions and notation

All graphs occurring in this paper are connected, finite, and simple. In a graph
G = (V,E) the length of a path from a vertex v to a vertex u is the number
of edges in the path. The distance dG(u, v) between the vertices u and v is the
length of a shortest path connecting u and v. The eccentricity ecc(v) of a vertex
v of G is maxu∈V dG(u, v). The diameter diam(G) of G is maxv∈V ecc(v). The
ith neighborhood of a vertex v of G is the set Ni(v) := {u ∈ V : dG(v, u) = i}.
For a vertex v of G, the sets N(v) := N1(v) and N [v] := N(v) ∪ {v} are called
the open neighborhood and the closed neighborhood of v, respectively. For a set
S ⊆ V , by N [S] :=

⋃
v∈S N [v] we denote the closed neighborhood of S and

by N(S) := N [S] \ S the open neighborhood of S. A set D ⊆ V is called a
dominating set of a graph G = (V,E) if N [D] = V .

An independent set of three vertices such that each pair is joined by a path
that avoids the neighborhood of the third is called an asteroidal triple. A graph
G is an AT-free graph if it does not contain any asteroidal triples [3]. In [11],
the notion of asteroidal triple was generalized. An independent set A ⊆ V of a
graph G = (V,E) is called an asteroidal set of G if for each a ∈ A the vertices
of A \ {a} are contained in one connected component of G − N [a], the graph
obtained from G by removing vertices of N [a]. The maximum cardinality of an
asteroidal set of G is denoted by an(G), and called the asteroidal number of G.
The class of graphs of bounded asteroidal number extends naturally the class of
AT-free graphs; AT-free graphs are exactly the graphs with asteroidal number
at most two.

Let P be a shortest u, v-path of G, for some pair of vertices u, v. If every
vertex z of G belongs to the neighborhood N [P] of P , then we say that P is
a dominating shortest path of G. A graph G is called a Dominating-Shortest-

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 100

Path–graph (or DSP–graph, for short), if it has a dominating shortest path. By
the Dominating Pair Theorem given in [3], any AT-free graph is a DSP-graph.

The class of AT-free graphs contains many intersection families of graphs,
among them the permutation graphs, the trapezoid graphs and the cocompa-
rability graphs. These three families of graphs can be defined as follows [1, 9].
Consider two parallel lines (upper and lower) in the plane. Assume that each
line contains n points, labeled 1 to n, and each two points with the same la-
bel define a segment with that label. The intersection graph of such a set of
segments between two parallel lines is called a permutation graph. Assume now
that each line contains n intervals, labeled 1 to n, and each two intervals with
the same label define a trapezoid with that label (a trapezoid can degenerate to
a triangle or to a segment). The intersection graph of such a set of trapezoids
between two parallel lines is called a trapezoid graph. Clearly, every permutation
graph is a trapezoid graph, but not vice versa. The class of cocomparability
graphs (which contains all trapezoid graphs as a subclass) can be defined as the
intersection graphs of continuous function diagrams, but for this paper it is more
convenient to define them via the existence of a special vertex ordering. A graph
G is a cocomparability graph if it admits a vertex ordering σ = [v1, v2, . . . , vn],
called a cocomparability ordering, such that for any i < j < k, if vi is adjacent
to vk then vj must be adjacent to at least one of vi, vk. According to [15],
such an ordering of a cocomparability graph can be constructed in linear time.
Note also that, given a permutation graph G, a permutation model (i.e., a set
of segments between two parallel lines, defining G) can be found in linear time
[15]. A trapezoid model for a trapezoid graph can be found in O(n2) time [13].

Lexicographic breadth-first search (LexBFS), started at a vertex u, orders
the vertices of a graph by assigning numbers from n to 1 in the following way.
The vertex u gets the number n. Then each next available number k is as-
signed to a vertex v (as yet unnumbered) which has lexically largest vector
(sn, sn−1, . . . , sk+1), where si = 1 if v is adjacent to the vertex numbered i, and
si = 0 otherwise. Vertex numbered 1 is called last visited vertex.

2 Collective additive tree spanners

2.1 AT-free graphs

It is known [19] that any AT-free graph admits one additive tree 3-spanner. In
this subsection we show that any AT-free graph admits a system of two collective
additive tree 2-spanners.

As a consequence of the Dominating Pair Theorem given in [3], any AT-
free graph has a dominating shortest path that can be found in linear time by
2 × LexBFS [4]. The 2 × LexBFS method first starts a lexicographic breadth-
first search (LexBFS) from an arbitrary vertex x of G and then starts a second
LexBFS from the vertex x0 last visited by the first LexBFS. Let xl be the vertex
of G last visited by the second LexBFS. As shown in [4], every shortest path
(x0, x1, . . . , xl), connecting x0 and xl, is a dominating shortest path of G. Next

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 101

we demonstrate how to use such a dominating shortest path in an AT-free graph
to show that every AT-free graph admits a system of two collective additive tree
2-spanners. We will need the following result from [10].

Lemma 1 [10] Let P := (x0, x1, . . . , xl) be a dominating shortest path of an
AT-free graph G = (V,E) constructed by 2 × LexBFS. Then, for every i =
1, 2, . . . , l, every vertex z ∈ Ni(x0) is adjacent to xi or xi−1.

Using this lemma, we construct a first spanning tree T1 = (V,E1) for an
AT-free graph G = (V,E) as follows: put into initially empty E1 all edges of
the path P := (x0, x1, . . . , xl), and then for each vertex z ∈ Ni(x0), put edge
zxi−1 into E1, if z is adjacent to xi−1 in G, and put edge zxi into E1, otherwise.
We call this spanning tree the caterpillar-tree of G (with spine P). According
to [19], this caterpillar-tree gives already an additive tree 3-spanner for the AT-
free graph G. To get a collective additive stretch factor 2 for G, we construct a
second spanning tree T2 = (V,E2) for G as follows. Set Li := Ni(x0) for each
i = 1, 2, . . . , l.

set E2 := {all edges of the path P := (x0, x1, . . . , xl)};
set dev(xi) := 0 for each vertex xi of the path P ;
for i = 1 to l do

for each vertex z ∈ Li \ {xi} do
among all neighbors of z in Li−1 choose a neighbor w with minimum

deviation dev(w);
add edge zw to E2 and set dev(z) := dev(w) + 1;

enddo
enddo.

We call spanning tree T2 the cactus-tree of G (with stem P). It is evident,
by construction, that the cactus-tree T2 is a special kind of breadth-first-search–
tree of G. The value dev(z) (called the deviation of z from stem P) gives the
distance in T2 between vertex z and path P . In Figure 1 we show an AT-free
graph G along with its caterpillar-tree T1 and cactus-tree T2.

Lemma 2 Spanning trees {T1, T2} are collective additive tree 2-spanners of AT-
free graph G.

Proof: Consider two arbitrary vertices x ∈ Li and y ∈ Lj (y 6= x) of G, where
j ≤ i. If i = j, i.e., both x and y lie in the same layer Li = Lj , then the
distance in T1 between x and y is at most 3, since in the worst case one of them
is adjacent to xi in T1 and the second to xi−1. Thus, dT1

(x, y) ≤ 3 ≤ dG(x, y)+2
holds when i = j, and therefore, we may assume that i > j.

We know that dG(x, y) ≥ i − j. By the construction of the caterpillar-
tree T1, we have dT1

(y, xj) ≤ 2 and dT1
(x, xi−1) ≤ 2. Hence, dT1

(x, y) ≤
dT1

(x, xi−1) + dT1
(xi−1, xj) + dT1

(y, xj) ≤ 2 + i − 1 − j + 2 ≤ dG(x, y) + 3, and
equality dT1

(x, y) = dG(x, y) + 3 holds if and only if dG(x, y) = i − j, vertex x
is adjacent to xi in T1 (and thus in G, vertex x is not adjacent to xi−1) and

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 102

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������������������

������������������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������������������

������������������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������������

������������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

������������

������������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

������������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

13

1

3

5

10

9

16

14

12

15

2

4

6 7

8

11

2 3

1

4 5

6 7

8 9

10 11

12 13

14 15

16

1

32

4 5

6 7

8 9

10 11

12 13

14 15

16

(a) (b) (c)

Figure 1: (a) An AT-free graph G with a dominating path P , (b) the caterpillar-
tree T1 of G and (c) the cactus-tree T2 of G.

vertex y is adjacent to xj−1 in T1 but does not coincide with xj . We will show
that in this case in the cactus-tree T2, dT2

(x, y) ≤ dG(x, y) + 2.
Consider in G a shortest path (y = y0, y1, . . . , yi−j = x) connecting vertices

y and x. Clearly, yk ∈ Lj+k for each k = 0, 1, . . . , i − j − 1, and since yk is
a neighbor of yk+1 in layer Lj+k, by construction of T2, we have dev(y0) = 1
and dev(yk+1) ≤ dev(yk) + 1 ≤ k + 2. Hence, the deviation of vertex x is at
most i − j + 1. That is, there is a path in T2 between x and a stem vertex xs

(j − 1 ≤ s ≤ i − 2) of length i − s. The latter implies the existence in T2 of
a path of length i − j + 1 between vertices x and xj−1. Therefore, dT2

(x, y) ≤
dT2

(x, xj−1) + 1 = i − j + 1 + 1 = dG(x, y) + 2. 2

From this lemma we immediately conclude.

Theorem 1 Any AT-free graph admits a system of two collective additive tree
2-spanners, constructable in linear time.

In the next subsection, we will show that to get a collective additive stretch
factor 2 for some AT-free graphs, one needs at least two spanning trees. There-
fore, the result given in Theorem 1 is best possible. Furthermore, to achieve a
collective additive stretch factor 1 or 0 for some AT-free graphs, we will show
that one needs Ω(n) spanning trees.

2.2 Permutation graphs and trapezoid graphs

It is known [14] that any permutation graph admits a multiplicative tree 3-
spanner. In this subsection, we show that any permutation graph admits an
additive tree 2-spanner and any system of collective additive tree 1–spanners

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 103

must have Ω(n) spanning trees for some permutation graphs. Here also we
disprove a conjecture given in [19], that any cocomparability graph admits an
additive tree 2-spanner. We show that there exists even a trapezoid graph that
does not admit any additive tree 2-spanner.

Let G = (V,E) be a permutation graph given together with a permutation
model. In what follows, “u.p.” and “l.p.” refer to a vertex’s point on the upper
and lower, respectively, line of the permutation model. Construct BFS-layers
({L0, L1, · · · }) and the spine {x1, x2, · · · } of G as follows (the process continues
until Li = ∅).

set x0 := the vertex whose u.p. is as far left as possible;
set L0 := {x0};
set L1 := {vertices whose l.p.s are to the left of the l.p. of x0};
set x1 := the vertex in L1 with the u.p. as far right as possible;
set L2 := {vertices whose u.p.s are between the u.p.s of x0 and x1} \ L1;
set x2 := the vertex in L2 with the l.p. as far right as possible;
for i = 3 to n do

if i is odd then
set Li := {vertices with l.p. between the l.p.s of xi−3 and xi−1} \ Li−1;
set xi := the vertex in Li with the u.p. as far right as possible;

else
set Li := {vertices with u.p. between the u.p.s of xi−3 and xi−1} \ Li−1;
set xi := the vertex in Li with the l.p. as far right as possible;

enddo.

Lemma 3 For all i ≥ 0, if y ∈ Li+1 then xiy ∈ E.

Proof: The lemma is clearly true for i = 0 or i = 1. Now assume i ≥ 2 and i
is even. (A similar proof holds for i odd.) By the construction of the L sets, it
is clear that since y ∈ Li+1, the l.p. of y is between the l.p.s of xi−2 and xi and
the u.p. of y is between the u.p.s of xi−1 and xi+1. Furthermore, since the u.p.
of xi is to the left of the u.p. of xi−1 and thus to the left of the u.p. of y, we
conclude that xiy ∈ E. 2

Note that as an immediate corollary of this lemma, the set {Li : i = 1, 2, · · · }
forms a BFS layering. This leads to the following theorem.

Theorem 2 Every permutation graph admits an additive tree 2-spanner, con-
structable in linear time.

Proof: Form the tree T by choosing all edges from xi to Li+1, for all appropriate
i. Now consider any two vertices u and v, where u ∈ Li and v ∈ Lj , i ≤ j.
If i = j, then dG(u, v) =1 or 2 and dT (u, v) = 2 (because of vertex xi−1

and Lemma 3). If i < j, then dG(u, v) ≥ j − i. If u is a spine vertex, then
dT (u, v) = j − i. Otherwise, by following the path v, xj−1, · · · , xi−1, u, we see
that dT (u, v) = j−i+2. Thus in all cases, dG(u, v) ≤ dT (u, v)+2, as required.2

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 104

We now show that there exists a trapezoid graph that does not admit any
additive tree 2-spanner, thereby disproving a conjecture from [19] that any co-
comparability graph admits an additive tree 2-spanner.

Consider the trapezoid graph G depicted in Figure 2, and assume that it
has an additive tree 2-spanner T . We claim then, that all the cut edges (edges
whereby the removal of their endpoints disconnects G) of G must belong to T .
Indeed, if, for example, neither edge (7, 6) nor (7, 8) is an edge of T , then in
T , vertices 7 and 6 must be connected by path (7, 5, 4, 6) and vertices 7 and 8
must be connected by path (7, 9, 10, 8). Now dT (8, 6) = 6 whereas dG(8, 6) = 1.
If exactly one of (7, 6), (7, 8) (without loss of generality (7, 6)) is an edge of T ,
then at most three of the edges (7, 9), (9, 10), (10, 8), (8, 6) may be in T . For at
least one of the remaining edges, the distance in T between its endpoints is at
least 4 contradicting T being an additive 2-spanner.

1 4 2 3

5
7

8 9

10 12

11

13

14

16

156

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

1 3 5 7 9 11 13 15

4 6 8 10 12 14 162

Figure 2: A trapezoid graph (with a trapezoid model) that does not admit an
additive tree 2-spanner.

Thus, if G has an additive tree 2-spanner T , then all the cut edges of G
must belong to T (see Figure 2). In T , paths (9, 10, 11) and (6, 7, 8) must be
connected either by edge (7, 9) or by edge (8, 10). If (7, 9) is a tree edge, then
we get dT (8, 14) = 6 = dG(8, 14) + 3 (independent of whether edge (11, 13)
or edge (10, 12) is a tree edge). Otherwise, if (8, 10) is a tree edge, then we
get dT (3, 9) = 6 = dG(3, 9) + 3. Contradictions with T being an additive tree
2-spanner of G prove the following result.

Observation 1 There are trapezoid graphs that do not admit any additive tree
2-spanners.

The next observation gives a lower bound on the number of spanning trees
that guarantee a collective additive stretch factor 1 for bipartite permutation
graphs (in fact, for all graph families containing complete bipartite graphs).

Observation 2 There are bipartite permutation graphs on 2n vertices for which
any system of collective additive tree 1–spanners needs to have at least Ω(n)
spanning trees.

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 105

Proof: Consider the complete bipartite graph G = Kn,n on 2n vertices (which
is clearly a permutation graph), and let T (G) be a system of µ collective additive
tree 1-spanners of G. Then, for any two adjacent vertices x and y of G there must
exist a spanning tree T in T (G) such that dT (x, y) ≤ 2. If dT (x, y) = 2 then a
common neighbor z of x and y in G would form a triangle with vertices x and y,
which is impossible for G = Kn,n. Hence, dT (x, y) = 1 must hold. Thus, every
edge xy of G is an edge of some tree T ∈ T (G). Since there are n2 graph edges
to cover by spanning trees from T (G), we conclude µ ≥ n2/(2n − 1) > n/2. 2

2.3 DSP-graphs

It follows from a result in [19] that any DSP-graph admits one additive tree
4-spanner. In this subsection we show that any DSP-graph admits a system of
two collective additive tree 3-spanners and a system of five collective additive
tree 2-spanners.

Let G = (V,E) be a DSP-graph and let P := (v = x0, x1, . . . , xl = u) be a
dominating shortest path of G. We will build five spanning trees {T1, T2, T3, T4,
T5} for G, all containing the edges of P , in such a way that for any two vertices
x, y ∈ V , there will be a tree T ′ ∈ {T1, T2, T3, T4, T5} with dT ′(x, y) ≤ dG(x, y)+
2.

Our first three trees T1, T2, T3 are very similar to the trees constructed for
AT-free graphs. The tree T1 = (V,E1) is constructed as follows. Add to initially
empty set E1 all edges of path P . Then, for each vertex z ∈ V \ P choose an
arbitrary neighbor wz in P and add edge zwz to E1. The tree T1 is an analog
of the caterpillar-tree constructed for an AT-free graph. The second and third
trees are analogs of the cactus-tree considered for an AT-free graph. The tree
T2 = (V,E2) is a special breadth-first-search-tree Tv with vertex v as the root,
the tree T3 = (V,E3) is a special breadth-first-search-tree Tu with vertex u as
the root. We show here only how to construct the tree T3. For construction of
T2 we can use the algorithm given in Subsection 2.1 with one additional line at
the end: for each z ∈ Nl+1(v), add edge zu to E2 and set dev(z) := 1. T3 is
constructed similarly, we simply reverse the order of vertices of P and consider
u instead of v and E3 instead of E2.

set E3 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};
set dev(xi) := 0 for each vertex xi of the path P ;
for i = 1 to l do

for each vertex z ∈ Ni(u) \ {xl−i} do
among all neighbors of z in Ni−1(u) choose a neighbor w with minimum

deviation dev(w);
add edge zw to E3 and set dev(z) := dev(w) + 1;

enddo
enddo
for each z ∈ Nl+1(u), add edge zv to E3 and set dev(z) := 1.

Our tree T4 = (V,E4) is a generalization of the tree T2 and is constructed
as follows.

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 106

set E4 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};
set dev(xi) := 0 for each vertex xi of the path P ;
for i = 1 to l do

for each vertex z ∈ Ni(v) \ {xi} do case
case (z is adjacent to xi−1 in G)

add edge zxi−1 to E4 and set dev(z) := 1;
case (z is adjacent to xi in G)

add edge zxi to E4 and set dev(z) := 1;
case (z is adjacent to a vertex w ∈ Ni(v) that is adjacent to xi−1)

choose such a w and add edge zw to E4 and set dev(z) := 2;
otherwise /* none of above */

among all neighbors of z in Ni−1(v) choose a neighbor w with
minimum deviation dev(w) (break ties arbitrarily);

add edge zw to E4 and set dev(z) := dev(w) + 1;
endcase

enddo
enddo
for each z ∈ Nl+1(v), add edge zu to E4 and set dev(z) := 1.

It is an easy exercise to show by induction that for any vertex z ∈ Ni(v),
the vertex of P closest to z in T4 is either xs or xs−1 with s = i − dev(z) + 1.
Moreover, the length of the path of T4 between z and P is dev(z). Our last tree
T5 = (V,E5) is a version of the tree T4, constructed downwards.

set E5 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};
set dev(xi) := 0 for each vertex xi of the path P and dev(z) := ∞ for any

z ∈ V \ P ;
for i = l − 1 down to 1 do

for each vertex z ∈ Ni(v) \ {xi} do case
case (z is adjacent to xi+1 in G)

add edge zxi+1 to E5 and set dev(z) := 1;
case (z is adjacent to xi in G)

add edge zxi to E5 and set dev(z) := 1;
case (z is adjacent to a vertex w ∈ Ni(v) that is adjacent to xi+1)

choose such a w and add edge zw to E5 and set dev(z) := 2;
otherwise /* none of the above */

if z has neighbors in Ni+1(v) then
among all neighbors of z in Ni+1(v) choose a neighbor w with

minimum deviation dev(w) (break ties arbitrarily);
if dev(w) < ∞ then add edge zw to E5 and set dev(z) := dev(w) + 1;

endcase
enddo

enddo
for each vertex z with dev(z) still ∞ do

let z ∈ Ni(v);
if i = l and z is adjacent to xl then add edge zxl to E5 and set dev(z) := 1;

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 107

else add edge zxi−1 to E5;
/* this edge exists in G since P is a dominating path

and z is adjacent in G neither to xi+1 nor xi */
enddo.

Again, it is easy to see that for any vertex z ∈ Ni(v) with finite deviation
dev(z), the vertex of P closest to z in T5 is either xs or xs+1 with s = i +
dev(z) − 1. The length of the path of T5 between z and P is dev(z). In Figure
3 we show a DSP-graph G along with a shortest path P and spanning trees
T1, T2, T3, T4, T5.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

u

v v

u u

v

T T1 2G’, P

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

u

v v

u u

v

T T T3 4 5

Figure 3: A DSP-graph G with a dominating path P and spanning trees
T1, T2, T3, T4, T5.

We are ready to present the main result of this subsection.

Lemma 4 Let G be a DSP-graph with a dominating shortest path P := (v =
x0, x1, . . . , xl = u) and spanning trees T1, T2, T3, T4, T5 constructed starting from
P as described above. Then, for any two vertices x, y ∈ V the following is true.

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 108

1. dT1
(x, y) ≤ dG(x, y) + 4;

2. there is a tree T ′ ∈ {T1, T2} such that dT ′(x, y) ≤ dG(x, y) + 3;

3. there is a tree T ′′ ∈ {T1, T2, T3, T4, T5} such that dT ′′(x, y) ≤ dG(x, y) + 2.

Proof: Consider two arbitrary vertices x, y ∈ N [P] (y 6= x), and let x ∈ Ni(v),
y ∈ Nj(v) and i ≥ j. We know that dG(x, y) ≥ i − j. By the construction
of tree T1, dT1

(y, xj) ≤ 2 and dT1
(x, xi) ≤ 2. Hence, dT1

(x, y) ≤ dT1
(x, xi) +

dT1
(xi, xj) + dT1

(y, xj) ≤ 2 + i − j + 2 ≤ dG(x, y) + 4, thereby proving claim 1
of the lemma.

Equality dT1
(x, y) = dG(x, y)+4 holds if and only if dG(x, y) = i− j, vertex

x is adjacent to xi+1 in T1, vertex y is adjacent to xj−1 in T1 and x 6= xi, y 6= xj .
As in the proof of Lemma 2, we now show that in this case (or more generally,
when dG(x, y) = i− j and y is adjacent to xj−1 in G), dT2

(x, y) ≤ dG(x, y) + 2.
Consider in G a shortest path (y = y0, y1, . . . , yi−j = x) connecting vertices

y and x. Clearly, yk ∈ Nj+k(v) for each k = 0, 1, . . . , i− j − 1, and since yk is a
neighbor of yk+1 in layer Nj+k(v), by construction of T2, we have dev(y0) = 1
and dev(yk+1) ≤ dev(yk) + 1 ≤ k + 2. Hence, the deviation of vertex x is
at most i − j + 1. That is, there is a path in T2 between x and a vertex
xs ∈ P (j − 1 ≤ s ≤ i − 1) of length i − s. The latter implies the existence
in T2 of a path of length i − j + 1 between vertices x and xj−1. Therefore,
dT2

(x, y) ≤ dT2
(x, xj−1) + 1 = i − j + 1 + 1 = dG(x, y) + 2.

Together with claim 1 of the lemma, this proves claim 2. We may assume
in what follows that dG(x, y) > i − j or y is not adjacent to xj−1 in G (since
otherwise, dT2

(x, y) ≤ dG(x, y) + 2).

Case 1: y is not adjacent to xj−1 in G.

Then y is adjacent to xj or xj+1 in T1. Hence, dT1
(x, y) ≤ dT1

(x, xi) +
dT1

(xi, xj+1) + dT1
(y, xj+1) ≤ 2 + i − j − 1 + 2 ≤ dG(x, y) + 3, and equal-

ity dT1
(x, y) = dG(x, y) + 3 holds if and only if dG(x, y) = i − j, vertex x is

adjacent to xi+1 in T1, vertex y is adjacent to xj in T1 and x 6= xi. Since
y ∈ Nj(v), x ∈ Ni(v) and u = xl belongs to Nl(v), we get dG(u, x) = l − i and
dG(u, y) ≥ l− j. On the other hand, dG(y, u) ≤ dG(y, x)+1+dG(xi+1, u) = i−
j+1+ l−(i+1) = l−j. Hence, x ∈ Nl−i(u), y ∈ Nl−j(u) and xi+1 ∈ Nl−i−1(u).
From this and since x is adjacent to xi+1 in G and there exists a shortest path
of length i − j in G between vertices x and y, it is easy to show that for the
special breadth-first-search–tree T3 rooted at u, dT3

(x, y) ≤ dT3
(y, xi+1) + 1 =

i + 1− j + 1 = dG(x, y) + 2 (the proof is similar to the proof above for the tree
T2).

Case 2: dG(x, y) ≥ i − j + 1.

Again, for the tree T1 we have dT1
(x, y) ≤ dT1

(x, xi)+dT1
(xi, xj)+dT1

(y, xj) ≤
2 + i − j + 2 ≤ dG(x, y) + 3, and equality dT1

(x, y) = dG(x, y) + 3 holds if
and only if dG(x, y) = i − j + 1, vertex x is adjacent to xi+1 in T1, vertex y
is adjacent to xj−1 in T1 and x 6= xi, y 6= xj . We show that in this case,
min{dT4

(x, y), dT5
(x, y)} ≤ dG(x, y) + 2.

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 109

Consider in G a shortest path (y = y0, y1, . . . , yi−j+1 = x) connecting ver-
tices y and x. Clearly, there is only one index h (0 ≤ h ≤ i − j) such that both
vertices yh and yh+1 lie in Nj+h(v). For index k (0 ≤ k ≤ h− 1), yk ∈ Nj+k(v),
yk+1 ∈ Nj+k+1(v).

If yh+1 is adjacent to xj+h−1 or to xj+h then, by construction of tree T4,
we have dev(yh+1) = 1 and dev(yt+1) ≤ dev(yt) + 1 ≤ t − (h + 1) + 2 for any
t, (h + 1 ≤ t ≤ i − j). Hence, the deviation of vertex x is at most i − (j +
h − 1), and there is a path in T4 of length dev(x) from vertex x to either xs

or xs−1, where s = i − dev(x) + 1 ≥ i − i + (j + h − 1) + 1 = j + h. In
any case dT4

(x, xs−1) ≤ dev(x) + 1 and therefore dT4
(x, xj−1) ≤ dT4

(x, xs−1) +
dT4

(xs−1, xj−1) ≤ dev(x)+1+s− j = dev(x)+1+ i−dev(x)+1− j = i− j +2.
The latter implies dT4

(x, y) ≤ dT4
(x, xj−1) + 1 ≤ i − j + 2 + 1 = dG(x, y) + 2.

So, we may assume that yh+1 is adjacent neither to xj+h−1 nor to xj+h,
i.e., yh+1 is adjacent to xj+h+1. Assume that yh is adjacent to xj+h−1 and
h 6= 0. Then, by construction of tree T4, dev(yh+1) = 2 and dev(yt+1) ≤
dev(yt) + 1 ≤ t − (h + 1) + 3 for any t, (h + 1 ≤ t ≤ i − j). Hence, the
deviation of vertex x is at most i− (j + h− 1) + 1, and there is a path in T4 of
length dev(x) from vertex x to either xs or xs−1, where s = i − dev(x) + 1 ≥
i−i+(j+h−1)−1+1 = j+h−1. Recall that h 6= 0 and hence s−1 ≥ j−1. Again,
in any case dT4

(x, xs−1) ≤ dev(x)+1 and therefore dT4
(x, xj−1) ≤ dT4

(x, xs−1)+
dT4

(xs−1, xj−1) ≤ dev(x)+1+s− j = dev(x)+1+ i−dev(x)+1− j = i− j +2.
The latter implies dT4

(x, y) ≤ dT4
(x, xj−1) + 1 ≤ i − j + 2 + 1 = dG(x, y) + 2.

If now yh is adjacent to xj+h+1 or to xj+h then, by construction of tree T5,
dev(yh) = 1 and dev(yt−1) ≤ dev(yt)+1 ≤ h−t+2 for any t, (1 ≤ t ≤ h). Hence,
the deviation of vertex y is at most h+1, and there is a path in T5 of length dev(y)
from vertex y to either xs or xs+1, where s = j+dev(y)−1 ≤ j+h+1−1 = j+h.
In any case dT5

(y, xs+1) ≤ dev(y)+1 and therefore dT5
(y, xi+1) ≤ dT5

(y, xs+1)+
dT5

(xs+1, xi+1) ≤ dev(y)+1+ i− s = dev(y)+1+ i− j −dev(y)+1 = i− j +2.
The latter implies dT5

(x, y) ≤ dT5
(y, xi+1) + 1 ≤ i − j + 2 + 1 = dG(x, y) + 2.

Thus, we may assume that yh is adjacent to neither xj+h+1 nor xj+h.
It remains then to consider only the last case when h = 0, y1 is adjacent to

xj+1 but not to xj ,xj−1, and y = y0 is adjacent to xj−1 but not to xj ,xj+1.
Recall that y0, y1 ∈ Nj(v). By construction, in T5, y is adjacent to y1, y1

is adjacent to xj+1, and x is adjacent to xi+1. Therefore, dT5
(x, y) ≤ 1 +

dT5
(xi+1, xj+1) + 2 = i − j + 3 = dG(x, y) + 2, completing the proof of the

lemma. 2

Theorem 3 Any DSP-graph admits one additive tree 4-spanner, a system of
two collective additive tree 3-spanners and a system of five collective additive
tree 2-spanners. Moreover, given a dominating shortest path of G, all trees are
constructable in linear time.

Note that an induced cycle on six vertices gives a DSP-graph that does not
admit an additive tree 3-spanner. Therefore, two trees are necessary to get a
collective additive stretch factor 3. However, it is an open question whether
to achieve a collective additive stretch factor 2, one really needs five spanning
trees.

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 110

2.4 Graphs with bounded asteroidal number

It is known [11] that any graph G with asteroidal number an(G) admits an
additive tree (3an(G) − 1)-spanner. In this subsection we show that any graph
with asteroidal number an(G) admits a system of an(G)(an(G)− 1)/2 collective
additive tree 4-spanners and a system of an(G)(an(G) − 1) collective additive
tree 3-spanners.

In what follows we will use the following two definitions and two theorems
from [11]. An asteroidal set A of a graph G is repulsive if for every vertex
v ∈ V \ N [A], not all vertices of A are contained in one connected component
of G − N [v].

Theorem 4 [11] Any graph has a repulsive asteroidal set.

A set D ⊆ V in a graph G is said to be a dominating target, if D ∪ S is a
dominating set in G for every set S ⊆ V for which the subgraph of G induced
by D ∪ S is connected.

Theorem 5 [11] Any graph G has a dominating target D with |D| ≤ an(G).
Furthermore, every repulsive asteroidal set of G is such a dominating target of
G.

We will need a stronger version of the above theorem. Let G = (V,E) be a
graph and D ⊆ V be a repulsive asteroidal set of G.

Lemma 5 For every x, y ∈ V and dominating target D, there exist a, b ∈ D
such that x, y ∈ N [P] for any path P of G between a and b.

Proof: The claim is evident if x, y ∈ N [D]. Therefore assume, without loss of
generality, that x ∈ V \ N [D]. Then, by the definition of a repulsive asteroidal
set, there must exist vertices a, b in D that lie in different connected components
of G−N [x]. Let CCx(a) and CCx(b) be those connected components. Clearly,
any path P between a and b intersects N [x] and therefore x ∈ N [P]. We may
assume that y /∈ N [{a, b}], since otherwise the lemma follows. Let, however,
y ∈ N [D] and c be a vertex from N [y] ∩ D. Since c cannot be adjacent with
x (recall that x ∈ V \ N [D]), c must lie in some connected component CCx(c)
of G − N [x]. Clearly, CCx(c) cannot coincide with both CCx(a) and CCx(b).
Assuming CCx(c) 6= CCx(a), we conclude that any path connecting a and c
dominates both x and y.

Now let y ∈ V \ N [D]. Then, there must exist vertices c, d in D that lie in
different connected components of G − N [y]. Hence, for any path P between c
and d, y ∈ N [P]. If c and d lie in different connected components of G−N [x] as
well, then the lemma follows, since any path connecting c and d must dominate
both x and y. Therefore assume, without loss of generality, that neither c nor
d belongs to CCx(a). Now any path P (a, c) between a and c and any path
P (a, d) between a and d must intersect N [x]. Since the union of P (a, c) and
P (a, d) connects vertices c and d, N [y] must intersect every path between a
and c or every path between a and d. Let a and c be vertices lying in different

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 111

connected components of G−N [y]. Then, since a and c lie in different connected
components of G−N [x] too, we are done; any path between a and c dominates
x and y. 2

Consider two arbitrary vertices a, b of D and a shortest path P (a, b) := (a =
x0, x1, . . . , xl = b) connecting a and b in G. We can build two spanning trees
T1(a, b) and T2(a, b) for G, both containing the edges of P (a, b), in such a way
that for any two vertices x, y ∈ N [P (a, b)], dT1(a,b)(x, y) ≤ dG(x, y) + 4 and
min{dT1(a,b)(x, y), dT2(a,b)(x, y)} ≤ dG(x, y) + 3.

Our trees T1(a, b) and T2(a, b) are very similar to the trees constructed for
AT-free graphs. The tree T1(a, b) = (V,E1) is constructed as follows. Add
to initially empty set E1 all edges of path P (a, b). Then, for each vertex z ∈
N [P (a, b)] choose an arbitrary neighbor w in P (a, b) and add edge zw to E1. The
obtained subtree of G (which covers so far only vertices from N [P (a, b)]) extends
to a spanning tree T1(a, b) arbitrarily. The tree T1(a, b) is an analog of the
caterpillar-tree constructed for an AT-free graph. The second tree is an analog
of the cactus-tree considered for an AT-free graph. The tree T2(a, b) = (V,E2) is
a special breadth-first-search-tree Ta with vertex a as the root and is constructed
as follows.

set E2 := {all edges of the path P := (a = x0, x1, . . . , xl = b)};
set dev(xi) := 0 for each vertex xi of the path P (a, b);
for i = 1 to ecc(a) do

if i ≤ l then set A := Ni(a) \ {xi} else set A := Ni(a);
for each vertex z ∈ A do

among all neighbors of z in Ni−1(a) choose a neighbor w with minimum
deviation dev(w);

add edge zw to E2 and set dev(z) := dev(w) + 1;
enddo

enddo.

Lemma 6 For any two vertices x, y ∈ N [P (a, b)] the following is true.

1. dT1(a,b)(x, y) ≤ dG(x, y) + 4;

2. there is a tree T ′ ∈ {T1(a, b), T2(a, b)} such that dT ′(x, y) ≤ dG(x, y) + 3.

Proof: The proof is similar to the proof of claims 1 and 2 of Lemma 4 and
therefore is omitted. 2

If we construct trees T1(a, b) and T2(a, b) for each pair of vertices a, b ∈ D,
from Lemma 5 and Lemma 6, we get (recall that |D| ≤ an(G)):

Theorem 6 Any graph G with asteroidal number an(G) admits a system of
an(G)(an(G) − 1)/2 collective additive tree 4-spanners and a system of an(G)
(an(G) − 1) collective additive tree 3-spanners.

Corollary 1 Any graph G with asteroidal number bounded by a constant admits
a system of a constant number of collective additive tree 3-spanners. Moreover,
given a repulsive asteroidal set of G, all trees are constructable in total linear
time.

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 112

3 Routing labeling schemes in AT-free related

graphs

In this section, we use the results obtained above to design compact and efficient
routing labeling schemes for graphs from the AT-free hierarchy. We first describe
a direct routing labeling scheme for all graphs admitting a system of µ collective
additive tree r-spanners. This scheme uses the efficient routing labeling scheme
developed in [7, 20] for arbitrary trees. Then we show that, using the special
structure of the trees constructed in Section 2, better routing labeling schemes
can be designed for AT-free and related families of graphs. Among other results
we show that any AT-free graph with diameter D and maximum vertex degree
∆ admits a (3 log2 D + 6 log2 ∆ + 3)-bit routing labeling scheme of deviation
at most 2. Moreover, the scheme is computable in linear time, and the routing
decision is made in constant time per vertex.

It is worth mentioning that any AT-free graph admits a (log2 D + 1)-bit
distance labeling scheme of deviation at most 2 (see [8]). That is, there is a
function L labeling the vertices of each AT-free graph G with (not necessarily
distinct) labels of up to log2 D + 1 bits such that given two labels L(v), L(u)
of two vertices v, u of G, it is possible to compute in constant time, by merely
inspecting the labels of u and v, a value d̂(u, v) such that 0 ≤ d̂(u, v)−dG(u, v) ≤
2. To the best of our knowledge, the method of [8] cannot be used (at least
directly) to design a routing labeling scheme for AT-free graphs.

3.1 A direct routing labeling scheme for all graphs admit-

ting a system of µ collective additive tree r-spanners

We will need the following two results on distance and routing labeling schemes
for arbitrary trees.

Theorem 7 [16] There is a function DL labeling in O(n log n) total time the
vertices of an n-vertex tree T with labels of up to O(log2 n) bits such that given
two labels DL(v),DL(u) of two vertices v, u of T , it is possible to compute in
constant time the distance dT (v, u), by merely inspecting the labels of u and v.

Theorem 8 [7, 20] There is a function RL labeling in O(n) total time the
vertices of an n-vertex tree T with labels of up to O(log2 n/ log log n) bits such
that given two labels RL(v), RL(u) of two vertices v, u of T , it is possible to
determine in constant time the port number, at u, of the first edge on the path
in T from u to v, by merely inspecting the labels of u and v.

Now consider a graph G admitting a system T (G) = {T1, T2, . . . , Tµ} of µ
collective additive tree r-spanners. We can preprocess each tree Ti using the
algorithms from [16] and [7] and assign to each vertex v of G a distance label
DLi(v) of size O(log2 n) bits and a routing label RLi(v) of size O(log2 n/ log log n)
bits associated with the tree Ti. Then we can form a label L(v) of v of size
O(µ log2 n) bits by concatenating the µ tree-labels:

L(v) := DL1(v) ◦ · · · ◦ DLµ(v) ◦ RL1(v) ◦ · · · ◦ RLµ(v).

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 113

Assume now that a vertex v wants to send a message to a vertex u. Given
the labels L(v) and L(u), v first uses the substrings DL1(v) ◦ · · · ◦ DLµ(v)
and DL1(u) ◦ · · · ◦ DLµ(u) to compute in O(µ) time the distances dTi

(v, u)
(i = 1, . . . , µ) and an index k such that dTk

(v, u) = min{dT ′(v, u) : T ′ ∈ T (G)}.
Then, v extracts from L(u) the substring RLk(u) and forms a header of the
message H(u) := k ◦ RLk(u). Now, the initiated message with the header
H(u) = k ◦ RLk(u) is routed to the destination using the tree Tk: when the
message arrives at an intermediate vertex x, vertex x using its own substring
RLk(x) and the string RLk(u) from the header makes a constant time routing
decision.

Thus, the following result is true.

Theorem 9 Let G be an n-vertex graph admitting a system of µ collective ad-
ditive tree r-spanners. Then G has a O(µ log2 n)-bit routing labeling scheme of
deviation r. Once computed by the sender in O(µ) time, headers never change,
and the routing decision is made in constant time per vertex.

3.2 A better routing labeling scheme for AT-free graphs

3.2.1 Labels

In subsection 2.1, we showed that any AT-free graph G = (V,E) admits a
system of two collective additive tree 2-spanners. During the construction of
the cactus-tree T2 for G, each vertex z ∈ V received a deviation number dev(z)
that is the distance in T2 between z and the stem P := (x0, x1, . . . , xl) of T2

using only “down” edges. To simplify the routing decision, it will be useful to
construct one more spanning tree T ′ = (V,E′) for G. Let P := (x0, x1, . . . , xl)
be the dominating path of G described in Lemma 1.

set E′ := {all edges of the path P := (x0, x1, . . . , xl)};
set dev′(xi) := 0 for each vertex xi of the path P and dev′(z) := l + 1 for any

z ∈ V \ P ;
for each vertex z ∈ Nl(x0) that is adjacent to xl, set dev′(z) := 1 and add edge

zxl to E′;
for i = l − 1 down to 1 do

for each vertex z ∈ Ni(x0) \ {xi} do
if z is adjacent to xi in G then add edge zxi to E′ and set dev′(z) := 1;
else if z has neighbors in Ni+1(x0) then

among all neighbors of z in Ni+1(x0), choose a neighbor w with
minimum deviation dev′(w) (break ties arbitrarily);

if dev′(w) < l + 1 then add edge zw to E′ and set
dev′(z) := dev′(w) + 1;

enddo
enddo
for each vertex z with dev′(z) still l + 1 do

let z ∈ Ni(x0);
add edge zxi−1 to E′;

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 114

enddo.

We name tree T ′ the willow-tree of G. As a result of its construction, each
vertex z ∈ V got a second deviation number dev′(z), which is either l +1 or the
distance in T ′ (using only “horizontal” or “up” edges) between z and the path
P := (x0, x1, . . . , xl) of T ′.

Now we are ready to describe the routing labels of the vertices of G. For
each vertex xi ∈ P (i = 0, 1, . . . , l), we have

Label(xi) := (b(xi), level(xi), portup(xi), portdown(xi)),

where

• b(xi) := 1, a bit indicating that xi belongs to P ;

• level(xi) (= i) is the index of xi in P , i.e., the distance dG(xi, x0);

• portup(xi) is the port number at vertex xi of the edge xixi+1 (if i = l,
portup(xi) := nil);

• portdown(xi) is the port number at vertex xi of the edge xixi−1 (if i = 0,
portdown(xi) := nil).

For each vertex z ∈ V \ P , we have

Label(z) := (b(z), level(z), av↓(z), portv−in(z), portv−out(z), ah(z), porth−in(z),

porth−out(z), dev(z), portdown(z), dev′(z), portup(z)),

where

• b(z) := 0, a bit indicating that z does not belong to P ;

• level(z) is the distance dG(z, x0);

• av↓(z) is a bit indicating whether z is adjacent to xlevel(z)−1;

• portv−in(z) is the port number at vertex xlevel(z)−1 of the edge xlevel(z)−1z
(if z and xlevel(z)−1 are not adjacent in G, then portv−in(z) := nil);

• portv−out(z) is the port number at vertex z of the edge zxlevel(z)−1 (if z
and xlevel(z)−1 are not adjacent in G, then portv−out(z) := nil);

• ah(z) is a bit indicating whether z is adjacent to xlevel(z);

• porth−in(z) is the port number at vertex xlevel(z) of the edge xlevel(z)z (if
z and xlevel(z) are not adjacent in G, then porth−in(z) := nil);

• porth−out(z) is the port number at vertex z of the edge zxlevel(z) (if z and
xlevel(z) are not adjacent in G, then porth−out(z) := nil);

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 115

• dev(z) is the deviation of z in tree T2;

• portdown(z) is the port number at vertex z of the edge zw, where w is the
father of z in T2;

• dev′(z) is the deviation of z in tree T ′;

• portup(z) is the port number at vertex z of the edge zw, where w is the
father of z in T ′ (if dev′(z) = l + 1, portup(z) := nil).

Clearly, the label size of each vertex of G is at most 3 log2 l + 6 log2 ∆ + 3 ≤
3 log2 D + 6 log2 ∆ + 3 bits.

3.2.2 Routing decision

The routing decision algorithm is obvious. Suppose that a packet with the
header (address of destination) Label(y) arrives at vertex x. Vertex x can use
the following constant time algorithm to decide where to submit the packet.
Note that each vertex v of G is uniquely identified by its label Label(v).

function routing decision AT-free(Label(x), Label(y))

if Label(x) = Label(y) then return “packet reached its destination”;
else do case

case (b(x) = 1) /* x belongs to P and routing is performed on the
caterpillar-tree T1 of G */

do case
case (level(x) > level(y))

send packet via portdown(x);
case (level(x) < level(y))

if b(y) = 1 then send packet via portup(x);
else if level(y) = level(x) + 1 and av↓(y) = 1 then send packet via

portv−in(y);
else send packet via portup(x);

case (level(x) = level(y))
if ah(y) = 1 then send packet via porth−in(y);
else send packet via portdown(x);

endcase;
/* now x does not belong to P */
case (level(x) > level(y))

do case
case (av↓(x) = 1)

send packet via portv−out(x); /* routing is performed on T1 */
case (b(y) = 1 or b(y) = 0 and ah(y) = 1)

send packet via porth−out(x); /* routing is performed on T1 */
otherwise /* here we have dT1

(x, y) = level(x) − level(y) + 3 */
if dev(x) ≤ level(x) − level(y) + 1 then send packet via portdown(x);

/* the cactus-tree T2 of G is used for routing */

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 116

else send packet via porth−out(x); /* routing is performed on T1 */
endcase;

case (level(x) < level(y))
do case

case (ah(x) = 1)
send packet via porth−out(x); /* routing is performed on T1 */

case (b(y) = 1 or b(y) = 0 and av↓(y) = 1)
send packet via portv−out(x); /* routing is performed on T1 */

otherwise /* here we have dT1
(x, y) = level(y) − level(x) + 3 */

if dev′(x) ≤ level(y) − level(x) + 1 then send packet via portup(x);
/* the willow-tree T ′ of G is used for routing */

else send packet via portv−out(x); /* routing is performed on T1 */
endcase;

case (level(x) = level(y)) /* routing is performed on T1 */
if ah(x) = 1 then send packet via porth−out(x);
else send packet via portv−out(x);

endcase.

Thus, we have the following result.

Theorem 10 Every AT-free graph of diameter D := diam(G) and of maximum
vertex degree ∆ admits a (3 log2 D + 6 log2 ∆ + 3)-bit routing labeling scheme
of deviation at most 2 (and also a (log2 D + 2 log2 ∆ + 2)-bit routing labeling
scheme of deviation at most 3). Moreover, the scheme is computable in linear
time, and the routing decision is made in constant time per vertex.

A (log2 D + 2 log2 ∆ + 2)-bit routing labeling scheme of deviation at most 3
can easily be derived from the structure of tree T1.

3.3 Routing in AT-free related graphs

3.3.1 Permutation graphs

The above idea can be used to design a compact routing labeling scheme for
permutation graphs. Note that, by Theorem 2, any permutation graph admits
an additive tree 2-spanner. According to the tree construction algorithm, the
tree has a spine (shortest path) (x0, x1, · · · , xl). For every vertex y ∈ Ni(x0),
0 < i ≤ l + 1, we have yxi−1 ∈ E(G) ∩ E(T). Each vertex xi on the spine
needs only to memorize the port numbers to xi+1 and to xi−1. Any other
vertex y needs only to memorize the port numbers from xi−1 to y and from y
to xi−1. Moreover, each vertex w will memorize also one extra bit, indicating
whether w is on the spine, and the distance dG(w, x0) which is the index of the
level Li = Ni(x0) it belongs to. Other details are left to the reader. We only
formulate the final result for the permutation graphs.

Theorem 11 Every permutation graph of diameter D and maximum vertex
degree ∆ admits a (log2 D+2 log2 ∆+1)-bit routing labeling scheme of deviation

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 117

at most 2. Moreover, the scheme is computable in linear time, and the routing
decision is made in constant time per vertex.

3.3.2 DSP-graphs

Based on Lemma 4, the following result can be proved for DSP-graphs.

Theorem 12 Every n-vertex DSP-graph of diameter D and of maximum vertex
degree ∆ admits the following routing labeling schemes.

Scheme Label Size Decision time Deviation

1 (log2 D + 2 log2 ∆ + 3) O(1) 4
2 (3 log2 D + 8 log2 ∆ + 4) O(1) 3

3 O(log2 n/ log log n) O(1) 2

The first routing labeling scheme can easily be constructed using the special
structure of additive tree 4-spanner T1 (see Section 2.3). The second routing
labeling scheme can be constructed using the special structure of the system
of two collective additive tree 3-spanners {T1, T2}. The construction is very
similar to that used for AT-free graphs (see the scheme of deviation 2 in Section
3.2), and its details are left to the reader (consider T3 instead of T ′; since in
DSP-graphs one needs to handle also the case when vertex z from Ni(x0) \P is
adjacent to xi+1, i ∈ {1, . . . , l − 1}, where we have a (2 log2 ∆ + 1)-bit surplus
in the label size). Here we will give a brief description only of the third routing
labeling scheme (of deviation 2).

In Section 2.3, we have shown how to construct a system of five collective
additive tree 2-spanners for a DSP-graph G with a dominating shortest path
P := (x0, x1, . . . , xl). From Theorem 9, one can conclude that G has a O(log2 n)-
bit routing labeling scheme with deviation 2 and constant routing decision. In
what follows, we will show that, to find distances in those trees, shorter labels
are sufficient.

We preprocess each tree Ti (i = 1, 2, 3, 4, 5) using the algorithm from [7] and
assign to each vertex v of G a routing label RLi(v) of size O(log2 n/ log log n)
bits associated with the tree Ti. Then we form a label L(v) of v of size 6 log2 D+
O(log2 n/ log log n) = O(log2 n/ log log n) bits as follows:

L(v) :=

level(v)◦ level′(v)◦dev2(v)◦dev3(v)◦dev4(v)◦dev5(v)◦RL1(v)◦· · ·◦RL5(v),

where level(v) := dG(x0, v), level′(v) := dG(xl, v) and dev2(v), dev3(v), dev4(v),
dev5(v) are the deviation numbers of v in T2, T3, T4 and T5, respectively.

Assume now that a vertex x wants to send a message to a vertex y. Given
the labels L(x) and L(y), x first uses the substrings (level(x) ◦ level′(x) ◦
dev2(x)◦dev3(x)◦dev4(x)◦dev5(x)) and (level(y)◦ level′(y)◦dev2(y)◦dev3(y)◦
dev4(y)◦dev5(y)) and the function create header DSP (described below) to form
in O(1) time the header H(y) := k ◦RLk(y) of the message by finding an index

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 118

k ∈ {1, 2, 3, 4, 5} such that dTk
(x, y) = min{dT ′(x, y) : T ′ ∈ {T1, . . . , T5}} and

extracting from L(y) the substring RLk(y). Then, the initiated message with
the header H(y) = k ◦ RLk(y) can be routed to the destination using the tree
Tk.

function create header DSP(L(x), L(y))

if level(x) = level(y) then
do case

case (dev2(x) = 1 and dev2(y) = 1), set k := 2;
case (dev3(x) = 1 and dev3(y) = 1), set k := 3;
case (dev4(x) ≤ 2 and dev2(y) = 1), set k := 4;
case (dev5(x) ≤ 2 and dev3(y) = 1), set k := 5;
otherwise, set k := 1;

endcase
else

if level(x) > level(y) then set v := x and u := y;
else set v := y and u := x;
do case

case (dev2(u) = 1 and dev2(v) ≤ level(v) − level(u) + 1), set k := 2;
case (dev3(v) = 1 and dev3(u) ≤ level′(u) − level′(v) + 1), set k := 3;
case (dev4(u) = 1 and dev4(v) ≤ level(v) − level(u) + 1), set k := 4;
case (dev5(v) = 1 and dev5(u) ≤ level(v) − level(u) + 1), set k := 5;
otherwise, set k := 1;

endcase
set the header of the message to be (k,RLk(y)).

The correctness of this procedure follows from the proof of Lemma 4.

3.3.3 Graphs with bounded asteroidal number

Let G = (V,E) be a graph and let D ⊆ V be a repulsive asteroidal set of
G. We have |D| ≤ an(G). For each pair of vertices ai, bi (i = 1, . . . , µ, µ :=
|D|(|D|−1)/2) from D we construct three trees T i

1 := T1(ai, bi), T i
2 := T2(ai, bi)

and T i
3 := T2(bi, ai) starting from a shortest path P (ai, bi) as described in

Section 2.4. With each vertex v of G we associate a characteristic vector χ(v) =
(χ1(v), χ2(v), . . . , χµ(v)), where χi(v) = 1 if v belongs to N [P (ai, bi)] and 0
otherwise.

For each index i (i = 1, . . . , µ), a vertex z of G will store in its label the
following routing information. If z belongs to Pi := P (ai, bi) then

Li(z) := (b(z), level(z), portup(z), portdown(z)),

where

• b(z) := 1, a bit indicating that z belongs to Pi;

• level(z) := dG(z, ai);

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 119

• portup(z) is the port number at vertex z of the edge of Pi leading towards
bi (if z = bi, portup(z) := nil);

• portdown(z) is the port number at vertex z of the edge of Pi leading towards
ai (if z = ai, portdown(z) := nil).

If z does not belong to Pi := P (ai, bi) := (ai = x0, x1, . . . , xl = bi) then

Li(z) := (b(z), level(z), av↓(z), portv↓−in(z), portv↓−out(z), ah(z), porth−in(z),

porth−out(z), av↑(z), portv↑−in(z), portv↑−out(z), dev(z), portdown(z), dev′(z),

portup(z)),

where

• b(z) := 0, a bit indicating that z does not belong to Pi;

• level(z) is the distance dG(z, ai);

• av↓(z) is a bit indicating whether z is adjacent to xlevel(z)−1;

• portv↓−in(z) is the port number at vertex xlevel(z)−1 of the edge xlevel(z)−1z
(if z and xlevel(z)−1 are not adjacent in G, then portv↓−in(z) := nil);

• portv↓−out(z) is the port number at vertex z of the edge zxlevel(z)−1 (if z
and xlevel(z)−1 are not adjacent in G, then portv↓−out(z) := nil);

• ah(z) is a bit indicating whether z is adjacent to xlevel(z);

• porth−in(z) is the port number at vertex xlevel(z) of the edge xlevel(z)z (if
z and xlevel(z) are not adjacent in G, then porth−in(z) := nil);

• porth−out(z) is the port number at vertex z of the edge zxlevel(z) (if z and
xlevel(z) are not adjacent in G, then porth−out(z) := nil);

• av↑(z) is a bit indicating whether z is adjacent to xlevel(z)+1;

• portv↑−in(z) is the port number at vertex xlevel(z)+1 of the edge xlevel(z)+1z
(if z and xlevel(z)+1 are not adjacent in G, then portv↑−in(z) := nil);

• portv↑−out(z) is the port number at vertex z of the edge zxlevel(z)+1 (if z
and xlevel(z)+1 are not adjacent in G, then portv↑−out(z) := nil);

• dev(z) is the deviation of z in tree T i
2;

• portdown(z) is the port number at vertex z of the edge zw, where w is the
father of z in T i

2;

• dev′(z) is the deviation of z in tree T i
3;

• portup(z) is the port number at vertex z of the edge zw, where w is the
father of z in T i

3.

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 120

Now we define label Label(z) of a vertex z of G as

Label(z) := (χ(z), L1(z), L2(z), . . . , Lµ(z)).

Clearly, the label size of any vertex of G is at most µ+µ(3 log2 D +8 log2 ∆+
4) ≤ (an(G)(an(G) − 1)/2)(3 log2 D + 8 log2 ∆ + 5) bits.

Assume now that a vertex v wants to send a message to a vertex u. Given the
labels Label(v) and Label(u), v first uses the characteristic vectors χ(v) and χ(u)
to find an index k such that χk(v) = χk(u) = 1. Then, v extracts from Label(u)
the substring Lk(u) and forms a header of the message H(u) := k ◦ Lk(u).
Now, the initiated message with the header H(u) = k ◦ Lk(u) is routed to
the destination using the trees T k

1 , T k
2 , T k

3 : when the message arrives at an
intermediate vertex x, vertex x using own substring Lk(x) and the string Lk(u)
from the header makes a constant time routing decision by using a function
similar (even simpler since we are targeting now deviation 3 only, not 2) to
function routing decision AT-free (details are omitted again). Thus, we have the
following result.

Theorem 13 Every n-vertex graph G with asteroidal number an(G), diameter
D and maximum vertex degree ∆ admits an (an(G)(an(G) − 1)/2)(3 log2 D +
8 log2 ∆ + 5)-bit labeling scheme of deviation 3 (and an (an(G)(an(G) − 1)/2)
(log2 D+2 log2 ∆+4)-bit routing labeling scheme of deviation 4). Once computed
by the sender in (an(G)(an(G) − 1)/2) time, headers never change. Moreover,
given a repulsive asteroidal set of G the scheme is computable in linear time,
and the routing decision is made in constant time per vertex.

Acknowledgments

DGC wishes to thank the Natural Sciences and Engineering Research Council
of Canada for financial assistance and the Department of Computer Science at
Kent State University for hosting his visit there.

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 121

References

[1] A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey. SIAM,
Philadelphia, 1999.

[2] L. P. Chew. There are planar graphs almost as good as the complete graph.
J. of Computer and System Sciences, 39:205–219, 1989.

[3] D. Corneil, S. Olariu, and L. Stewart. Asteroidal triple–free graphs. SIAM
J. Discrete Math., 10:399–430, 1997.

[4] D. Corneil, S. Olariu, and L. Stewart. Linear time algorithms for dominat-
ing pairs in asteroidal triple–free graphs. SIAM J. on Computing, 28:1284–
1297, 1999.

[5] F. Dragan, C. Yan, and D. Corneil. Collective tree spanners and routing
in AT-free related graphs (extended abstract). In Proceedings of the 30th
International Workshop Graph-Theoretic Concepts in Computer Science
(WG ’04), Lecture Notes in Computer Science, Springer, volume 3353,
pages 68–80, 2004.

[6] F. Dragan, C. Yan, and I. Lomonosov. Collective tree spanners of graphs.
In Proceedings of the 9th Scandinavian Workshop on Algorithm Theory
(SWAT’04), Lecture Notes in Computer Science, Springer, volume 3111,
pages 64–76, 2004.

[7] P. Fraigniaud and C. Gavoille. Routing in trees. In Proceedings of the
28th Intern. Colloq. on Automata, Languages and Program. (ICALP 2001),
Lecture Notes in Computer Science, Springer, volume 2076, pages 757–772,
2001.

[8] C. Gavoille, M. Katz, N. Katz, C. Paul, and D. Peleg. Approximate distance
labeling schemes. In Proceedings of the 9th Annual European Symposium
on Algorithms (ESA’01), Lecture Notes in Computer Science, Springer,
volume 2161, pages 476–487, 2001.

[9] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[10] T. Kloks, D. Kratsch, and H. Müller. Approximating the bandwidth for
asteroidal triple-free graphs. J. of Algorithms, 32:41–57, 1999.

[11] T. Kloks, D. Kratsch, and H. Müller. On the structure of graphs with
bounded asteroidal number. Graphs and Combinatorics, 17:295–306, 2001.

[12] A. L. Liestman and T. Shermer. Additive graph spanners. Networks,
23:343–364, 1993.

[13] T. H. Ma and J. P. Spinrad. On the two-chain subgraph cover and related
problems. J. of Algorithms, 17:251–268, 1994.

F. F. Dragan et al., Collective Tree Spanners, JGAA, 10(2) 97–122 (2006) 122

[14] M. S. Madanlal, G. Venkatesan, and C. Pandu Rangan. Tree 3-spanners on
interval, permutation and regular bipartite graphs. Information Processing
Letters, 59:97–102, 1996.

[15] R. M. McConnell and J. P. Spinrad. Linear-time transitive orientation.
In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 19–25, 1997.

[16] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Monographs on Discrete Math. Appl. SIAM, Philadelphia, 2000.

[17] D. Peleg and A. A. Schäffer. Graph spanners. J. Graph Theory, 13:99–116,
1989.

[18] D. Peleg and J. Ullman. An optimal synchronizer for the hypercube. In
Proceedings of the 6th ACM Symposium on Principles of Distributed Com-
puting, pages 77–85, 1987.

[19] E. Prisner, D. Kratsch, H.-O. Le, H. Müller, and D. Wagner. Additive tree
spanners. SIAM Journal on Discrete Mathematics, 17:332–340, 2003.

[20] M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the
13th Ann. ACM Symp. on Par. Alg. and Arch, pages 1–10, 2001.

