Network Flow Spanners

F. F. Dragan and Chenyu Yan

Kent State University, Kent, OH, USA

Well-known Tree t-Spanner Problem

Multiplicative Tree *t-Spanner*:

G

- Given unweighted undirected graph G=(V,E) and an integer *t*.
- Does G admit a spanning tree T = (V, E') such that

 $\forall u, v \in V, dist_T(v, u) \leq t \times dist_G(v, u) ?$

multiplicative tree 4-spanner of G

Well-known Sparse t -Spanner Problem

Multiplicative t-Spanner:

- Given unweighted undirected graph G=(V,E) and integers *t*, *m*.
- Does G admit a spanning graph H = (V, E') with $|E'| \le m$ such that

 $\forall u, v \in V, dist_H(v, u) \leq t \times dist_G(v, u) ?$

New Light Flow-Spanner Problem

Light Flow-Spanner (LFS):

- Given undirected graph G=(V,E), edge-costs p(e) and edge-capacities c(e), and integers B, t.
- Does G admit a spanning subgraph H = (V, E') such that

$$\forall u, v \in V, F_G(u, v) \le t \times F_H(u, v) \text{ and } \sum_{e \in E'} p(e) \le B ?$$

 $(F_G(u, v)$ denotes the maximum flow between u and v in G.)

Variations of Light Flow-Spanner Problem

Sparse Flow-Spanner (SFS) : In the LFS problem, set p(e)=1, $e \in E$.

Sparse Edge-Connectivity-Spanner (SECS) : In the LFS problem, set p(e)=1, c(e)=1 for each $e \in E$.

Light Edge-Connectivity-Spanner (LECS) : In the LFS problem, for each $e \in E$ set c(e)=1.

An LECS with flow stretch factor of 1.5 and budget 8

Variations of Tree Flow-Spanner Problem

- *Tree Flow-Spanner (TFS)*: In the LFS problem, we require the underlying spanning subgraph to be a tree and, for each $e \in E$, set p(e)=1.
 - \rightarrow easy: max. spanning tree, capacities are the edge-weights

Light Tree Flow-Spanner (LTFS) : In the LFS problem, we require the underlying spanning subgraph to be a tree.

G

An LTFS with flow stretch factor of 3 and budget 7

Related Work

k-Edge-Connected-Spanning-Subgraph problem:

➢ Given a graph G along with an integer k, one seeks a spanning subgraph of G that is k-edge-connected

≻MAX SNP-hard [Fernandes'98]

- (1+2/k)-approximation algorithm [Gabow et. al.'05]
- Linear time with k|V| edges [Nagamochi&Ibaraki'92]

> Original edge-connectivities are not taking into account

Related Work

Survivable-network-design problem (SNDP):

➤ Given a graph G=(V, E), a non-negative cost p(e) for every edge $e \in E$ and a non-negative connectivity requirement r_{ij} for every (unordered) pair of vertices *i*, *j*. One needs to find a minimum-cost subgraph in which each pair of vertices *i*, *j* is joined by at least r_{ij} edge-disjoint paths.

> NP-hard as a generalization of the Steiner tree problem

➤ 2(1+1/2+1/3+...+1/k)-approximation algorithm [Gabow et. al.'98, Goemans et. al.'94]

Subscription By setting $r_{ij} = \left[F_G(i, j)/t \right]$ for each pair of vertices *i*, *j*, our **Light Edge-Connectivity-Spanner** problem can be reduced to SNDP.

Related Work

MaxFlowFixedCost problem: [Krumke et. al.'98]

- Given a graph G, for every edge $e \in E$ a non-negative cost p(e)and a non-negative capacity c(e), a source s and a sink t, and a positive integer B. One needs to find a subgraph H of G of total cost at most B such that the maximum flow between s and t in H is maximized.
 - ≻ Hard to approximate
 - > F^* -approximation algorithm (F^* is the maximum total flow)
- In our formulation, we approximate maximum flows for all vertex pairs simultaneously

Our results

- The Light Flow-Spanner, Sparse Flow-Spanner, Light-Edge-Connectivity-Spanner and Sparse Edge-Connectivity-Spanner problems are NP-complete.
- The *Light Tree Flow-Spanner* problem is NP-complete.
- Two approximation algorithms for the *Light Tree Flow-Spanner* problem

SECS is NP-Complete

Sparse Edge-Connectivity-Spanner (SECS) is NP-hard

- ≻ Reduce 3-dimensional matching (3DM) to SECS.
- ➤ Let $M \subseteq W \times X \times Y$ be an instance of 3DM. For each element $a \in W \cup X \cup Y$, let Deg(a) be the number of triples in *M* that contains *a*.
- For each triple $(w_i, x_j, y_k) \in M$, create four vertices a_{ijk} , \bar{a}_{ijk} , d_{ijk} , \bar{d}_{ijk} ,

- For each vertex $a \in XUY$, create a vertex *a* and 2Deg(a)-1 dummy vertices

- For each vertex $a \in W$, create a vertex *a* and 4Deg(a)-3 dummy vertices

- Add one more vertex v and make connections (E=E'UE'')

- Set t=3/2 and B=/M/+/X/+/E'/(=3+2+...)

LTFS is NP-Complete

Light Tree Flow-Spanner (LTFS) is NP-hard

Reduce 3SAT to LTFS. Let x₁, x₂, ..., x_n be the variables and C₁, ..., C_q the clauses of a 3SAT instance.

 $(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_4)$

- For each variable x_i , create $2k_i$ vertices. k_i is the number of clauses containing either literal x_i or its negation.

- For each clause C_i create a clause vertex.
- Add one more vertex v.
- Add edges and set their capacities/costs

- Set
$$t=8$$
 and $B=3(k_1+k_2+...+k_n)+3q$

NP-Completeness Results

Theorem 1. *Sparse Edge-Connectivity-Spanner* problem is NP-complete.

Theorem 2. The *Light Tree Flow-Spanner* problem is NP-complete

Theorem 1 immediately gives us the following corollary.

Corollary 1. The *Light Flow-Spanner*, the *Sparse Flow-Spanner* and the *Light-Edge-Connectivity-Spanner* problems are NP-complete, too.

Assume G has a *Light Tree Flow-Spanner* with flow-stretch factor t and budget B.

- Sort the edges of G such that $c(e_1) \le c(e_2) \le \dots \le c(e_m)$. Let $1 \le r \le t-1$.
- Cluster the edges according to the intervals $[l_k, h_k], ..., [l_l, h_l]$, where $h_l = c(e_m)$ and $l_l = h_l/r$ and, for $k \le i < l$, h_i is the largest capacity of the edge such that $h_i < l_{i-l}$, and $l_i = h_i/r$.

Define $E'_i = \{e \in E(G) : l_i / (t-1) \le c(e) \le h_1\}$ $E''_i = \{e \in E(G) : l_i \le c(e) \le h_1\}$

General step:

- For each connected component of $G_i = (X_i, E_i)$ construct a minimum weight Steiner-tree where the terminals are vertices from $G_i^{"} = (Y_i, E_i^{"})$ and the prices are the edge weights.
- Set the price of each edge in $E_i^{"}$ to 0. The Steiner-tree edges are stored in F.

[9, 36]

[18, 36]

Define $E'_i = \{e \in E(G) : l_i / (t-1) \le c(e) \le h_1\}$ $E''_i = \{e \in E(G) : l_i \le c(e) \le h_1\}$

- For each connected component of $G_i^{'} = (X_i, E_i^{'})$ construct a minimum weight Steiner-tree where the terminals are vertices from $G_i^{''} = (Y_i, E_i^{''})$ and the prices are the edge weights.
- Set the price of each edge in $E_i^{"}$ to 0. The Steiner-tree edges are stored in *F*.

[1.5, 36]

[3, 36]

Define $E'_i = \{e \in E(G) : l_i / (t-1) \le c(e) \le h_1\}$ $E''_i = \{e \in E(G) : l_i \le c(e) \le h_1\}$

- For each connected component of $G_i^{'} = (X_i, E_i^{'})$ construct a minimum weight Steiner-tree where the terminals are vertices from $G_i^{''} = (Y_i, E_i^{''})$ and the prices are the edge weights.
- Set the price of each edge in $E_i^{"}$ to 0. The Steiner-tree edges are stored in *F*.

[0.25, 36]

[0.5, 36]

Define $E'_i = \{e \in E(G) : l_i / (t-1) \le c(e) \le h_1\}$ $E''_i = \{e \in E(G) : l_i \le c(e) \le h_1\}$

- For each connected component of $G_i^{'} = (X_i, E_i^{'})$ construct a minimum weight Steiner-tree where the terminals are vertices from $G_i^{''} = (Y_i, E_i^{''})$ and the prices are the edge weights.
- Set the price of each edge in $E_i^{"}$ to 0. The Steiner-tree edges are stored in *F*.

Finally, construct a maximum spanning tree T^* of H=(V,F), where the weight of each edge is its capacity.

Theorem 4. There exists an $(r(t-1), 1.55\log_r(r(t-1)))$ -approximation algorithm for the *Light Tree Flow-Spanner* problem.

Our Second Approximation Algorithm for LTFS

Theorem 5. There exists an (1, (*n*-1))-approximation algorithm for the *Light Tree Flow-Spanner* problem.

Conclusion

- Sparse Edge-Connectivity-Spanner is NP-hard
 - Light Flow-Spanner is NP-hard
 - Sparse Flow-Spanner is NP-hard
 - Light-Edge-Connectivity-Spanner is NP-hard
- Light Tree Flow-Spanner (LTFS) is NP-hard
- Two approximation algorithms for *LTFS*.

Future work

- Show that it is NP-hard even to approximate.
- Better approximations for the *LTFS* problem.
- Approximate solutions for the general *LFS* problem.

Thank You