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G multiplicative tree 4-spanner of G

Well-known Tree Tree t t --Spanner ProblemSpanner Problem

• Given unweighted undirected graph G=(V,E) and an integer t.
• Does G

 

admit a spanning tree T =(V,E’)  such that

 ?),(),(,, uvdisttuvdistVvu GT 

Multiplicative Tree t-Spanner:



G multiplicative 2-spanner of G

Well-known Sparse Sparse t t --Spanner ProblemSpanner Problem

• Given unweighted undirected graph G=(V,E) and integers t, m.
• Does G

 

admit a spanning graph H =(V,E’) with |E’|  m
 

such that

 ?),(),(,, uvdisttuvdistVvu GH 

Multiplicative t-Spanner:



New Light FlowLight Flow--Spanner ProblemSpanner Problem
Light Flow-Spanner (LFS):

),( ),(,, vuFtvuFVvu HG 
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(u, v)

 

denotes the maximum flow between u

 

and v

 

in G.)
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• Given undirected graph G=(V,E), edge-costs p(e)
 

and edge- 
capacities c(e),

 

and integers B, t.

• Does G
 

admit a spanning subgraph H =(V,E’)
 

such that



Variations of Light FlowVariations of Light Flow--Spanner ProblemSpanner Problem

Sparse Flow-Spanner (SFS) : In the LFS problem, set p(e)=1, e∊E.

Sparse Edge-Connectivity-Spanner (SECS) : In the LFS problem, set 
p(e)=1, c(e)=1 for each e∊E. 

Light Edge-Connectivity-Spanner (LECS) : In the LFS problem, for 
each e∊E

 

set c(e)=1.
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Variations of Tree FlowVariations of Tree Flow--Spanner ProblemSpanner Problem

Tree Flow-Spanner (TFS) : In the LFS problem, we require the 
underlying spanning subgraph to be a tree and, for each e∊E, set 
p(e)=1.                                                              

 easy: max. spanning tree, capacities are the edge-weights

Light Tree Flow-Spanner (LTFS) : In the LFS problem, we require 
the underlying spanning subgraph to be a tree.            
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Related WorkRelated Work

k-Edge-Connected-Spanning-Subgraph problem:

Given a graph G along with an integer k, one seeks a spanning 
subgraph of G

 

that is k-edge-connected
MAX SNP-hard [Fernandes’98]  
 (1+2/k)-approximation algorithm [Gabow et. al.’05] 
Linear time with k|V| edges [Nagamochi&Ibaraki’92] 

Original edge-connectivities are not taking into account 



Related WorkRelated Work

 Given a graph G=(V, E), a non-negative cost p(e) for every 
edge e∊E

 

and a non-negative connectivity requirement rij

 

for 
every (unordered) pair of vertices i, j. One needs to find a 
minimum-cost subgraph in which each pair of vertices i, j

 

is 
joined by at least rij

 

edge-disjoint paths. 
NP-hard as a generalization of the Steiner tree problem
2(1+1/2+1/3+…+1/k)-approximation algorithm [Gabow et. al.’98, 

Goemans et. al.’94] 

 By setting rij

 

=FG

 

(i, j)/t
 

for each pair of vertices i, j,
 

our 
Light Edge-Connectivity-Spanner problem can be reduced to 
SNDP.

Survivable-network-design problem (SNDP):



Related WorkRelated Work

Given a graph G,
 

for every edge e∊E
 

a non-negative cost p(e) 
and a non-negative capacity c(e),

 

a source s
 

and a sink t, and a 
positive integer B. One needs to find a subgraph H

 

of G
 

of total 
cost at most B

 

such that the maximum flow between s
 

and t
 

in 
H

 

is maximized. 
Hard to approximate 
F*-approximation algorithm (F*

 

is the maximum total flow) 

 In our formulation, we approximate maximum flows for all 
vertex pairs simultaneously 

MaxFlowFixedCost problem: [Krumke et. al.’98]



Our resultsOur results

• The Light Flow-Spanner, Sparse Flow-Spanner, Light- 
Edge-Connectivity-Spanner and Sparse Edge- 
Connectivity-Spanner problems are NP-complete.

• The Light Tree Flow-Spanner problem is NP-complete. 

• Two approximation algorithms for the Light Tree Flow- 
Spanner problem 



– For each triple (wi

 

, xj

 

, yk

 

)∊M, create four 
vertices aijk

 

, āijk

 

, dijk

 

, đijk

 

, 

– For each vertex a∊XUY

 

, create a vertex a

 
and 2Deg(a)-1

 

dummy vertices 

– For each vertex a∊W, create a vertex a

 

and 
4Deg(a)-3

 

dummy vertices

– Add one more vertex v and make 
connections (E=E’UE”)

– Set t=3/2 and B=|M|+|X|+|E’| (=3+2+…)

SECS is NPSECS is NP--CompleteComplete
Sparse Edge-Connectivity-Spanner (SECS) is NP-hard


 

Reduce 3-dimensional matching (3DM) to SECS. 


 

Let                      be an instance of 3DM. For each 
element                     , let Deg(a)

 

be the number of triples in M that 
contains a.

YXWM 
YXWa 



LTFS is NPLTFS is NP--CompleteComplete



 

Reduce 3SAT to LTFS. Let x1

 

,  
x2

 

, …, xn

 

be the variables and 
C1

 

, …, Cq

 

the clauses of a 3SAT 
instance.

– For each variable xi

 

, create 2ki

 

vertices. 
ki

 

is the number of clauses containing either 
literal xi

 

or its negation.

– For each clause Ci

 

create a clause vertex.

– Add one more vertex v.

– Add edges and set their capacities/costs

– Set t=8 and B=3(k1 +k2 + … + kn)+3q 

Light Tree Flow-Spanner (LTFS) is NP-hard



NPNP--Completeness ResultsCompleteness Results

Theorem 1. Sparse Edge-Connectivity-Spanner problem is NP- 
complete.

Theorem 2. The Light Tree Flow-Spanner problem is NP-complete

Theorem 1 immediately gives us the following corollary.

Corollary 1. The Light Flow-Spanner, the Sparse Flow-Spanner 
and the Light-Edge-Connectivity-Spanner problems are NP- 
complete, too.



Approximation Algorithm for LTFSApproximation Algorithm for LTFS
Assume G

 

has a Light Tree Flow-Spanner with flow-stretch factor t

 

and budget B.
• Sort the edges of G

 

such that c(e1

 

)≤ c(e2

 

)≤ … ≤ c(em

 

).

 

Let 1< r≤ t-1

 

.
• Cluster the edges according to the intervals [lk

 

, hk

 

], …, [l1

 

, h1

 

], where h1

 

= c(em

 

)

 
and l1

 

= h1

 

/r and, for k≤ i < 1,

 

hi

 

is the largest capacity of the edge such that hi < 
li-1

 

, and li

 

= hi

 

/r.
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Approximation Algorithm for LTFSApproximation Algorithm for LTFS

 1
' )()1/(:)( hectlGEeE ii 

• For each connected component of                          construct a minimum weight 
Steiner-tree where the terminals are vertices from                      and the prices 
are the edge weights. 

• Set the price of each edge in       to 0. The Steiner-tree edges are stored in F.
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General step: c(e1

 

)                                                      c(em

 

)= h1
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Approximation Algorithm for LTFSApproximation Algorithm for LTFS
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• For each connected component of                          construct a minimum weight 
Steiner-tree where the terminals are vertices from                      and the prices 
are the edge weights. 

• Set the price of each edge in       to 0. The Steiner-tree edges are stored in F.
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Approximation Algorithm for LTFSApproximation Algorithm for LTFS
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• For each connected component of                          construct a minimum weight 
Steiner-tree where the terminals are vertices from                      and the prices 
are the edge weights. 

• Set the price of each edge in       to 0. The Steiner-tree edges are stored in F.
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Approximation Algorithm for LTFSApproximation Algorithm for LTFS
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• For each connected component of                          construct a minimum weight 
Steiner-tree where the terminals are vertices from                      and the prices 
are the edge weights. 

• Set the price of each edge in       to 0. The Steiner-tree edges are stored in F.
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Approximation Algorithm for LTFSApproximation Algorithm for LTFS
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Finally, construct a maximum spanning tree T*
 

of H=(V,F), where 
the weight of each edge is its capacity.



Approximation Algorithm for LTFSApproximation Algorithm for LTFS
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Theorem 4. There exists an (r(t-1), 1.55logr

 

(r(t-1)))-approximation 
algorithm for the Light Tree Flow-Spanner problem.

t  r(t-1) t ,   P  1.55logr (r(t-1)) P (for any r: 1<r<t)



Our Second Our Second Approximation Approximation 
Algorithm for LTFSAlgorithm for LTFS

30

30

6

G                                                               T*

6

6

6

6
6

5 6

6

4

4

6

1
1

1

1

36 30

30

6

6

6

6

6
6

5 6

6

4

4

6

1
1

1

1

36

Theorem 5. There exists an (1, (n-1))-approximation algorithm for 
the Light Tree Flow-Spanner problem.

t  t ,   P  (n-1) P



Future workFuture work

• Sparse Edge-Connectivity-Spanner is NP-hard
– Light Flow-Spanner is NP-hard
– Sparse Flow-Spanner is NP-hard
– Light-Edge-Connectivity-Spanner is NP-hard

• Light Tree Flow-Spanner (LTFS) is NP-hard
• Two approximation algorithms for LTFS.

ConclusionConclusion

• Show that it is NP-hard even to approximate.
• Better approximations for the LTFS problem. 
• Approximate solutions for the general LFS problem. 



Thank YouThank You
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