A PTAS for the Sparsest Spanners Problem on Apex-Minor-Free Graphs

Feodor F. Dragan ${ }^{1}$ Fedor V. Fomin ${ }^{2}$ Petr A. Golovach ${ }^{2}$

${ }^{1}$ Department of Computer Science, Kent State University
${ }^{2}$ Department of Informatics, University of Bergen

The 33rd International Symposium on Mathematical Foundations of Computer Science, Toruń, 2008

Outline

(1) Introduction

- Multiplicative spanners
- History and related work
- Our results
(2) A PTAS for the Sparsest Spanners Problem
- Graphs of bounded local treewidth
- Partial spanners
- Idea of the algorithm
- Apex-minor-free graphs

t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G, such that $V(S)=V(G)$, is called a (multiplicative) t-spanner, if $\operatorname{dist}_{S}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v)$ for every pair of vertices u and v. The parameter t is called the stretch factor of S.

t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G, such that $V(S)=V(G)$, is called a (multiplicative) t-spanner, if $\operatorname{dist}_{S}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v)$ for every pair of vertices u and v. The parameter t is called the stretch factor of S.

Observation (t-spanner)

Let G be a connected graph, and t be a positive integer. A spanning subgraph S of G is a t-spanner of G if and only if for every edge (x, y) of $G, \operatorname{dist}_{s}(x, y) \leq t$.

Examples of spanners

3 and 2-spanners

Examples of spanners

3 and 2-spanners

Examples of spanners

3 and 2-spanners

History and related work

- D. Peleg and J. D. Ullman, 1987

History and related work

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a t-spanner with at most m edges.

History and related work

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a t-spanner with at most m edges.
- G. Kortsarz, 2001: For every $t \geq 2$, there is a constant $c<1$ such that it is NP-hard to approximate the sparsest t-spanner with the ratio $c \cdot \log n$.

History and related work

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a t-spanner with at most m edges.
- G. Kortsarz, 2001: For every $t \geq 2$, there is a constant $c<1$ such that it is NP-hard to approximate the sparsest t-spanner with the ratio $c \cdot \log n$.
- U. Brandes and D. Handke, 1998: For every $t \geq 5$, it is NP-complete to decide whether there is a t-spanner with at most m edges for planar graphs.

History and related work

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a t-spanner with at most m edges.
- G. Kortsarz, 2001: For every $t \geq 2$, there is a constant $c<1$ such that it is NP-hard to approximate the sparsest t-spanner with the ratio $c \cdot \log n$.
- U. Brandes and D. Handke, 1998: For every $t \geq 5$, it is NP-complete to decide whether there is a t-spanner with at most m edges for planar graphs.
- F. F. Dragan, F. V. Fomin and P. A. Golovach, 2008: For any fixed t and nonnegative integer r, it is possible to decide in a polynomial time whether an apex-minor-free graph G has a t-spanner with at most $n-1+r$ edges.

History and related work

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a t-spanner with at most m edges.
- G. Kortsarz, 2001: For every $t \geq 2$, there is a constant $c<1$ such that it is NP-hard to approximate the sparsest t-spanner with the ratio $c \cdot \log n$.
- U. Brandes and D. Handke, 1998: For every $t \geq 5$, it is NP-complete to decide whether there is a t-spanner with at most m edges for planar graphs.
- F. F. Dragan, F. V. Fomin and P. A. Golovach, 2008: For any fixed t and nonnegative integer r, it is possible to decide in a polynomial time whether an apex-minor-free graph G has a t-spanner with at most $n-1+r$ edges.
- W. Duckworth, N. C. Wormald, and M. Zito, 2003: A PTAS for the sparsest 2 -spanner problem on 4-connected planar triangulations.

Sparsest spanners for planar graphs

Problem (Sparsest t-spanner)

The SPARSEST t-SPANNER problem asks to find, for a given graph G and an integer t, a t-spanner of G with the minimum number of edges.

Sparsest spanners for planar graphs

Problem (Sparsest t-spanner)

The SPARSEST t-SPANNER problem asks to find, for a given graph G and an integer t, a t-spanner of G with the minimum number of edges.

Theorem (PTAS)

For every $t \geq 1$, the SPARSEST t-SPANNER problem admits a PTAS with linear running time for the class of apex-minor-free graphs (and, hence, for the planar graphs and for the graphs with bounded genus).

Graphs of bounded local treewidth

Definition (Graphs of bounded local treewidth)

A graph class \mathcal{G} has bounded local treewidth if there is function $f(r)$ (which depends only on r) such that for any graph G in \mathcal{G}, the treewidth of the subgraph of G induced by the set of vertices at distance at most r from any vertex is bounded above by $f(r)$.

Graphs of bounded local treewidth

Definition (Graphs of bounded local treewidth)

A graph class \mathcal{G} has bounded local treewidth if there is function $f(r)$ (which depends only on r) such that for any graph G in \mathcal{G}, the treewidth of the subgraph of G induced by the set of vertices at distance at most r from any vertex is bounded above by $f(r)$.

Graphs of bounded local treewidth

Graphs of bounded local treewidth

Definition (Graphs of bounded local treewidth)

A graph class \mathcal{G} has bounded local treewidth if there is function $f(r)$ (which depends only on r) such that for any graph G in \mathcal{G}, the treewidth of the subgraph of G induced by the set of vertices at distance at most r from any vertex is bounded above by $f(r)$.

Graphs of bounded local treewidth

$$
t w(H) \leq f(r)
$$

Partial spanners

Definition (Partial t-spanners)

Let $A \subseteq E(G)$. We call a subgraph S of G, such that for every edge $(x, y) \in A \operatorname{dist}_{s}(x, y) \leq t$, a partial t-spanner for A.

Partial spanners

Definition (Partial t-spanners)

Let $A \subseteq E(G)$. We call a subgraph S of G, such that for every edge $(x, y) \in A \operatorname{dist}_{s}(x, y) \leq t$, a partial t-spanner for A.

Lemma

Let k and t be positive integers. Let also G be a graph of treewidth at most k, and let $A \subseteq E(G)$. The SPARSEST PARTIAL t-SPANNER problem can be solved by a linear-time algorithm (the constant which is used in the bound of the running time depends only on k and t) if a corresponding tree decomposition of G is given.

Idea of the algorithm

Definition (BFS decomposition)

Let u be a vertex of a graph G. For $i \geq 0$ we denote by L_{i} the i-th level of breadth first search, i.e. the set of vertices at distance i from u. We call the partition of the vertex set $V(G)$ $\mathcal{L}(G, u)=\left\{L_{0}, L_{1}, \ldots, L_{r}\right\}$ breadth first search (BFS) decomposition of G.

Idea of the algorithm

Graphs G_{i} and S_{i}

Idea of the algorithm

Graphs G_{i} and S_{i}

Idea of the algorithm

Graphs G_{i} and S_{i}

Idea of the algorithm

Graphs G_{i} and S_{i}

Idea of the algorithm

Graphs G_{i} and S_{i}

Idea of the algorithm

Graphs G_{i} and S_{i}

Idea of the algorithm

Lemma

Let S be a sparsest t-spanner of $G, S_{i}=S\left[V\left(G_{i}^{\prime}\right)\right]$. If S_{i}^{\prime} is a sparsest partial t-spanner in G_{i}^{\prime} for $A=E\left(G_{i}\right)$ then
$\left|E\left(S_{i}^{\prime}\right)\right| \leq\left|E\left(S_{i}\right)\right|$.

Idea of the algorithm

Construction of a spanner

Idea of the algorithm

Construction of a spanner

Idea of the algorithm

Construction of a spanner

$$
i=0,1, \ldots, k-2
$$

Idea of the algorithm

Construction of a spanner

$$
i=0,1, \ldots, k-2
$$

Idea of the algorithm

Construction of a spanner

Idea of the algorithm

Construction of a spanner

Idea of the algorithm

Construction of a spanner

Idea of the algorithm

Lemma

The spanner S^{\prime} has at most $\left(1+\frac{t+1}{k-1}\right) \mathrm{OPT}(G)$ edges, where $\mathrm{OPT}(\mathrm{G})$ is the number of edges in the solution of the SPARSEST t-SPANNER problem on G.

Definition (Apex graphs)

An apex graph is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Definition (Apex graphs)

An apex graph is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Apex graphs

Definition (Apex graphs)

An apex graph is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Definition (Apex-minor-free graphs)

A graph class \mathcal{G} is apex-minor-free if \mathcal{G} excludes a fixed apex graph H as a minor.

Definition (Apex graphs)

An apex graph is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Definition (Apex-minor-free graphs)

A graph class \mathcal{G} is apex-minor-free if \mathcal{G} excludes a fixed apex graph H as a minor.

Theorem (Eppstein)

All minor-closed graph classes that have bounded local treewidth are exactly apex-minor-free graph classes.

Thank you!

