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t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G , such that
V (S) = V (G ), is called a (multiplicative) t-spanner, if
distS(u, v) ≤ t · distG (u, v) for every pair of vertices u and v . The
parameter t is called the stretch factor of S .

Observation (t-spanner)

Let G be a connected graph, and t be a positive integer. A
spanning subgraph S of G is a t-spanner of G if and only if for
every edge (x , y) of G, distS(x , y) ≤ t.
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History and related work

D. Peleg and J. D. Ullman, 1987

D. Peleg and A. A. Schäffer, 1989: It is NP-complete to
decide whether there is a t-spanner with at most m edges.

G. Kortsarz, 2001: For every t ≥ 2, there is a constant c < 1
such that it is NP-hard to approximate the sparsest t-spanner
with the ratio c · log n.

U. Brandes and D. Handke, 1998: For every t ≥ 5, it is
NP-complete to decide whether there is a t-spanner with at
most m edges for planar graphs.

F. F. Dragan, F. V. Fomin and P. A. Golovach, 2008: For any
fixed t and nonnegative integer r , it is possible to decide in a
polynomial time whether an apex-minor-free graph G has a
t-spanner with at most n − 1 + r edges.

W. Duckworth, N. C. Wormald, and M. Zito, 2003: A PTAS
for the sparsest 2-spanner problem on 4-connected planar
triangulations.
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D. Peleg and A. A. Schäffer, 1989: It is NP-complete to
decide whether there is a t-spanner with at most m edges.

G. Kortsarz, 2001: For every t ≥ 2, there is a constant c < 1
such that it is NP-hard to approximate the sparsest t-spanner
with the ratio c · log n.

U. Brandes and D. Handke, 1998: For every t ≥ 5, it is
NP-complete to decide whether there is a t-spanner with at
most m edges for planar graphs.

F. F. Dragan, F. V. Fomin and P. A. Golovach, 2008: For any
fixed t and nonnegative integer r , it is possible to decide in a
polynomial time whether an apex-minor-free graph G has a
t-spanner with at most n − 1 + r edges.

W. Duckworth, N. C. Wormald, and M. Zito, 2003: A PTAS
for the sparsest 2-spanner problem on 4-connected planar
triangulations.



Introduction A PTAS for the Sparsest Spanners Problem

History and related work

D. Peleg and J. D. Ullman, 1987
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D. Peleg and A. A. Schäffer, 1989: It is NP-complete to
decide whether there is a t-spanner with at most m edges.

G. Kortsarz, 2001: For every t ≥ 2, there is a constant c < 1
such that it is NP-hard to approximate the sparsest t-spanner
with the ratio c · log n.

U. Brandes and D. Handke, 1998: For every t ≥ 5, it is
NP-complete to decide whether there is a t-spanner with at
most m edges for planar graphs.

F. F. Dragan, F. V. Fomin and P. A. Golovach, 2008: For any
fixed t and nonnegative integer r , it is possible to decide in a
polynomial time whether an apex-minor-free graph G has a
t-spanner with at most n − 1 + r edges.

W. Duckworth, N. C. Wormald, and M. Zito, 2003: A PTAS
for the sparsest 2-spanner problem on 4-connected planar
triangulations.



Introduction A PTAS for the Sparsest Spanners Problem

Sparsest spanners for planar graphs

Problem (Sparsest t-spanner)

The sparsest t-spanner problem asks to find, for a given graph
G and an integer t, a t-spanner of G with the minimum number of
edges.

Theorem (PTAS)

For every t ≥ 1, the sparsest t-spanner problem admits a
PTAS with linear running time for the class of apex-minor-free
graphs (and, hence, for the planar graphs and for the graphs with
bounded genus).
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Graphs of bounded local treewidth

Definition (Graphs of bounded local treewidth)

A graph class G has bounded local treewidth if there is function
f (r) (which depends only on r) such that for any graph G in G,
the treewidth of the subgraph of G induced by the set of vertices
at distance at most r from any vertex is bounded above by f (r).

Graphs of bounded local treewidth
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Partial spanners

Definition (Partial t-spanners)

Let A ⊆ E (G ). We call a subgraph S of G , such that for every
edge (x , y) ∈ A distS(x , y) ≤ t, a partial t-spanner for A.

Lemma

Let k and t be positive integers. Let also G be a graph of
treewidth at most k, and let A ⊆ E (G ). The sparsest partial
t-spanner problem can be solved by a linear-time algorithm (the
constant which is used in the bound of the running time depends
only on k and t) if a corresponding tree decomposition of G is
given.
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Idea of the algorithm

Definition (BFS decomposition)

Let u be a vertex of a graph G . For i ≥ 0 we denote by Li the i-th
level of breadth first search, i.e. the set of vertices at distance i
from u. We call the partition of the vertex set V (G )
L(G , u) = {L0, L1, . . . , Lr} breadth first search (BFS)
decomposition of G .
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Graphs Gi and Si
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Idea of the algorithm

Lemma

Let S be a sparsest t-spanner of G, Si = S [V (G ′
i )]. If S ′

i is a
sparsest partial t-spanner in G ′

i for A = E (Gi ) then
|E (S ′

i )| ≤ |E (Si )|.
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Construction of a spanner
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Idea of the algorithm

Construction of a spanner

Li

i = 0, 1, . . . , k − 2

G′
j

for A = E(Gj)

S′
j - partial spanner

S′ = ∪S′
j
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Idea of the algorithm

Construction of a spanner

Li

i = 0, 1, . . . , k − 2

|E(S′
j)| ≤ |E(Sj)|
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Idea of the algorithm

Lemma

The spanner S ′ has at most (1 + t+1
k−1)OPT(G ) edges, where

OPT(G ) is the number of edges in the solution of the sparsest
t-spanner problem on G.
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Definition (Apex graphs)

An apex graph is a graph obtained from a planar graph G by
adding a vertex and making it adjacent to some vertices of G .

Definition (Apex-minor-free graphs)

A graph class G is apex-minor-free if G excludes a fixed apex graph
H as a minor.

Theorem (Eppstein)

All minor-closed graph classes that have bounded local treewidth
are exactly apex-minor-free graph classes.
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Thank you!
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