A PTAS for the Sparsest Spanners Problem on Apex-Minor-Free Graphs

Feodor F. Dragan¹ Fedor V. Fomin² Petr A. Golovach²

¹Department of Computer Science, Kent State University

²Department of Informatics, University of Bergen

The 33rd International Symposium on Mathematical Foundations of Computer Science, Toruń, 2008

Outline

1 Introduction

- Multiplicative spanners
- History and related work
- Our results

2 A PTAS for the Sparsest Spanners Problem

- Graphs of bounded local treewidth
- Partial spanners
- Idea of the algorithm
- Apex-minor-free graphs

t-spanners

Definition (*t*-spanner)

Let t be a positive integer. A subgraph S of G, such that V(S) = V(G), is called a *(multiplicative)* t-spanner, if $\operatorname{dist}_{S}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v)$ for every pair of vertices u and v. The parameter t is called the *stretch factor* of S.

t-spanners

Definition (*t*-spanner)

Let t be a positive integer. A subgraph S of G, such that V(S) = V(G), is called a *(multiplicative) t-spanner*, if $\operatorname{dist}_{S}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v)$ for every pair of vertices u and v. The parameter t is called the *stretch factor* of S.

Observation (*t*-spanner)

Let G be a connected graph, and t be a positive integer. A spanning subgraph S of G is a t-spanner of G if and only if for every edge (x, y) of G, dist_S $(x, y) \le t$.

Introduction

A PTAS for the Sparsest Spanners Problem $_{\rm OOOOOOOO}$

Examples of spanners

3 and 2-spanners

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Introduction

A PTAS for the Sparsest Spanners Problem $_{\rm OOOOOOOO}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Examples of spanners

Introduction

A PTAS for the Sparsest Spanners Problem $_{\rm OOOOOOOO}$

Examples of spanners

A PTAS for the Sparsest Spanners Problem 00000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

History and related work

• D. Peleg and J. D. Ullman, 1987

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a t-spanner with at most m edges.

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a *t*-spanner with at most *m* edges.
- G. Kortsarz, 2001: For every t ≥ 2, there is a constant c < 1 such that it is NP-hard to approximate the sparsest t-spanner with the ratio c · log n.

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a *t*-spanner with at most *m* edges.
- G. Kortsarz, 2001: For every t ≥ 2, there is a constant c < 1 such that it is NP-hard to approximate the sparsest t-spanner with the ratio c · log n.
- U. Brandes and D. Handke, 1998: For every t ≥ 5, it is NP-complete to decide whether there is a t-spanner with at most m edges for planar graphs.

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a *t*-spanner with at most *m* edges.
- G. Kortsarz, 2001: For every t ≥ 2, there is a constant c < 1 such that it is NP-hard to approximate the sparsest t-spanner with the ratio c · log n.
- U. Brandes and D. Handke, 1998: For every t ≥ 5, it is NP-complete to decide whether there is a t-spanner with at most m edges for planar graphs.
- F. F. Dragan, F. V. Fomin and P. A. Golovach, 2008: For any fixed t and nonnegative integer r, it is possible to decide in a polynomial time whether an apex-minor-free graph G has a t-spanner with at most n 1 + r edges.

- D. Peleg and J. D. Ullman, 1987
- D. Peleg and A. A. Schäffer, 1989: It is NP-complete to decide whether there is a *t*-spanner with at most *m* edges.
- G. Kortsarz, 2001: For every t ≥ 2, there is a constant c < 1 such that it is NP-hard to approximate the sparsest t-spanner with the ratio c · log n.
- U. Brandes and D. Handke, 1998: For every t ≥ 5, it is NP-complete to decide whether there is a t-spanner with at most m edges for planar graphs.
- F. F. Dragan, F. V. Fomin and P. A. Golovach, 2008: For any fixed t and nonnegative integer r, it is possible to decide in a polynomial time whether an apex-minor-free graph G has a t-spanner with at most n 1 + r edges.
- W. Duckworth, N. C. Wormald, and M. Zito, 2003: A PTAS for the sparsest 2-spanner problem on 4-connected planar triangulations.

Sparsest spanners for planar graphs

Problem (Sparsest *t*-spanner)

The SPARSEST t-SPANNER problem asks to find, for a given graph G and an integer t, a t-spanner of G with the minimum number of edges.

Sparsest spanners for planar graphs

Problem (Sparsest *t*-spanner)

The SPARSEST t-SPANNER problem asks to find, for a given graph G and an integer t, a t-spanner of G with the minimum number of edges.

Theorem (PTAS)

For every $t \ge 1$, the SPARSEST t-SPANNER problem admits a PTAS with linear running time for the class of apex-minor-free graphs (and, hence, for the planar graphs and for the graphs with bounded genus).

Graphs of bounded local treewidth

Definition (Graphs of bounded local treewidth)

A graph class \mathcal{G} has bounded local treewidth if there is function f(r) (which depends only on r) such that for any graph G in \mathcal{G} , the treewidth of the subgraph of G induced by the set of vertices at distance at most r from any vertex is bounded above by f(r).

Graphs of bounded local treewidth

Definition (Graphs of bounded local treewidth)

A graph class \mathcal{G} has bounded local treewidth if there is function f(r) (which depends only on r) such that for any graph G in \mathcal{G} , the treewidth of the subgraph of G induced by the set of vertices at distance at most r from any vertex is bounded above by f(r).

Graphs of bounded local treewidth

Definition (Graphs of bounded local treewidth)

A graph class \mathcal{G} has bounded local treewidth if there is function f(r) (which depends only on r) such that for any graph G in \mathcal{G} , the treewidth of the subgraph of G induced by the set of vertices at distance at most r from any vertex is bounded above by f(r).

Partial spanners

Definition (Partial *t*-spanners)

Let $A \subseteq E(G)$. We call a subgraph S of G, such that for every edge $(x, y) \in A \operatorname{dist}_{S}(x, y) \leq t$, a partial t-spanner for A.

Partial spanners

Definition (Partial *t*-spanners)

Let $A \subseteq E(G)$. We call a subgraph S of G, such that for every edge $(x, y) \in A \operatorname{dist}_{S}(x, y) \leq t$, a partial t-spanner for A.

Lemma

Let k and t be positive integers. Let also G be a graph of treewidth at most k, and let $A \subseteq E(G)$. The SPARSEST PARTIAL t-SPANNER problem can be solved by a linear-time algorithm (the constant which is used in the bound of the running time depends only on k and t) if a corresponding tree decomposition of G is given.

Idea of the algorithm

Definition (BFS decomposition)

Let *u* be a vertex of a graph *G*. For $i \ge 0$ we denote by L_i the *i*-th level of breadth first search, i.e. the set of vertices at distance *i* from *u*. We call the partition of the vertex set V(G) $\mathcal{L}(G, u) = \{L_0, L_1, \ldots, L_r\}$ breadth first search (BFS) decomposition of *G*.

Idea of the algorithm

Idea of the algorithm

Lemma

Let S be a sparsest t-spanner of G, $S_i = S[V(G'_i)]$. If S'_i is a sparsest partial t-spanner in G'_i for $A = E(G_i)$ then $|E(S'_i)| \le |E(S_i)|$.

Idea of the algorithm

Idea of the algorithm

Construction of a spanner

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへ⊙

Idea of the algorithm

Lemma

The spanner S' has at most $(1 + \frac{t+1}{k-1})$ OPT(G) edges, where OPT(G) is the number of edges in the solution of the SPARSEST t-SPANNER problem on G.

Definition (Apex graphs)

An *apex graph* is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Definition (Apex graphs)

An *apex graph* is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Apex graphs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition (Apex graphs)

An *apex graph* is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Definition (Apex-minor-free graphs)

A graph class G is *apex-minor-free* if G excludes a fixed apex graph H as a minor.

Definition (Apex graphs)

An *apex graph* is a graph obtained from a planar graph G by adding a vertex and making it adjacent to some vertices of G.

Definition (Apex-minor-free graphs)

A graph class G is *apex-minor-free* if G excludes a fixed apex graph H as a minor.

Theorem (Eppstein)

All minor-closed graph classes that have bounded local treewidth are exactly apex-minor-free graph classes.

Thank you!