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Abstract. In this paper, we investigate three strategies of how to use a spanning tree T of a graph G
to navigate in G, i.e., to move from a current vertex x towards a destination vertex y via a path that
is close to optimal. In each strategy, each vertex v has full knowledge of its neighborhood NG[v] in G
(or, k-neighborhood Dk(v, G), where k is a small integer) and uses a small piece of global information
from spanning tree T (e.g., distance or ancestry information in T ), available locally at v, to navigate
in G. We investigate advantages and limitations of these strategies on particular families of graphs
such as graphs with locally connected spanning trees, graphs with bounded length of largest induced
cycle, graphs with bounded tree-length, graphs with bounded hyperbolicity. For most of these families
of graphs, the ancestry information from a Breadth-First-Search-tree guarantees short enough routing
paths. In many cases, the obtained results are optimal up to a constant factor.
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1 Introduction

As part of the recent surge of interest in different kind of networks, there has been active research
exploring strategies for navigating synthetic and real-world networks (modeled usually as graphs).
These strategies specify some rules to be used to advance in a graph (a network) from a given
vertex towards a target vertex along a path that is close to shortest. Current strategies include
(but not limited to): routing using full-tables, interval routing, routing labeling schemes, greedy
routing, geographic routing, compass routing, etc. in wired or wireless communication networks
and in transportation networks (see [24, 25, 29, 36, 42, 48] and papers cited therein); routing through
common membership in groups, popularity, and geographic proximity in social networks and e-mail
networks (see [2, 3, 20, 36, 39] and literature cited therein).

Navigation in communication networks is performed using a routing scheme, i.e., a mechanism
that can deliver packets of information from any vertex of a network to any other vertex. In most
strategies, each vertex v of a graph has full knowledge of its neighborhood and uses a piece of global
information available to it about the graph topology – some ”sense of direction” to each destination,
stored locally at v. Based only on this information and the address of a destination, vertex v needs
to decide whether the packet has reached its destination, and if not, to which neighbor of v to
forward the packet.

One of the most popular strategies in wireless (and social) networks is the geographic routing
(sometimes called also the greedy geographic routing), where each vertex forwards the packet to the
neighbor geographically closest to the destination (see survey [29] and paper [39]). Each vertex of
the network knows its position (e.g., Euclidean coordinates) in the underlying physical space and
forwards messages according to the coordinates of the destination and the coordinates of neighbors.
Although this greedy method is effective in many cases, packets may get routed to where no neighbor
is closer to the destination than the current vertex. Many recovery schemes have been proposed to
route around such voids for guaranteed packet delivery as long as a path exists [5, 35, 38]. These



techniques typically exploit planar subgraphs (e.g., Gabriel graph, Relative Neighborhood graph),
and packets traverse faces on such graphs using the well-known right-hand rule.

All earlier papers assumed that vertices are aware of their physical location, an assumption which
is often violated in practice for various of reasons (see [19, 37, 43]). In addition, implementations of
recovery schemes are either based on non-rigorous heuristics or on complicated planarization proce-
dures. To overcome these shortcomings, recent papers [19, 37, 43] propose routing algorithms which
assign virtual coordinates to vertices in a metric space X and forward messages using geographic
routing in X. In [43], the metric space is the Euclidean plane, and virtual coordinates are assigned
using a distributed version of Tutte’s ”rubber band” algorithm for finding convex embeddings of
graphs. In [19], the graph is embedded in Rd for some value of d much smaller than the network
size, by identifying d beacon vertices and representing each vertex by the vector of distances to
those beacons. The distance function on Rd used in [19] is a modification of the `1 norm. Both
[19] and [43] provide substantial experimental support for the efficacy of their proposed embedding
techniques – both algorithms are successful in finding a route from the source to the destination
more than 95% of the time – but neither of them has a provable guarantee. Unlike embeddings of
[19] and [43], the embedding of [37] guarantees that the geographic routing will always be successful
in finding a route to the destination, if such a route exists. Algorithm of [37] assigns to each vertex
of the network a virtual coordinate in the hyperbolic plane, and performs greedy geographic routing
with respect to these virtual coordinates. More precisely, [37] gets virtual coordinates for vertices of
a graph G by embedding in the hyperbolic plane a spanning tree of G. The proof that this method
guaranties delivery is relied only on the fact that the hyperbolic greedy route is no longer than the
spanning tree route between two vertices; even more, it could be much shorter as greedy routes
take enough short cuts (edges which are not in the spanning tree) to achieve significant saving
in stretch. However, although the experimental results of [37] confirm that the greedy hyperbolic
embedding yields routes with low stretch when applied to typical unit-disk graphs, the worst-case
stretch is still linear in the network size.

1.1 Previous work

Motivated by the work of Robert Kleinberg [37], in paper [17], we initiated exploration of the
following strategy in advancing in a graph from a source vertex towards a target vertex. Let G =
(V, E) be a (unweighted) graph and T be a spanning tree of G. To route/move in G from a vertex
x towards a target vertex y, use the following rule:

TDGR (Tree Distance Greedy Routing) strategy: from a current vertex z (initially z = x),
unless z = y, go to a neighbor of z in G that is closest to y in T .

In this strategy, each vertex has full knowledge of its neighborhood in G and can use the distances
in T to navigate in G. Thus, additionally to standard local information (the neighborhood NG(v)),
the only global information that is available to each vertex v is the topology of the spanning tree
T . In fact, v can know only a very small piece of information about T and still be able to infer
from it the necessary tree-distances. It is known [27, 40, 41] that the vertices of an n-vertex tree
T can be labeled in O(n log n) total time with labels of up to O(log2 n) bits such that given the
labels of two vertices v, u of T , it is possible to compute in constant time the distance dT (v, u), by
merely inspecting the labels of u and v. Hence, one may assume that each vertex v of G knows,
additionally to its neighborhood in G, only its O(log2 n) bit distance label. This distance label can
be viewed as a virtual coordinate of v.
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For each source vertex x and target vertex y, by this routing strategy, a path, called a greedy
routing path, is produced (clearly, this routing strategy will always be successful in finding a route
to the destination). Denote by gG,T (x, y) the length (i.e., the number of edges) of a longest greedy
routing path that can be produced for x and y using this strategy and T . We say that a spanning tree
T of a graph G is an additive r-carcass for G if gG,T (x, y) ≤ dG(x, y)+r for each ordered pair x, y ∈ V
(in a similar way one can define also a multiplicative t-carcass of G, where gG,T (x, y)/dG(x, y) ≤ t).
Note that this notion differs from the notion of ”remote-spanners” introduced recently in [34].

In [17], we investigated the problem, given a graph family F , whether a small integer r exists
such that any graph G ∈ F admits an additive r-carcass. We showed that rectilinear p × q grids,
hypercubes, distance-hereditary graphs, dually chordal graphs (and, therefore, strongly chordal
graphs and interval graphs), all admit additive 0-carcasses. Furthermore, every chordal graph G
admits an additive (ω(G) + 1)-carcass (where ω(G) is the size of a maximum clique of G), each 3-
sun-free chordal graph admits an additive 2-carcass, each chordal bipartite graph admits an additive
4-carcass. In particular, any k-tree admits an additive (k+2)-carcass. All those carcasses were easy
to construct.

This new combinatorial structure, carcass, turned out to be ”more attainable” than the well-
known structure, tree spanner (a spanning tree T of a graph G is an additive tree r-spanner if for
any two vertices x, y of G, dT (x, y) ≤ dG(x, y)+ r holds, and is a multiplicative tree t-spanner if for
any two vertices x, y, dT (x, y) ≤ t dG(x, y) holds). It is easy to see that any additive (multiplicative)
tree r-spanner is an additive (resp., multiplicative) r-carcass. On the other hand, there is a number
of graph families not admitting any tree spanners, yet admitting very good carcasses. For example,
any hypercube has an additive 0-carcass (see [17]) but does not have any tree r-spanner (additive
or multiplicative) for any constant r. The same holds for 2-trees and chordal bipartite graphs [17].

1.2 Results of this paper

All graphs occurring in this paper are connected, finite, undirected, unweighted, loopless and with-
out multiple edges. In a graph G = (V, E) (n = |V |,m = |E|) the length of a path from a vertex
v to a vertex u is the number of edges in the path. The distance dG(u, v) between vertices u and
v is the length of a shortest path connecting u and v. The neighborhood of a vertex v of G is
the set NG(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}.
The disk of radius k centered at v is the set of all vertices at distance at most k to v, i.e.,
Dk(v, G) = {u ∈ V : dG(u, v) ≤ k}.

In this paper we continue investigations of how to use spanning trees to navigate in graphs.
Spanning trees are very well understood structures in graphs. There are many results available
in literature on how to construct (and maintain) different spanning trees in a number of settings;
including in distributed way, in self stabilizing way, in localized way, etc. (see [18, 21–23, 32, 33] and
literature cited therein).

Additionally to TDGR strategy, we propose to investigate two more strategies. Let G = (V, E)
be a graph and T be a spanning tree of G rooted at an arbitrary vertex s. Using T , we associate
an interval Iv with each vertex v such that, for any two vertices u and v, Iu ⊆ Iv if and only if u is
a descendent of v in T . This can be done in the following way (see [46] and Fig. 1). By depth-first
search tour of T , starting at root, assign each vertex u of T a depth-first search number DFS(u).
Then, label u by interval [DFS(u), DFS(w)], where w is last descendent of u visited by depth-first
search. For two intervals Ia = [aL, aR] and Ib = [bL, bR], Ia ⊆ Ib if and only if aL ≥ bL and aR ≤ bR.
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Let xTy denote the (unique) path of T connecting vertices x and y, and let NG[xTy] = {v ∈ V : v
belongs to xTy or is adjacent to a vertex of xTy in G}.

IGR (Interval Greedy Routing) strategy.
To advance in G from a vertex x towards a target vertex y (y 6= x), do:

if there is a neighbor w of x in G such that y ∈ Iw (i.e., w ∈ sTy),
then go to such a neighbor with smallest (by inclusion) interval;

else (which means x 6∈ NG[sTy]),
go to a neighbor w of x in G such that x ∈ Iw and Iw is largest such interval.

IGRF (Interval Greedy Routing with forwarding to Father) strategy.
To advance in G from a vertex x towards a target vertex y (y 6= x), do:

if there is a neighbor w of x in G such that y ∈ Iw (i.e., w ∈ sTy),
then go to such a neighbor with smallest (by inclusion) interval;

else (which means x 6∈ NG[sTy]),
go to the father of x in T (i.e., a neighbor of x in G interval of which
contains x and is smallest by inclusion).

Note that both, IGR and IGRF, strategies are simpler and more compact than the TDGR
strategy. In IGR and IGRF, each vertex v, additionally to standard local information (the neigh-
borhood NG(v)), needs to know only 2dlog2 ne bits of global information from the topology of T ,
namely, its interval Iv. Information stored in intervals gives a ”sense of direction” in navigation in
G (current vertex x either may already know intervals of its neighbors, or it can ask each neighbor
w, when needed, whether its interval Iw contains destination y or vertex x itself, and if yes to send
Iw to x). On the other hand, as we will show in this paper, routing paths produced by IGR (IGRF)
will have, in many cases, almost the same quality as routing paths produced by TDGR. Moreover,
in some cases, they will be even shorter than routing paths produced by TDGR.

Fig. 1. A graph and its rooted spanning tree with precomputed ancestry intervals. For (ordered) pair of vertices 10
and 4, both IGR and IGRF produce path 10,8,3,4 (TDGR produces 10,5,4). For pair 5 and 8, IGR produces path
5,2,1,8, while IGRF produces path 5,3,8 (TDGR produces 5,10,8). For pair 5 and 7, IGR produces path 5,2,1,7, while
IGRF produces path 5,3,2,1,7 (TDGR produces 5,2,1,7).

Let RG,T (x, y) be the routing path produced by IGR strategy (resp., by IGRF strategy) for a
source vertex x and a target vertex y in G using T . It will be evident later that this path always
exists, i.e., IGR strategy (resp., IGRF strategy) guarantees delivery. Moreover, this path is unique
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for each ordered pair x, y of vertices (note that, depending on tie breaking rule, TDGR can produce
different routing paths for the same ordered pair of vertices). Denote by gG,T (x, y) the length (i.e.,
the number of edges) of path RG,T (x, y). We say that a spanning tree T of a graph G is an additive
r-frame (resp., an additive r-fframe) for G if the length gG,T (x, y) of the routing path RG,T (x, y)
produced by IGR strategy (resp., by IGRF strategy) is at most dG(x, y) + r for each ordered
pair x, y ∈ V . In a similar way one can define also a multiplicative t-frame (resp., a multiplicative
t-fframe) of G, where gG,T (x, y)/dG(x, y) ≤ t.

In Sections 2 and 3, we show that each distance-hereditary graph admits an additive 0-frame
(as well as an additive 0-fframe) and each dually chordal graph (and, hence, each interval graph,
each strongly chordal graph) admits an additive 0-frame. In Section 4, we show that each k-chordal
graph admits an additive (k − 1)-frame (as well as an additive (k − 1)-fframe), each chordal graph
(and, hence, each k-tree) admits an additive 1-frame (as well as an additive 1-fframe), each AT-free
graph admits an additive 2-frame (as well as an additive 2-fframe), each chordal bipartite graph
admits an additive 0-frame (as well as an additive 0-fframe). Definitions of the graph families will
be given in appropriate sections (see also [8] for many equivalent definitions of those families of
graphs).

To better understand full potentials and limitations of the proposed routing strategies, in Section
5, we investigate also the following generalizations of them. Let G = (V,E) be a (unweighted) graph
and T be a (rooted) spanning tree of G.

k-localized TDGR strategy.
To advance in G from a vertex x towards a target vertex y, do:

go, using a shortest path in G, to a vertex w ∈ Dk(x, G) that is closest to y in T .

In this strategy, each vertex has full knowledge of its disk Dk(v, G) (e.g., all vertices in Dk(v, G)
and how to reach each of them via some shortest path of G) and can use the distances in T to
navigate in G. Let gG,T (x, y) be the length of a longest path of G that can be produced for x and
y using this strategy and T . We say that a spanning tree T of a graph G is a k-localized additive
r-carcass for G if gG,T (x, y) ≤ dG(x, y) + r for each ordered pair x, y ∈ V (in a similar way one can
define also a k-localized multiplicative t-carcass of G.

k-localized IGR strategy.
To advance in G from a vertex x towards a target vertex y, do:

if there is a vertex w ∈ Dk(x, G) such that y ∈ Iw (i.e., w ∈ sTy),
then go, using a shortest path in G, to such a vertex w

with smallest (by inclusion) interval;
else (which means dG(x, sTy) > k),

go, using a shortest path in G, to a vertex w ∈ Dk(x,G) such
that x ∈ Iw and Iw is largest such interval.

k-localized IGRF strategy.
To advance in G from a vertex x towards a target vertex y, do:

if there is a vertex w ∈ Dk(x, G) such that y ∈ Iw (i.e., w ∈ sTy),
then go, using a shortest path in G, to such a vertex w

with smallest (by inclusion) interval;
else (which means dG(x, sTy) > k),

go to the father of x in T .
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In these strategies, each vertex has full knowledge of its disk Dk(v, G) (e.g., all vertices in Dk(v, G)
and how to reach each of them via some shortest path of G) and can use the DFS intervals Iw to
navigate in G. We say that a (rooted) spanning tree T of a graph G is a k-localized additive r-frame
(resp., a k-localized additive r-fframe) for G if the length gG,T (x, y) of the routing path produced
by k-localized IGR strategy (resp., by k-localized IGRF strategy) is at most dG(x, y) + r for each
ordered pair x, y ∈ V . In a similar way one can define also a k-localized multiplicative t-frame (resp.,
a k-localized multiplicative t-fframe) of G.

We show, in Section 5, that any tree-length λ graph admits a λ-localized additive 5λ-fframe
(which is also a λ-localized additive 5λ-frame) and any δ-hyperbolic graph admits a 4δ-localized
additive 8δ-fframe (which is also a 4δ-localized additive 8δ-frame). Definitions of these graph families
will also be given in appropriate sections. Additionally, we show that: for any λ ≥ 3, there exists
a tree-length λ graph G with n vertices for which no (λ − 2)-localized additive 1

2

√
log n−1

λ -fframe
exists; for any λ ≥ 4, there exists a tree-length λ graph G with n vertices for which no b2(λ−2)/3c-
localized additive 2

3

√
log 3(n−1)

4λ -frame exists; for any λ ≥ 6, there exists a tree-length λ graph G

with n vertices for which no b(λ− 2)/4c-localized additive 3
4

√
log n−1

λ -carcass exists.

2 Preliminaries

Let G = (V,E) be a graph and T be a spanning tree of G rooted at an arbitrary vertex s. We
assume that T is given together with the precomputed ancestry intervals. The following facts are
immediate from the definitions of IGR and IGRF strategies.

Lemma 1. Any routing path RG,T (x, y) produced by IGR or IGRF, where x is not an ancestor of
y in T , is of the form x1 . . . xkyl . . . y1, where x1 = x, y1 = y, xi is a descendent of xi+1 in T , and
yi is an ancestor of yi−1 in T . In addition, for any i ∈ [1, k], xi is not an ancestor of y, and, for
any i ∈ [1, k − 1], xi is not adjacent in G to any vertex of sTy.
If x is an ancestor of y in T , then RG,T (x, y) has only part yl . . . y1 with x = yl, y = y1 and yi

being an ancestor of yi−1 in T .

In what follows, any routing path produced by IGR (resp., by IGRF, by TDGR) will be called
IGR routing path (resp., IGRF routing path, TDGR routing path).

Corollary 1. A tale of any IGR routing path (any IGRF routing path) is also an IGR routing path
(IGRF routing path, respectively).

Corollary 2. Both IGR and IGRF strategies guarantee delivery.

Corollary 3. Let T be a BFS-tree (Breadth-First-Search–tree) of a graph G rooted at an arbitrary
vertex s, and let x and y be two vertices of G. Then, IGR and IGRF strategies produce the same
routing path RG,T (x, y) from x to y.

Lemma 2. For any vertices x and y, the IGR routing path (respectively, the IGRF routing path)
RG,T (x, y) is unique.

Lemma 3. Any IGR routing path RG,T (x, y) is an induced path of G.
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Note that an IGRF routing path RG,T (x, y) = x1 . . . xkyl . . . y1 may not necessarily be induced
in the part x1 . . . xk. In [17], it was shown that routing paths produced by TDGR strategy are also
induced paths.

A graph G is called distance-hereditary if any induced path of G is a shortest path (see [8] for
this and equivalent definitions). By Lemma 3 and Corollary 3, we conclude.

Theorem 1. Any spanning tree of a distance-hereditary graph G is an additive 0-frame of G,
regardless where it is rooted. Any BFS-tree of a distance-hereditary graph G is an additive 0-fframe
of G.

It has been shown in [17] that a column-wise Hamiltonian path HP of any Rectilinear Grid
G (see Fig. 2) is an additive 0-carcass of G. Since we can number the vertices of G from 1 to n
simply following the path HP and the distance in HP between a vertex with number i and a
vertex with number j can be computed by formula |i−j|, strategies IGR and IGRF, for Rectilinear
Grids, cannot give improvements over TDGR strategy neither in memory size per vertex nor in
route stretch. Consequently, for Rectilinear Grids, IGR and IGRF strategies are not interesting.
Furthermore, one can easily see (consult Fig. 2) that HP is only an additive 2-frame for the grid
G (while routing paths produced in G by IGRF, using HP , can be arbitrarily longer than shortest
paths). In Fig. 2, we consider routing from y to x and from y to x′. The two blue paths are
the routing paths generated by TDGR strategy. The brown path is the routing path from y to x
generated by IGR strategy. The green path is the routing path from y to x′ generated by IGRF
strategy.

Fig. 2. Rectilinear grid and its column-wise Hamiltonian
path.

Fig. 3. A simple graph demonstrating that IGRF
strategy may produce a shorter routing path than
IGR strategy.

In Fig. 2, one can see that IGR provides a shorter routing path than IGRF from y to x. However,
in some cases IGRF can outperform IGR, too. For example, in Fig. 3, IGRF produces a shorter
routing path (green) from x to y than that (brown) produced by IGR. Later, in Subsection 4.1, we
will see also that there are chordal graphs admitting additive 0-fframes but not having any additive
0-carcasses or additive 0-frames.

3 Frames for dually chordal graphs

In this section, we will show that each dually chordal graph admits an additive 0-frame.
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Let G be a graph. We say that a spanning tree T of G is locally connected if the closed
neighborhood NG[v] of any vertex v of G induces a subtree in T (i.e., T ∩ NG[v] is a connected
subgraph of T ). The following result was proven in [17].

Lemma 4. [17] If T is a locally connected spanning tree of a graph G, then T is an additive
0-carcass of G.

Here we prove the following lemma.

Lemma 5. Let G be a graph with a locally connected spanning tree T , and let x and y be two
vertices of G. Then, IGR and TDGR strategies produce the same routing path RG,T (x, y) from x
to y (regardless where T is rooted).

Proof. Assume that we want to route from a vertex x towards a vertex y in G, where x 6= y. We
may assume that dG(x, y) ≥ 2, since otherwise both routing strategies will produce path xy. Let
x∗ (x′) be the neighbor of x in G chosen by IGR strategy (resp., by TDGR strategy) to relay the
message. We will show that x′ = x∗ by considering two possible cases. We root the tree T at an
arbitrary vertex s.

First assume that NG[x] ∩ sTy 6= ∅. By IGR strategy, we will choose a neighbor x∗ ∈ NG[x]
such that y ∈ Ix∗ and Ix∗ is the smallest interval by inclusion, i.e., x∗ is a vertex from NG[x] closest
in sTy to y. If dT (x′, y) < dT (x∗, y), then x′ /∈ sTy and the nearest common ancestor NCAT (x′, y)
of x′, y in T must be in x∗Ty. Since T ∩NG[x] is a connected subgraph of T and x′, x∗ ∈ NG[x], we
conclude that NCAT (x′, y) must be in NG[x], too. Thus, we must have x′ = NCAT (x′, y) = x∗.

Assume now that NG[x] ∩ sTy = ∅. By IGR strategy, we will choose a neighbor x∗ ∈ NG[x]
such that x ∈ Ix∗ and Ix∗ is the largest interval by inclusion, i.e., x∗ is a vertex from NG[x] closest
in sTx to NCAT (x, y). Consider the nearest common ancestor NCAT (x′, x∗) of x′, x∗ in T . Since
T ∩NG[x] is a connected subgraph of T and x′, x∗ ∈ NG[x], we conclude that NCAT (x′, x∗) must
be in NG[x], too. Thus, necessarily, we must have x′ = NCAT (x′, x∗) = x∗.

From these two cases we conclude, by induction, that IGR and TDGR strategies produce the
same routing path RG,T (x, y) from x to y. ut

From Lemma 4 and Lemma 5, we immediately obtain the following corollary.

Corollary 4. If T is a locally connected spanning tree of a graph G, then T is an additive 0-frame
of G (regardless where T is rooted).

It has been shown in [7] that the graphs admitting locally connected spanning trees are precisely
the dually chordal graphs. Furthermore, [7] showed that the class of dually chordal graphs contains
such known families of graphs as strongly chordal graphs, interval graphs and others. Thus, we
have the following result.

Theorem 2. Every dually chordal graph admits an additive 0-frame. In particular, any strongly
chordal graph (any interval graph) admits an additive 0-frame.

Note that, in [6, 7], it was shown that dually chordal graphs can be recognized in linear time,
and if a graph G is dually chordal, then a locally connected spanning tree of G can be efficiently
constructed.
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4 Frames for k-chordal graphs and subclasses

In this section, we will employ two types of vertex orderings: breadth-first-search orderings and
lexicographic-breadth-first-search orderings of Rose et al [45]. Let σ = [v1, v2, . . . , vn] be any ordering
of the vertex set of a graph G. We will write a < b whenever in a given ordering σ vertex a has a
smaller number than vertex b. Let s be a vertex of G. We define the layers of G with respect to
vertex s as follows: Li(s) = {v : d(s, v) = i} for i = 0, 1, 2, . . ..

In a breadth-first search (BFS), started at a vertex s, the vertices of a graph G with n vertices
are numbered from n to 1 in decreasing order. The vertex s is numbered by n and put on an
initially empty queue of vertices. Then a vertex v at the head of the queue is repeatedly removed,
and neighbors of v that are still unnumbered are consequently numbered and placed onto the queue.
Clearly, BFS operates by proceeding vertices in layers: the vertices closest to the start vertex are
numbered first, and the most distant vertices are numbered last. BFS may be seen to generate a
rooted tree T (called BFS-tree) with vertex s as the root. A vertex v is the father in T of exactly
those neighbors in G which are inserted into the queue when v is removed.

An ordering σ of the vertex set of a graph G generated by a BFS will be called a BFS–ordering
of G. Denote by f(v) the farther of a vertex v with respect to σ. The following properties of a
BFS–ordering will be used in what follows. Since all layers of V considered here are with respect
to s, we will frequently use notation Li instead of Li(s).

(P1) If x ∈ Li, y ∈ Lj and i < j, then x > y in σ.

(P2)
If x, y, z ∈ Lj , x > y > z and f(x)z ∈ E, then f(x) = f(y) = f(z) (in
particular, f(x)y ∈ E).

We will need also the following fact.

Lemma 6. [16] Let G be an arbitrary graph and T be a BFS-tree of G with the root s. Let also v
be a vertex of G and w (w 6= v) be an ancestor of v in T from layer Li(s). Then, for any vertex
x ∈ Li(s) \ {w} with dG(v, w) = dG(v, x), inequality x < w holds.

Lexicographic breadth-first search (LexBFS), started at a vertex s, orders the vertices of a graph
by assigning numbers from n to 1 in the following way. The vertex s gets the number n. Then each
next available number k is assigned to a vertex v (as yet unnumbered) which has lexically largest
vector (an, an−1, . . . , ak+1), where ai = 1 if v is adjacent to the vertex numbered i, and ai = 0
otherwise.

An ordering of the vertex set of a graph generated by LexBFS we will call a LexBFS–ordering.
Clearly, any LexBFS–ordering is a BFS–ordering (but not conversely). Note also that for a given
graph G, both a BFS–ordering and a LexBFS–ordering can be generated in linear time [30]. LexBFS
may be seen to generate a special BFS-tree T (called LexBFS-tree) with vertex s as the root.

4.1 k-Chordal graphs

In this subsection, we will show that each k-chordal graph admits an additive (k−1)-fframe (which
is also an additive (k−1)-frame) and each chordal graph admits an additive 1-fframe (which is also
an additive 1-frame). A graph G is called k-chordal if it has no induced cycles of size greater than
k, and it is called chordal if it has no induced cycle of length greater than 3. Chordal graphs are
precisely the 3-chordal graphs.

For chordal graphs we will need the following lemmata from [12] and [45].
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Lemma 7. [12] If vertices a and b of a disk Dk(s) of a chordal graph G are connected by a path
P (a, b) outside of Dk(s) [i.e., P (a, b) ∩Dk(s) = {a, b}], then a and b must be adjacent in G.

Lemma 8. [45] Let G be a chordal graph and σ be a LexBFS–ordering of G. For any vertices
a, b, c of G with a < b < c in σ and b, c ∈ NG(a), b and c must be adjacent in G.

Now, we prove the main result of this subsection.

Theorem 3. Let G = (V, E) be a k-chordal graph. Any BFS-tree T of G is an additive (k − 1)-
fframe (and, hence, an additive (k− 1)-frame) of G. If G is a chordal graph (i.e., k = 3), then any
LexBFS-tree T of G is an additive 1-fframe (and, hence, an additive 1-frame) of G.

Proof. First of all notice that since T is a BFS-tree of G rooted at s, for any vertex v ∈ V ,
dG(v, s) = dT (v, s) holds, and, for any edge uv ∈ E, |dT (u, s)− dT (v, s)| ≤ 1 holds.

Assume that we want to route from a source vertex x to a target vertex y (y 6= x) in G. If
x ∈ sTy or y ∈ sTx then, according to IGRF strategy, RG,T (x, y) = xTy and, therefore, the length
of RG,T (x, y) is equal to dG(x, y).

Let PG(x, y) be an arbitrary shortest path between x and y in G. We may assume that dG(x, y) ≥
2, since otherwise both the IGRF routing path RG,T (x, y) and the shortest path PG(x, y) have length
1. So, we only need to consider the case when x 6∈ sTy, y 6∈ sTx and dG(x, y) ≥ 2.

By Lemma 1, Corollary 3 and Lemma 3, the routing path RG,T (x, y) is induced and can be
decomposed into three parts: subpath x . . . a of path xTs, edge ab of G and subpath b . . . y of path
sTy. We have |dT (a, s)− dT (b, s)| ≤ 1.

Assume now that the length of path RG,T (x, y) is at least dG(x, y) + k. Let z be a vertex of
PG(x, y) closest to s in G. Consider also vertices y′, y′′ ∈ yTs and x′, x′′ ∈ xTs with dT (x′, s) =
dT (z, s) = dT (y′, s) and dT (x′′, s) = dT (z, s) − 1 = dT (y′′, s) (see Fig. 4). As T is a BFS-tree, we
have dG(x, x′) ≤ dG(x, z) and dG(y, y′) ≤ dG(y, z). We may assume that dG(a, s) ≤ dG(x′′, s) and
dG(b, s) ≤ dG(y′′, s), since otherwise dG(x, y)+k ≤ length(RG,T (x, y)) ≤ dG(x, x′)+2+dG(y, y′) ≤
dG(x, z) + dG(y, z) + 2 = dG(x, y) + 2, and a contradiction with k ≥ 3 arises.

Let R′ be a subpath of RG,T (x, y) between x′′ and y′′. Since dG(x, y)+k ≤ length(RG,T (x, y)) =
length(xTx′)+1+length(R′)+1+length(y′Ty), length(xTx′) ≤ dG(x, z), length(y′Ty) ≤ dG(y, z)
and dG(x, y) = dG(x, z) + dG(y, z), we get length(R′) ≥ k − 2. Furthermore, if length(R′) = k − 2,
then dG(x, x′) = dG(x, z) and dG(y, y′) = dG(y, z).

Fig. 4. Illustration to the proof of Theorem 3.

Fig. 5. A 5-chordal graph
with a LexBFS-ordering:
length(RG,T (x, y)) = 7 = 4
+dG(x, y).

Fig. 6. A chordal graph
with a BFS-ordering:
dG(x, y) = 2 = 4 − 2 =
length(RG,T (x, y))− 2.

In a subgraph of G induced by vertices x′′Tx
⋃

PG(x, y)
⋃

yTy′′, consider a shortest path P ′

connecting vertices x′′ and y′′. Clearly, no inner vertex of P ′ is adjacent to any inner vertex of R′,
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i.e, paths R′ and P ′ form an induced cycle in G. Since G cannot have induced cycles of length
greater than k and length(R′) ≥ k − 2, we conclude that either length(P ′) = 1 (i.e., x′′y′′ ∈ E,
x′′ = a, y′′ = b, length(R′) = 1 and k = 3), or length(P ′) = 2 (i.e., length(R′) = k − 2 ≥ 2,
k ≥ 4 and x′′z, y′′z ∈ E). In both cases, dG(x, x′) = dG(x, z) and dG(y, y′) = dG(y, z) because
length(R′) = k − 2. Also, in both cases, x′′z, y′′z ∈ E must hold. Indeed, when k = 3, G is a
chordal graph and in a cycle of G formed by vertices x′′Tx

⋃
PG(x, y)

⋃
yTy′′, edge x′′y′′ must

belong to a triangle. It is evident that the third vertex of that triangle must be z. Now, since
dG(x, x′) = dG(x, z) and dG(y, y′) = dG(y, z), by Lemma 6, z < x′ and z < y′. On the other hand,
since x′′z, y′′z ∈ E, by property (P2) of BFS–ordering, x′′ = y′′ must hold, which is impossible. A
contradiction obtained proves that the length of path RG,T (x, y) is at most dG(x, y) + k − 1.

To prove the second part of the theorem, let G be a chordal graph (i.e., k = 3) and let the length
of path RG,T (x, y) be equal to dG(x, y) + 2. Using the same notations as before and denoting by
R(x′, y′) the subpath of RG,T (x, y) between x′ and y′, we get dG(x, y) + 2 = length(RG,T (x, y)) =
length(xTx′)+length(R(x′, y′))+length(y′Ty) ≤ dG(x, z)+length(R(x′, y′))+dG(y, z) = dG(x, y)+
length(R(x′, y′)), i.e., length(R(x′, y′)) ≥ 2. Furthermore, if length(R(x′, y′)) = 2, then dG(x, x′) =
dG(x, z) and dG(y, y′) = dG(y, z), and if length(R(x′, y′)) = 3, then dG(x, x′) = dG(x, z) or
dG(y, y′) = dG(y, z).

Assume dG(x, x′) = dG(x, z) and dG(y, y′) = dG(y, z). Then, by Lemma 6, z < x′ and z < y′,
and, by Lemma 7, x′z, y′z ∈ E. Since x′y′ /∈ E, a contradiction with Lemma 8 occurs.

Hence, we must have length(R(x′, y′)) > 2, i.e., x′y′, x′y′′, y′x′′ /∈ E and x′′ 6= y′′. Furthermore,
by Lemma 7, vertices x′′ and y′′ are adjacent, i.e., length(R(x′, y′)) = 3. Assume, without loss
of generality, that dG(x, x′) = dG(x, z). Then, necessarily, dG(y, y′) = dG(y, z) − 1 must hold. By
Lemma 6 and Lemma 7, we have z < x′ and x′z ∈ E. According to property (P1) of BFS–ordering,
y′′ > z. Therefore, by Lemma 8, vertices z and y′′ cannot be adjacent (otherwise, x′y′′ ∈ E, which
is impossible). Consider a cycle C of G formed by vertices z, x′, x′′, y′′Ty and a subpath P (z, y)
of PG(x, y) between z and y. Since G is chordal, edge x′′y′′ must form a triangle with some other
vertex of C. As zy′′ /∈ E, the neighbor w of z in P (z, y) must be in LdG(s,z)(s) to form that triangle.
Note that dG(y, y′) = dG(y, w) = dG(y.z) − 1. Again, by Lemma 6 and Lemma 7, we have w < y′

and y′w ∈ E. According to property (P1) of BFS–ordering, x′′ > w. As x′′w ∈ E and x′′y′ /∈ E, a
contradiction with Lemma 8 arises. This contradiction proves that the length of path RG,T (x, y) is
at most dG(x, y) + 1. ut

Fig. 5 shows that the result of Theorem 3 is tight for 5-chordal graphs, and cannot be improved
if we consider LexBFS-tree instead of BFS-tree. Fig. 6 shows a chordal graph for which the result
of Theorem 3 is tight, and the result is not true anymore if LexBFS-tree is replaced by BFS-tree.
It is easy to see (by simple case analysis) that even the chordal graph obtained from the graph on
Fig. 6 by removing vertex y has neither additive 0-carcass nor 0-frame, but has an additive 0-fframe
(see Fig. 8). Fig. 9 presents a chordal graph with an additive 0-frame (which is also an additive
0-fframe) and this graph does not have any additive 0-carcass. It is interesting to ask also whether
any LexBFS-tree T of a chordal graph G is an additive r-carcass for some constant r. The following
lemma is true.

Lemma 9. For any constant integer r ≥ 1, there is a chordal graph G with a LexBFS-tree T such
that T is not an additive r-carcass of G.

Proof. We will construct a chordal graph G for r = 4. It will be clear how the method can be
extended to an arbitrary r. Fig. 7 shows such a graph. It has 9 levels, from L0 to L8 (vertices on
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each level are labeled/numbered as shown in the figure). Levels L6, L7 and L8 have 7 vertices each.
If i ≤ 6, then level Li−1 has one vertex less than level Li. Level L0 has only one vertex s. Each level
Li (i ≤ 6) forms a clique Ci in G. Level L7 consists of a clique C7, formed by vertices {0,1,. . . ,5},
and of an isolated vertex 6. Level L8 consists of an induced path formed by vertices {0,1,. . . ,5},
and of an isolated vertex 6. Each clique C0, . . . , C7 is marked by a circle. This describes the vertex
set and the inner-level edges of G. Additionally, all vertices labeled by 6 form an induced path in
G, and, for each k = 1, . . . , 8, vertex i (i 6= 6 if k = 7, 8) in Lk is adjacent to any vertex j in Lk−1

with j ≤ i.
One can easily verify that the graph G constructed is chordal, and that the spanning tree

depicted in bold (red) is a LexBFS-tree of G. Let name a vertex by (i, j), where i is the index
of level it belongs to and j is its label in that level. By TDGR strategy, message from x = (8, 0)
to y = (8, 6) will use the following path which has 10 edges: (8, 0) → (8, 1) → (8, 2) → (8, 3) →
(8, 4) → (8, 5) → (7, 5) → (6, 5) → (6, 6) → (7, 6) → (8, 6), while a shortest path between x and y
has only 5 edges (for example, (8, 0) → (7, 0) → (6, 0) → (6, 6) → (7, 6) → (8, 6)). Thus, T is not
an additive 4-carcass of G. ut

Fig. 7. A chordal graph with a LexBFS-tree. This tree is
not an additive r-carcass for r < 5.

Fig. 8. A chordal graph with an additive 0-fframe.
This graph has neither additive 0-carcass nor ad-
ditive 0-frame.

Fig. 9. A chordal graph with an additive 0-frame
(which is also an additive 0-fframe). This graph
does not have any additive 0-carcass.

4.2 Chordal bipartite graphs and AT-free graphs

In this subsection, we will show that each chordal bipartite graph admits an additive 0-fframe
(which is also an additive 0-frame) and each AT-free graph admits an additive 2-fframe (which is
also an additive 2-frame).

A graph G is called chordal bipartite if it is bipartite and has no induced cycles of size greater
than 4. Chordal bipartite graphs are precisely the bipartite 4-chordal graphs. We will show that
every chordal bipartite graph admits a special LexBFS-tree which is an additive 0-frame as well as
an additive 0-fframe. We will need the following result from [16].

Lemma 10. [16] Let G be a chordal bipartite graph. Then, there is a LexBFS–ordering σ of G
with the property: for any vertices a, b, c, d of G such that ab, ac, bd ∈ E, a < d, b < c in σ, d and
c must be adjacent in G. Such a special LexBFS–ordering of G can be found in O(n2) time.

It is easy to prove also the following lemma (an analog of Lemma 7) for chordal bipartite graphs.
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Lemma 11. If vertices a and b of a disk Dk(s) of a chordal bipartite graph G are connected by a
path P (a, b) outside of Dk(s) [i.e., P (a, b) ∩ Dk(s) = {a, b}], then a and b must have a common
neighbor in Lk+1(s)

⋂
P (a, b).

Theorem 4. Every chordal bipartite graph G admits a special LexBFS-tree which is an additive
0-fframe (and, hence, an additive 0-frame) of G.

Proof. We will use the same notations as in the proof of Theorem 3. Let T be the LexBFS-tree
associated with that (indicated in Lemma 10) special LexBFS–ordering of chordal bipartite graph
G. Assume, the root of T is s. Notice that, since G is bipartite, there is no edge ab in G with
dG(a, s) = dG(b, s) (call such an edge horizontal). As in the proof of Theorem 3, we only need to
consider the case when x 6∈ sTy, y 6∈ sTx and dG(x, y) ≥ 2.

Let PG(x, y) be a shortest path between x and y in G with dG(s, PG(x, y)) is minimum. Let
again RG,T (x, y) be the routing path from x to y produced by IGRF strategy. Vertices z ∈ PG(x, y),
y′, y′′ ∈ yTs and x′, x′′ ∈ xTs are defined as in the proof of Theorem 3. Note that, since G is bipartite
(no horizontal edges), x′′y′′, x′y′, x′z, y′z /∈ E.

First assume that x′y′′, y′x′′ /∈ E. Hence, x′′ 6= y′′. By Lemma 11, we may assume that x′′z, y′′z ∈
E. Let, without loss of generality, x′′ < y′′. Applying Lemma 10 to vertices x′, x′′, z, y′′ with x′y′′ /∈
E, we conclude that z > x′ must hold. But then, by Lemma 6, dG(x, x′) 6= dG(x, z). Since G is
bipartite, the latter implies dG(x, x′) = dG(x, z)− 2, i.e., there is a shortest path between x and y
in G involving vertices x′, x′′, z. Since path PG(x, y) was chosen with minimum dG(s, PG(x, y)), a
contradiction occurs.

So, we may assume that x′′y′ ∈ E or x′y′′ ∈ E, i.e., length(RG,T (x, y)) ≤ dG(x, x′)+2+dG(y, y′).
If dG(x, x′) 6= dG(x, z), then dG(x, x′) = dG(x, z)−2 and, therefore, length(RG,T (x, y)) ≤ dG(x, x′)+
2 + dG(y, y′) ≤ dG(x, z)− 2 + 2 + dG(y, z) = dG(x, y), implying T is an additive 0-fframe of G. The
statement of the theorem is true also if x′ = y′.

We may assume, now, that x′ 6= y′, dG(x, x′) = dG(x, z) and dG(y, y′) = dG(y, z). We claim that
dG(x, x′) = dG(x, y′) or dG(y, y′) = dG(y, x′). If not, then z 6= x′ and z 6= y′. Consider a common
neighbor a ∈ LdG(z,s)+1(s) of z and x′ with dG(a, x) = dG(x′, x) − 1 and a common neighbor
b ∈ LdG(z,s)+1(s) of z and y′ with dG(b, y) = dG(y′, y) − 1 (they exist by Lemma 11). Necessarily,
ay′, bx′ /∈ E. By Lemma 6, we have z < x′ and z < y′. Without loss of generality, let a < b.
Applying Lemma 10 to vertices x′, a, z, b, we get bx′ ∈ E, which is a contradiction.

Thus, dG(x, x′) = dG(x, y′) or dG(y, y′) = dG(y, x′) must hold. Let, without loss of generality,
dG(y, y′) = dG(y, x′). Consider the neighbor v of y′ in yTy′. By Lemma 6, x′ < y′, and, by Lemma
11, there is a common neighbor u ∈ LdG(x′,s)+1(s) of x′ and y′ with dG(u, y) = dG(y′, y)−1. If u = v
then length(RG,T (x, y)) ≤ dG(x, x′) + dG(y, y′) ≤ dG(x, z) + dG(y, z) = dG(x, y), implying T is an
additive 0-fframe of G. If u 6= v (i.e., x′v /∈ E) then, by Lemma 6, u < v, and, by Lemma 11, there
is a common neighbor w ∈ LdG(x′,s)+2(s) of u and v with dG(w, y) = dG(y′, y) − 2. By property
(P1) of BFS–ordering, w < x′. Applying Lemma 10 to vertices x′, u, w, v, we get a contradiction
with x′v /∈ E. This final contradiction completes the proof. ut

A graph is called AT–free if it does not have an asteroidal triple, i.e. a set of three vertices such
that there is a path between any pair of them avoiding the closed neighborhood of the third. It is
known that AT-free graphs form a proper subclass of 5-chordal graphs.

Theorem 5. Let G be an AT-free graph. Any BFS-tree T of G is an additive 2-fframe (and, hence,
an additive 2-frame) of G.
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Proof. We will again use the same notations as in the proof of Theorem 3. Let T be a BFS-tree of G,
rooted at s. As before, we only need to consider the case when x 6∈ sTy, y 6∈ sTx and dG(x, y) ≥ 2.

Let PG(x, y) be any shortest path between x and y in G. Let again RG,T (x, y) be the routing
path from x to y produced by IGRF strategy. Vertices z ∈ PG(x, y), y′, y′′ ∈ yTs and x′, x′′ ∈ xTs
are defined as in the proof of Theorem 3. If x′ = y′ or x′′ = y′′ or x′y′′ ∈ E or x′′y′ ∈ E or x′y′ ∈ E,
then length(RG,T (x, y)) ≤ dG(x, x′)+2+dG(y, y′) ≤ dG(x, z)+dG(y, z)+2 = dG(x, y)+2, implying
T is an additive 2-fframe of G.

We may assume then that x′ 6= y′, x′′ 6= y′′, x′y′′, x′′y′, x′y′ /∈ E. Consider vertices s, x′ and y′ of
G. They form an asteroidal triple, since path x′Tx

⋃
PG(x, y)

⋃
yTy′ avoids the closed neighborhood

of s, path x′Ts avoids the closed neighborhood of y′, and path y′Ts avoids the closed neighborhood
of x′. As G cannot have asteroidal triples, this situation is not possible, proving the theorem. ut

5 Localized frames for tree-length λ graphs and δ-hyperbolic graphs

In this section, we show that any tree-length λ graph admits a λ-localized additive 5λ-fframe (which
is also a λ-localized additive 5λ-frame) and any δ-hyperbolic graph admits a 4δ-localized additive
8δ-fframe (which is also a 4δ-localized additive 8δ-frame). Additionally, we show that: for any
λ ≥ 3, there exists a tree-length λ graph G with n vertices for which no (λ− 2)-localized additive
1
2

√
log n−1

λ -fframe exists; for any λ ≥ 4, there exists a tree-length λ graph G with n vertices for

which no b2(λ − 2)/3c-localized additive 2
3

√
log 3(n−1)

4λ -frame exists; for any λ ≥ 6, there exists a

tree-length λ graph G with n vertices for which no b(λ−2)/4c-localized additive 3
4

√
log n−1

λ -carcass
exists.

5.1 Tree-length λ graphs

Tree-decomposition is a rich concept introduced by Robertson and Seymour [44] and is widely
used to solve various graph problems. In particular efficient algorithms exist for graphs having a
tree-decomposition into subgraphs (or bags) of bounded size, i.e., for bounded tree-width graphs.

The tree-length of a graph G is the smallest integer λ for which G admits a tree-decomposition
into bags of diameter at most λ. It has been introduced and extensively studied in [15]. Chordal
graphs are exactly the graphs of tree-length 1, since a graph is chordal if and only if it has a
tree-decomposition into cliques (cf. [8, 14]). AT-free graphs and distance-hereditary graphs are of
tree-length 2. More generally, [26] showed that k-chordal graphs have tree-length at most k/2.
However, there are graphs with bounded tree-length and unbounded chordality, like the wheel
(here, the chordality is the smallest k such that the graph is k-chordal). So, bounded tree-length
graphs is a larger class than bounded chordality graphs.

We now recall the definition of tree-decomposition introduced by Robertson and Seymour in
their work on graph minors [44]. A tree-decomposition of a graph G is a tree T whose vertices,
called bags, are subsets of V (G) such that:

1. ∪X∈V (T )X = V (G);
2. for all uv ∈ E(G), there exists X ∈ V (T ) such that u, v ∈ X; and
3. for all X,Y, Z ∈ V (T ), if Y is on the path from X to Z in T then X ∩ Z ⊆ Y .

The length of tree-decomposition T of a graph G is maxX∈V (T ) maxu,v∈X dG(u, v), and the
tree-length of G is the minimum, over all tree-decompositions T of G, of the length of T .
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A well-known invariant related to tree-decompositions of a graph G is the tree-width, defined as
minimum of maxX∈V (T ) |X| − 1 over all tree-decompositions T of G. We stress that the tree-width
of a graph is not related to its tree-length. For instance, cliques have unbounded tree-width and
tree-length 1, whereas cycles have tree-width 2 and unbounded tree-length.

We will need the following property of tree-decomposition.

Proposition 1. [14] Let X be a bag of a tree-decomposition T of G, and T1, T2 be arbitrary two
different subtrees of T \ {X} (obtained after removing bag X from T ). Then, X separates in G
vertices belonging to bags of T1 but not to X from vertices belonging to bags of T2 but not to X.

First, we prove the main, positive result of this subsection.

Theorem 6. If G has the tree-length λ, then any BFS-tree T of G is a λ-localized additive 5λ-
fframe (and, hence, a λ-localized additive 5λ-frame) of G.

Proof. Assume T is a tree-decomposition of G of length λ, and T is a BFS-tree of G rooted at
an arbitrary vertex s. Let RG,T (x, y) be the routing path from a vertex x to a vertex y produced
by λ-localized IGRF scheme using tree T . Let assume also that T is rooted at a bag S containing
vertex s, and let X (resp., Y ) be the closest to S bag in T containing vertex x (resp., vertex y). If
X = Y , then y ∈ Dλ(x, G), and the length of RG,T (x, y) is dG(x, y). Consider the nearest common
ancestor A = NCAT (X,Y ) of X and Y in T . We have three possible cases: A = X, A = Y or A is
different from both X and Y . Fig. 10 shows all three cases (and bold paths there are paths of the
BFS-tree T ).

Fig. 10. (1) NCAT (X, Y ) = X; (2) NCAT (X, Y ) = Y ; (3) NCAT (X, Y ) := A is neither X nor Y .

If A = X then, according to Proposition 1, there must exist a vertex x′ ∈ X such that x′ ∈ yTs
and x′ ∈ Dλ(x,G). It is easy to see then that the length of RG,T (x, y) is at most dG(x′, y) + λ ≤
dG(x, y) + 2λ.

Let now A = Y . There must exist a vertex y′ ∈ Y such that y′ ∈ xTs. Since y ∈ Dλ(y′, G),
we conclude that there must exist a vertex x′ ∈ xTy′ (including the case x′ = y′) and a vertex
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y′′ ∈ yTs (including the case y′′ = y) such that y′′ ∈ Dλ(x′, G). If there are more than one such
x′, we assume x′ is chosen to be closest to x in T . If there are more than one such y′′, we assume
y′′ is chosen to be closest to y in T . According to λ-localized IGRF scheme, length(RG,T (x, y)) =
dT (x, x′)+dG(x′, y′′)+dT (y′′, y) = dG(x, x′)+dG(x′, y′′)+dG(y′′, y) ≤ dG(x, x′)+λ+dG(x′, y′)+2λ =
dG(x, y′) + 3λ ≤ dG(x, y) + 4λ, by the triangle inequality, the choices of x′ and y′′, and since T
is a BFS-tree, dG(x′, y′′) ≤ λ, dG(y, y′) ≤ λ and dG(y′′, y) ≤ dG(y′′, x′) + dG(x′, y′) + dG(y′, y) ≤
dG(x′, y′) + 2λ.

Let finally A 6= X and A 6= Y . There exist x′ ∈ A, y′ ∈ A and a ∈ A such that x′ ∈ xTs,
y′ ∈ yTs, and a is on a shortest path from x to y in G. Since y′ ∈ Dλ(x′, G), there must exist a
vertex x′′ ∈ xTx′ (including the case x′′ = x′) and a vertex y′′ ∈ yTs (including the case y′′ = y′)
such that y′′ ∈ Dλ(x′′, G). If there are more than one such x′′, we assume x′′ is chosen to be closest
to x in T . If there are more than one such y′′, we assume y′′ is chosen to be closest to y in T .

According to λ-localized IGRF scheme, length(RG,T (x, y)) = dT (x, x′′)+dG(x′′, y′′)+dT (y′′, y) =
dG(x, x′′) + dG(x′′, y′′) + dG(y′′, y) ≤ dG(x, x′′) + λ + dG(y, y′′). We know also that dG(x, y) =
dG(y, a) + dG(x, a) ≥ dG(x, x′) − λ + dG(y, y′) − λ = dG(x, x′) + dG(y, y′) − 2λ. Furthermore,
dG(y′, y′′) ≤ dG(y′, x′) + dG(x′, x′′) + dG(x′′, y′′) ≤ dG(x′, x′′) + 2λ. Since y′′ ∈ y′Ty or y′′ ∈ y′Ts,
we also get dG(y, y′′) ≤ dG(y, y′) + dG(y′, y′′).

Consequently, length(RG,T (x, y)) ≤ dG(x, x′′) + λ + dG(y, y′′) ≤ dG(x, x′′) + λ + dG(y, y′) +
dG(y′, y′′) ≤ dG(x, x′′) + dG(x′, x′′) + 3λ + dG(y, y′) = dG(x, x′) + 3λ + dG(y, y′) ≤ dG(x, y) + 5λ,
and T is a λ-localized additive 5λ-fframe (and a λ-localized additive 5λ-frame) of G. ut

Fig. 11. A tree-length 6 graph and its corresponding
tree-decomposition.

Fig. 12. A tree-length 8 graph and its correspond-
ing tree-decomposition.

Now, we prove some lower bound results.
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Lemma 12. For any λ ≥ 3, there exists a tree-length λ graph without any (λ−2)-localized additive
(λa)-fframe for any constant a ≥ 1.

Proof. To prove this lemma, we construct a gadget graph composed of rockets (it will be of tree-
length λ). A rocket consists of 1 triangle and b rectangles where b ≥ λ− 1 (see [13] for other use of
similar gadgets). Each horizontal “edge” of the triangle and any rectangle is a path of length λ−1.
Rectangle 1 shares a horizontal “edge” with the triangle. Rectangle i shares a horizontal “edge”
with rectangle i− 1 and rectangle i + 1, respectively, for 2 ≤ i ≤ b− 1. Fig. 11 shows an example
of a rocket consisting of 1 triangle and 5 rectangles. The top vertex on the triangle is labeled as
root vertex s. The bottom left vertex and bottom right vertex are marked as p and q. We mark,
on each horizontal path, the left-most vertex by li and the right-most vertex by ri, where i is the
level of the path (see Fig. 11). These vertices (which include p and q) are regarded as terminal
vertices. The gadget is formed (in tree-like manner) by taking one rocket as the “root rocket” and
then developing the gadget by identifying the root vertex of a child rocket with a terminal vertex
of its parent. In addition, we say that the gadget has “depth” 1 if it contains only 1 rocket, and
has “depth” k(k > 1) if all terminal vertices of the root gadget are the roots of a gadget of “depth”
k − 1.

Let T be any (rooted) spanning tree of the gadget of “depth” k. We may assume that the
spanning tree T is rooted at the root vertex of the “root rocket”, which is our special vertex and
we name it s0. If T is not rooted at s0, we can take two identical copies of the gadget of “depth” k,
glue them at s0, and then any rooted spanning tree of the resulting graph will produce in at least
one of the two copies a spanning tree with root s0. (This will only double the number of vertices in
the graph and we will still work only in the appropriate copy). Furthermore, subtree of T spanning
any given rocket of that copy can be considered as rooted at the root of the rocket.

So, we assume that T is rooted at the root vertex s0 of the “root rocket” of the gadget G with
“depth” k. The following two claims are true.

Claim 1: If T is a (λ − 2)-localized additive (λa)-fframe of G, where a < 2b+3
λ − 1, then in each

rocket, there must exist a horizontal path which is a path in T .

Proof. We can prove the claim by contradiction. Suppose that there is a rocket where no horizontal
path is a path in T . Then, it is easy to conclude that the routing path produced by (λ-2)-localized
IGRF strategy from p to q in the rocket is of length 2b + 2 (no matter how T spans the rocket),
while the shortest path between p and q is λ − 1. This contradicts the assumption that T is a
(λ-2)-localized additive (λa)-fframe, where a < 2b+3

λ − 1. 2(of Claim)

Claim 2: If the gadget G has ”depth” k > 2a + λ − 3, then T is not a (λ − 2)-localized additive
(λa)-fframe of G where a < 2b+3

λ − 1.

Proof. We can prove the claim by contradiction. Suppose T is a (λ − 2)-localized additive (λa)-
fframe of G where a < 2b+3

λ − 1. By Claim 1, in each rocket there exists a horizontal path which is
a path in T .

Let consider an arbitrary rocket Λ at “depth” greater than λ − 2. According to the gadget
construction, s0 6∈ Dλ−2(v,G) for any vertex v of the rocket Λ. Recall that s0 is the root vertex of
the “root rocket”. Therefore, the routing path from v to s0 produced by (λ − 2)-localized IGRF
strategy will follow the spanning tree T in rocket Λ. By Claim 1, in rocket Λ there exists a horizontal
path, name it LR, which is a path in T . Let the left most vertex of the path LR be L, and the
right most vertex be R, and the root vertex of Λ be sΛ. Since LR is a T path, it is easy to see that
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either the tree path from L to sΛ passes through R, or the tree path from R to sΛ passes through
L. Therefore, either from R to s0 or from L to s0, the route produced by (λ − 2)-localized IGRF
strategy will divert, in rocket Λ, from the corresponding shortest G path (in particular, we will
have dT (L, sΛ) ≥ dG(L, sΛ) + λ− 1 or dT (R, sΛ) ≥ dG(R, sΛ) + λ− 1).

In what follows, we will locate a vertex t in a rocket at “depth” greater than 2a + λ− 3, such
that the route from t to s0 produced by (λ − 2)-localized IGRF strategy will have length at least
dG(t, s0) + λa + 1. Starting from an arbitrary rocket Λ at “depth” λ − 1, we identify a vertex v
with dT (v, sΛ) ≥ dG(v, sΛ) + λ − 1 (such a vertex always exits according to the above analysis).
Now, starting from the rocket rooted at v, we will repeat the same procedure, until we identify
such a vertex t in a rocket at “depth” greater than 2a + λ − 3. Since the route RG,T (t, s0) from t
to s0 produced by (λ− 2)-localized IGRF strategy will follow the spanning tree T in any rocket of
“depth” greater than λ− 2 and, in each such rocket, RG,T (t, s0) has surplus λ− 1 with respect to
shortest path, we conclude that length(RG,T (t, s0))− dG(t, s0) ≥ 2a(λ− 1) ≥ λa + a ≥ λa + 1. The
latter means that T is not a (λ− 2)-localized additive (λa)-fframe of G. 2(of Claim)

Now we can finish the proof of the lemma. Given λ(λ > 2) and a ≥ 1, we create our gadget G

by letting b > λ(a+1)−3
2 and k > 2a + λ − 3. Then, by Claim 1 and Claim 2, G does not have any

(λ-2)-localized additive (λa)-fframe. ut
Corollary 5. For any λ ≥ 3, there exists a tree-length λ graph G with n vertices for which no
(λ− 2)-localized additive 1

2

√
log n−1

λ -fframe exists.

Proof. It is easy to see that the number of vertices in each rocket is (b + 1)λ + 1, and the number
of terminals in each rocket is 2(b + 1), where b is the number of rectangles in a rocket. According
to the construction of a gadget, the number of vertices in a gadget is n = (2(b+1))k−1

2(b+1)−1 (b + 1)λ + 1.
Therefore, we have log(n− 1) = log((2(b + 1))k − 1)− log(2(b + 1)− 1) + log(b + 1) + log λ.

Since log((2(b + 1))k − 1) < log(2(b + 1))k and log(2(b + 1)− 1) > log(2b), we have log(n− 1) <

k log(2(b + 1)) + log((b + 1)/2b) + log λ ≤ k log(2(b + 1)) + log λ, i.e., k >
log(n−1

λ
)

1+log(b+1) .

According to the proof of Lemma 12, k > 2a+λ−3 and b > λa+λ−3
2 . Therefore, for convenience,

we can choose k = 3aλ and b = λa−1. It is easy to verify that 3aλ > 2a+λ−3 and λa−1 > λa+λ−3
2

given the fact that λ ≥ 3 and a ≥ 1. Denote c = λa. Then, we have k = 3c, b = c − 1 and

3c >
log(n−1

λ
)

1+log c >
log(n−1

λ
)

c/3+c . Finally, c > 1
2

√
log n−1

λ . ut
With similar proof technique we can prove also the following results.

Lemma 13. For any λ ≥ 4, there exists a tree-length λ graph without any b2(λ − 2)/3c-localized
additive (λa)-frame for any constant a ≥ 1.

Proof. To prove this lemma, we construct a gadget G in a similar way as we did in the proof of
Lemma 12. We have only few small differences (see Fig. 12).
– Each horizontal “edge” of the triangle or a rectangle is a path of length d2(λ− 2)/3e+ 1, and

each vertical “edge” of a rectangle (or non-horizontal “edge” of the triangle) is a path of length
b(λ− 2)/3c+ 1.

– Two “central” vertices of each horizontal path of a rocket are identified as terminal vertices. All
other vertices are non-terminal vertices. If a horizontal path has even number of vertices, the
two “central” vertices are exactly the two middle vertices of the path. If a horizontal path has
odd number of vertices, the two “central” vertices are the two vertices adjacent to the middle
vertex.
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– We assume b ≥ 2, i.e. a rocket should have two or more rectangles.

Similarly, as in the proof of Lemma 12, we assume that spanning tree T is rooted at the root
vertex of the “root rocket”, which is a special vertex and we name it s0. With the same proof
technique, we can show that the following claim holds.

Claim 1: If T is a b2(λ−2)/3c-localized additive (λa)-frame of G, where a < 2bλ−4b−6
3λ , then in each

rocket, there must exist a horizontal path which is a path in T .

Proof. We can prove the claim by contradiction. Suppose that there is a rocket where no horizontal
path is a path in T . Then, it is easy to conclude that the routing path produced by b2(λ− 2)/3c-
localized IGR strategy from p to q in the rocket is of length (2b + 2)(b(λ − 2)/3c + 1) (no matter
how T spans the rocket), while the shortest path between p and q is d2(λ− 2)/3e+ 1. We have

(2b+2)(b(λ−2)/3c+1)−(d2(λ−2)/3e+1) ≥ (2b+2)(λ−2)/3−(2(λ−2)/3+2) =
2b(λ− 2)− 6

3
> λa.

This contradicts the assumption that T is a (b2(λ−2)/3c)-localized additive (λa)-frame, where
a < 2bλ−4b−6

3λ . 2(of Claim)

Now we prove the following claim.

Claim 2: If the gadget has “depth” k > λa, then T is not a b2(λ − 2)/3c-localized additive
(λa)-frame, where a < 2bλ−4b−6

3λ .

Proof. We can prove the claim by contradiction. Suppose T is a b2(λ − 2)/3c-localized additive
(λa)-frame where a < 2bλ−4b−6

3λ . By Claim 1, in each rocket there exists a horizontal path which is
a path in T .

Consider an arbitrary rocket Λ, and let a horizontal path P (L,R) of Λ be a path in T . Let
the left most vertex of the path P (L,R) be L, and the right most vertex be R, and two “central”
vertices be CL and CR, and the root vertex of Λ be sΛ (see Fig. 13(a) for an illustration). Since
P (L,R) is a T path, it is easy to see that either the tree path from L to sΛ passes through R, or
the tree path from R to sΛ passes through L. Without loss of generality, assume that the tree path
from L to sΛ passes through R.

Vertex sΛ and vertices on horizontal paths other than the path P (L,R) do not belong to
Db2(λ−2)/3c(CL, G). Then, in Db2(λ−2)/3c(CL, G), the vertex closest to s0 in CLTs0 is on the path
of T from CL to sΛ, which passes through R. Hence, the route produced by b2(λ− 2)/3c-localized
IGR strategy from CL to s0 will divert, in rocket Λ, from the corresponding shortest G path (in
particular, we will have dT (CL, sΛ) ≥ dG(CL, sΛ) + 1).

Again, as in the proof of Lemma 12, we can locate a vertex t in a rocket at “depth” greater
than λa, such that the route from t to s0 produced by b2(λ−2)/3c-localized IGR strategy will have
length at least dG(t, s0) + λa + 1. The latter means that T is not a b2(λ− 2)/3c-localized additive
(λa)-frame of G. 2(of Claim)

Now we can finish the proof of the lemma. Given λ(λ > 3) and a ≥ 1, we create our gadget G
by letting b > 3λa+6

2λ−4 and k > λa. Then, by Claim 1 and Claim 2, G does not have any b2(λ−2)/3c-
localized additive (λa)-frame. ut
Corollary 6. For any λ ≥ 4, there exists a tree-length λ graph G with n vertices for which no

b2(λ− 2)/3c-localized additive 2
3

√
log 3(n−1)

4λ -frame exists.
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Proof. The proof is similar to the proof of Corollary 5. We need just to mention that the number
of vertices in a rocket now is nr = (b + 1)λ + (b + 1)b(λ− 2)/3c+ 1 < (b + 1)4λ

3 + 1, and we choose
k = 3

2λa and b = 2
3λa− 1. ut

Lemma 14. For any λ ≥ 6, there exists a tree-length λ graph without any b(λ − 2)/4c-localized
additive (λa)-carcass for any constant a ≥ 1.

Proof. To prove this lemma, we construct a gadget G in a similar way as we did in the proof of
Lemma 12 (see Fig. 11). The only difference is that we let two “central” vertices (which are defined
in the proof of Lemma 13) of each horizontal path of a rocket be terminal vertices and all other
vertices are non-terminal vertices. Let T be any spanning tree on the gadget G. It is easy to observe
that, for any horizontal path of a rocket, there is at most one edge that is not a T edge.

First we prove the following claims.

Claim 1: If T is a b(λ − 2)/4c-localized additive (λa)-carcass of G, where a < 2b+3
λ − 1, then in

each rocket, (1) there exists a horizontal path which is a path in T , or (2) there exists a horizontal
path which contains a non-tree edge, say ab ∈ E(G) \ E(T ), such that min(dG(L, a), dG(R, b)) ≤
b(λ− 2)/4c − 1, where L is the leftmost vertex and R is the rightmost vertex on the path, and a is
on the left side of b.

Proof. We can prove the claim by contradiction. Suppose for a rocket neither (1) nor (2) holds,
i.e., each horizontal path is not a path in T and, in each horizontal path, for non-tree edge ab ∈
E(G)\E(T ), min(dG(L, a), dG(R, b)) > b(λ−2)/4c−1 holds. Then, we have dG(L, b) > b(λ−2)/4c
and dG(R, a) > b(λ−2)/4c. Let RG,T (p, q) be a routing path from vertex p to vertex q produced by
b(λ−2)/4c-localized TDGR scheme using tree T . It is easy to see that length(RG,T (p, q)) = 2b+2,
while the shortest path between p and q in G is λ− 1. The latter contradicts the assumption that
T is a b(λ− 2)/4c-localized additive (λa)-carcass, where a < 2b+3

λ − 1. 2(of Claim)

Claim 2: If the gadget has ”depth” k > λa, then T is not a b(λ−2)/4c-localized additive (λa)-carcass
of G where a < 2b+3

λ − 1.

Proof. We can prove the claim by contradiction. Suppose T is a b(λ − 2)/4c-localized additive
(λa)-carcass, where a < 2b+3

λ − 1. By Claim 1, in each rocket (1) or (2) holds.

Fig. 13. (a) A path is a tree path. (b) A path is not a tree path. The edge ab is on the
right side of CR. (c) A path is not a tree path. The edge ab is on the left side of CL.

Consider an arbitrary rocket Λ. Assume case (1) holds, i.e., there exists a horizontal path
P (L,R) which is a path in T . Let the left most vertex of the path P (L,R) be L, and the right
most vertex be R (see Fig. 13), and the root vertex of Λ be sΛ. Since P (L,R) is a T path, either
the tree path from L to sΛ passes through R, or the tree path from R to sΛ passes through L.
Without loss of generality, assume that the tree path from L to sΛ passes through R. Vertices of
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Λ other than vertices on the path P (L,R) do not belong to Db(λ−2)/4c(CL, G). Therefore, a route
produced by b(λ− 2)/4c-localized TDGR strategy from CL to s0 will divert, in rocket Λ, from the
corresponding shortest G path (in particular, we will have dT (CL, sΛ) ≥ dG(CL, sΛ) + 1).

Assume case (2) holds, i.e., there exists a horizontal path which contains a non-tree edge ab ∈
E(G)\E(T ), such that min(dG(L, a), dG(R, b)) ≤ b(λ−2)/4c−1 (see Fig. 13, (b) and (c)). Without
loss of generality, assume that ab is on the right side of CR. Since dG(R, b) ≤ b(λ − 2)/4c − 1 ≤
(λ− 2)/4− 1 and dG(CR, R) = b(λ− 2)/2c > (λ− 2)/2− 1, we conclude dG(CR, b) = dG(CR, R)−
dG(R, b) > (λ − 2)/4 ≥ b(λ − 2)/4c. Therefore, b 6∈ Db(λ−2)/4c(CR, G). Consequently, a route
produced by b(λ − 2)/4c-localized TDGR strategy from CR to s0 (which is the root vertex of the
“root rocket”) will divert, in rocket Λ, from the corresponding shortest G path (in particular, we
will have dT (CR, sΛ) ≥ dG(CR, sΛ) + 1).

Again, as in the proof of Lemma 12, we can locate a vertex t in a rocket at “depth” greater than
λa, such that the route from t to s0 produced by b(λ − 2)/4c-localized TDGR strategy will have
length at least dG(t, s0) + λa + 1. The latter means that T is not a b(λ − 2)/4c-localized additive
(λa)-carcass of G. 2(of Claim)

Now we can finish the proof of the lemma. Given λ(λ > 5) and a ≥ 1, we create our gadget
G by letting b > λ(a+1)−3

2 and k > λa. Then, by Claim 1 and Claim 2, G does not have any
b(λ− 2)/4c-localized additive (λa)-carcass. ut
Corollary 7. For any λ ≥ 6, there exists a tree-length λ graph G with n vertices for which no
b(λ− 2)/4c-localized additive 3

4

√
log n−1

λ -carcass exists.

Proof. The proof is similar to the proof of Corollary 5. We need just to choose k = 4
3λa and

b = λa− 1. ut

5.2 δ-hyperbolic graphs

δ-Hyperbolic metric spaces have been defined by M. Gromov [31] in 1987 via a simple 4-point
condition: for any four points u, v, w, x, the two larger of the distance sums d(u, v)+d(w, x), d(u,w)+
d(v, x), d(u, x)+d(v, w) differ by at most 2δ. They play an important role in geometric group theory,
geometry of negatively curved spaces, and have recently become of interest in several domains
of computer science, including algorithms and networking. For example, (a) it has been shown
empirically in [47] (see also [1]) that the Internet topology embeds with better accuracy into a
hyperbolic space than into an Euclidean space of comparable dimension, (b) every connected finite
graph has an embedding in the hyperbolic plane so that the greedy routing based on the virtual
coordinates obtained from this embedding is guaranteed to work (see [37]). A connected graph
G = (V, E) equipped with standard graph metric dG is δ-hyperbolic if the metric space (V, dG) is
δ-hyperbolic. It is known (see [10]) that all graphs with tree-length λ are λ-hyperbolic, and each
δ-hyperbolic graph has the tree–length O(δ log n).

We will need the following lemma which is an easy consequence of results in [4, 9, 11, 28, 31].

Lemma 15. Let G be a δ-hyperbolic graph. Let s, x, y be arbitrary vertices of G and P (s, x), P (s, y),
P (y, x) be arbitrary shortest paths connecting those vertices in G. Then, for vertices a ∈ P (s, x),
b ∈ P (s, y) with dG(s, a) = dG(s, b) = bdG(s,x)+dG(s,y)−dG(x,y)

2 c, the inequality dG(a, b) ≤ 4δ holds.

It is clear that δ takes values from {0, 1
2 , 1, 3

2 , 2, 5
2 , 3, . . .}, and if δ = 0 then G is a tree. Hence,

in what follows. we will assume that δ ≥ 1
2 .

21



Theorem 7. If G is a δ-hyperbolic graph, then any BFS-tree T of G is a 4δ-localized additive
8δ-fframe (and, hence, a 4δ-localized additive 8δ-frame) of G.

Proof. Let T be an arbitrary BFS-tree of G rooted at an arbitrary vertex s. Let RG,T (x, y) be the
routing path from a vertex x to a vertex y produced by 4δ-localized IGRF scheme using tree T . If
x is on the T path from y to s, or y is on the T path from x to s, it is easy to see that RG,T (x, y)
is a shortest path of G.

Let sTx (resp., sTy) be the path of T from s to x (resp., to y) and P (y, x) be an arbitrary
shortest path connecting vertices x and y in G. By Lemma 15, for vertices a ∈ sTx, b ∈ sTy with
dG(s, a) = dG(s, b) = bdG(s,x)+dG(s,y)−dG(x,y)

2 c, the inequality dG(a, b) ≤ 4δ holds. Furthermore,
since dG(a, x) + dG(a, s) = dG(s, x) and dG(b, y) + dG(b, s) = dG(s, y), from the choice of a and b,
we have dG(x, y) ≤ dG(a, x) + dG(b, y) ≤ dG(x, y) + 1.

Let x′ be a vertex of xTs with dG(x′, sTy) ≤ 4δ closest to x. Clearly, x′ belongs to subpath
aTx of path sTx. Let y′ be a vertex of path yTs with dG(x′, y′) ≤ 4δ (i.e., y′ ∈ D4δ(x′, G)) closest
to y. Then, according to 4δ-localized IGRF scheme, the routing path RG,T (x, y) coincides with
(xTx′)∪(a shortest path of G from x′ to y′)∪(y′Ty). We have length(RG,T (x, y)) = dG(x, x′) +
dG(x′, y′) + dG(y′, y).

If y′ ∈ bTy, then length(RG,T (x, y)) = dG(x, x′) + dG(x′, y′) + dG(y′, y) ≤ dG(x, a) + 4δ +
dG(b, y) ≤ dG(x, y) + 4δ + 1.

Assume now that y′ ∈ bTs and y′ 6= b. Then, we have also x′ 6= a. Since T is a BFS-tree of G,
dG(y′, b) must be at most dG(y′, x′) (otherwise, x′ is closer than b to s in G, which is impossible).
Thus, dG(y′, b) ≤ dG(y′, x′) ≤ 4δ and, therefore, length(RG,T (x, y)) = dG(x, x′) + dG(x′, y′) +
dG(y′, y) ≤ dG(x, a)− 1 + 4δ + dG(b, y′) + dG(b, y) ≤ dG(x, y) + 1− 1 + 8δ = dG(x, y) + 8δ.

Combining all cases, we conclude that T is a 4δ-localized additive 8δ-fframe (and a 4δ-localized
additive 8δ-frame) of G. ut

6 Conclusion and Future work

In this paper, we investigated three strategies of how to use a spanning tree T of a graph G to
navigate in G, i.e., to move from a current vertex x towards a destination vertex y via a path
that is close to optimal. In each strategy, each vertex v has full knowledge of its neighborhood
NG[v] in G (or, k-neighborhood Dk(v, G), where k is a small integer) and uses a small piece of
global information from spanning tree T (e.g., distance or ancestry information in T ), available
locally at v, to navigate in G. We investigated advantages and limitations of these strategies on
particular families of graphs such as graphs with locally connected spanning trees, graphs with
bounded length of largest induced cycle, graphs with bounded tree-length, graphs with bounded
hyperbolicity. For most of these families of graphs, the ancestry information from a Breadth-First-
Search-tree guarantees short enough routing paths. In many cases, the obtained results are optimal
up to a constant factor.

Many questions and problems remain open. Here, we list only few of them.

– What other interesting graph families do admit (k-localized) c-frames (c-carcasses, c-fframes)
for small constants k and c?

– Given a graph G, numbers k and c, how hard is it to decide whether G admits a k-localized
c-frame (c-carcass, c-fframe)? If it exists, how hard is it to construct one?

– What other (decentralized) (small piece of) information from a spanning tree of G would be
useful for navigating in G?
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– What other (decentralized) (small piece of) global information can be useful for navigating in
graphs?
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7 Appendix: Experimental Results

In this section, we empirically compare the performance of TDGR, IGR and IGRF, and their
corresponding k-localized versions, on Unit Disk Graphs (UDGs), which often model the wireless
ad hoc networks. We use three kinds of spanning trees, breadth-first-search tree (BFST, for short),
minimum-spanning tree (MST, for short), and depth-first-search tree (DFST, for short) for TDGR,
IGR, and IGRF. Since IGR scheme is the same as IGRF scheme if the spanning tree is BFST,
we only need to report on one of them. Therefore, the routing scheme pairs (”strategy type” -
”tree type”), we report on, are BFST-IGR, BFST-TDGR, MST-IGR, MST-IGRF, MST-TDGR,
DFST-IGR, DFST-IGRF, and DFST-TDGR. All methods are implemented in C++.
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To generate a Unit Disk Graph, we first fix an area S, a radius R, and the number of vertices
N . Then, in S we randomly generate N vertices/points. Two vertices/points are connected by an
edge if and only if their Euclidean distance is at most R.

In the experiments, we care about the maximum multiplicative-stretch factor and average
multiplicative-stretch factor of each routing scheme using different spanning trees. The multiplicative-
stretch factor of two vertices u and v is defined as gG,T (u,v)

dG(u,v) , which is a good indication of how close
the routing path is to the shortest path. Here, gG,T (u, v) is the length of the route produced by an
appropriate strategy from u to v on G using tree T , and dG(u, v) is the distance in G between u

and v. The maximum stretch factor of a graph G = (V, E) is defined as maxu,v∈V {gG,T (u,v)
dG(u,v) }, and

the average stretch factor is defined as 1
n2

∑
u,v∈V

gG,T (u,v)
dG(u,v) .

7.1 Performance under various densities

In this set of experiments, we report on the performance of these routing schemes on randomly
generated UDGs with different densities, i.e., |E|/|V |. However, it is difficult to ”randomly” generate
a UDG with fixed density. Instead, we vary densities by choosing the radius R to be 150, 170, 190,
210, 230, 250, 270 and 290, with |V | fixed to be 100. For each radius R, we randomly generate
10 UDGs. The average density of 10 UDGs corresponding to each R is listed in Table 1. In the
following figures, each value is an average result on the 10 randomly generated UDGs.

Radius 150 170 190 210 230 250 270 290

Density (|E|/|V |) 3.184 3.857 4.853 5.784 6.822 8.134 9.576 10.311

Table 1. Average densities for different radiuses.

Maximum multiplicative-stretch factors achieved by routing strategies under different radiuses
are shown in Fig. 14. We see that DFST-IGRF and MST-IGRF have worst maximum multiplicative-
stretch factors and their performances are not stable when radius changes. Other routing schemes
have quite low maximum multiplicative-stretch factors which decrease gradually when radius in-
creases. Among them, BFST-IGR, BFST-TDGR, MST-IGR, and MST-TDGR have lowest maxi-
mum multiplicative-stretch factors.

Fig. 15 shows average multiplicative-stretch factors achieved by routing strategies under different
radiuses. Again, DFST-IGRF and MST-IGRF have worst performances and BFST-IGR, BFST-
TDGR, MST-IGR, and MST-TDGR have best performances.

7.2 Performance under various localities

In this subsection, we show how the k-localized version of these routing strategies performs. The
experimental settings are similar to those from Subsection 7.1 except that |V | is fixed at 120 and
the radius is fixed at 130. We randomly generate 10 UDGs. The average diameter of these UDGs
is 18 (ranging from 16 to 20). For each UDG, we range the locality k from 1 to 8 to see how
each routing strategy performs. Each value in the following figures is an average result on the 10
randomly generated UDGs.

Fig. 16 shows the maximum multiplicative-stretch factors achieved by each routing scheme with
different localities, and Fig. 17 shows the average multiplicative-stretch factors achieved by each
routing scheme with different localities. In both figures, we observe that the multiplicative-stretch
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Fig. 15. Average multiplicative-stretch factors by
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factor of each k-localized routing scheme converges to 1 when locality increases from 1 to 8. Increase
in locality allows to obtain better routing paths, however, it also increases the computational and
communication costs. A good tradeoff between stretch factor and locality is needed.

Finally, when locality is more than 4, except for DFST-IGRF and MST-IGRF, all the other
routing schemes have quite small maximum and average multiplicative-stretch factors. This is
consistent with the observations from the previous subsection.
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