
Collective Additive Tree Spanners of Bounded

Tree-Breadth Graphs with Generalizations
and Consequences

Feodor F. Dragan and Muad Abu-Ata

Department of Computer Science, Kent State University, Kent, OH 44242, USA
{dragan,mabuata}@cs.kent.edu

Abstract. In this paper, we study collective additive tree spanners for
families of graphs enjoying special Robertson-Seymour’s tree-decomposit-
ions, and demonstrate interesting consequences of obtained results. It
is known that if a graph G has a multiplicative tree t-spanner, then G
admits a Robertson-Seymour’s tree-decomposition with bags of radius at
most �t/2� in G. We use this to demonstrate that there is a polynomial
time algorithm that, given an n-vertex graph G admitting a multiplica-
tive tree t-spanner, constructs a system of at most log2 n collective addi-
tive tree O(t log n)-spanners of G. That is, with a slight increase in the
number of trees and in the stretch, one can “turn” a multiplicative tree
spanner into a small set of collective additive tree spanners. We extend
this result by showing that, for every fixed k, there is a polynomial time
algorithm that, given an n-vertex graph G admitting a multiplicative t-
spanner with tree-width k−1, constructs a system of at most k(1+log2 n)
collective additive tree O(t log n)-spanners of G.

1 Introduction

One of the basic questions in the design of routing schemes for communication
networks is to construct a spanning network (a so-called spanner) which has
two (often conflicting) properties: it should have simple structure and nicely ap-
proximate distances in the network. This problem fits in a larger framework of
combinatorial and algorithmic problems that are concerned with distances in a
finite metric space induced by a graph. An arbitrary metric space (in particular
a finite metric defined by a graph) might not have enough structure to exploit
algorithmically. A powerful technique that has been successfully used recently
in this context is to embed the given metric space in a simpler metric space
such that the distances are approximately preserved in the embedding. New and
improved algorithms have resulted from this idea for several important prob-
lems (see, e.g., [1,2,4,14,18]). There are several ways to measure the quality of
this approximation, two of them leading to the notion of a spanner. For t ≥ 1,
a spanning subgraph H of G = (V,E) is called a (multiplicative) t-spanner of
G if dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V [5,23,24]. If r ≥ 0 and dH(u, v) ≤
dG(u, v)+ r, for all u, v ∈ V , then H is called an additive r-spanner of G [19,26].

P. van Emde Boas et al. (Eds.): SOFSEM 2013, LNCS 7741, pp. 194–206, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Collective Additive Tree Spanners 195

The parameter t is called the stretch (or stretch factor) of H , while the param-
eter r is called the surplus of H . In what follows, we will often omit the word
“multiplicative” when we refer to multiplicative spanners.

Tree metrics are a very natural class of simple metric spaces since many algo-
rithmic problems become tractable on them. A (multiplicative) tree t-spanner of
a graph G is a spanning tree with a stretch t [3], and an additive tree r-spanner
of G is a spanning tree with a surplus r [26]. If we approximate the graph by
a tree spanner, we can solve the problem on the tree and the solution interpret
on the original graph. The tree t-spanner problem asks, given a graph G and
a positive number t, whether G admits a tree t-spanner. Note that the prob-
lem of finding a tree t-spanner of G minimizing t is known in literature also as
the Minimum Max-Stretch spanning Tree problem (see, e.g., [16] and literature
cited therein). Unfortunately, not many graph families admit good tree spanners.
This motivates the study of sparse spanners, i.e., spanners with a small amount
of edges. There are many applications of spanners in various areas; especially,
in distributed systems and communication networks. In [24], close relationships
were established between the quality of spanners (in terms of stretch factor and
the number of spanner edges), and the time and communication complexities
of any synchronizer for the network based on this spanner. Another example is
the usage of tree t-spanners in the analysis of arrow distributed queuing proto-
cols [22]. Sparse spanners are very useful in message routing in communication
networks; in order to maintain succinct routing tables, efficient routing schemes
can use only the edges of a sparse spanner [25]. The Sparsest t-Spanner prob-
lem asks, for a given graph G and a number t, to find a t-spanner of G with
the smallest number of edges. We refer to the survey paper of Peleg [21] for an
overview on spanners.

Inspired by ideas from works of Bartal [1], Fakcharoenphol et al. [17], and
to extend those ideas to designing compact and efficient routing and distance
labeling schemes in networks, in [13], a new notion of collective tree spanners
was introduced. This notion is slightly weaker than the one of a tree spanner
and slightly stronger than the notion of a sparse spanner. We say that a graph
G = (V,E) admits a system of μ collective additive tree r-spanners if there is
a system T (G) of at most μ spanning trees of G such that for any two vertices
x, y of G a spanning tree T ∈ T (G) exists such that dT (x, y) ≤ dG(x, y) + r
(a multiplicative variant of this notion can be defined analogously). Clearly,
if G admits a system of μ collective additive tree r-spanners, then G admits
an additive r-spanner with at most μ × (n − 1) edges (take the union of all
those trees), and if μ = 1 then G admits an additive tree r-spanner. Recently,
in [10], spanners of bounded tree-width were introduced, motivated by the fact
that many algorithmic problems are tractable on graphs of bounded tree-width,
and a spanner H of G with small tree-width can be used to obtain an ap-
proximate solution to a problem on G. In particular, efficient and compact dis-
tance and routing labeling schemes are available for bounded tree-width graphs
(see, e.g., [12,18] and papers cited therein), and they can be used to compute
approximate distances and route along paths that are close to shortest in G.

196 F.F. Dragan and M. Abu-Ata

The k-Tree-width t-spanner problem asks, for a given graph G, an integers
k and a positive number t ≥ 1, whether G admits a t-spanner of tree-width at
most k. Every connected graph with n vertices and at most n−1+m edges is of
tree-width at most m+1 and hence this problem is a generalization of the Tree
t-Spanner and the Sparsest t-Spanner problems. Furthermore, spanners of
bounded tree-width have much more structure to exploit algorithmically than
sparse spanners.

Our Results and Their Place in the Context of the Previous Results.
This paper was inspired by few recent results from [7,11,15,16]. Elkin and Pe-
leg in [15], among other results, described a polynomial time algorithm that,
given an n-vertex graph G admitting a tree t-spanner, constructs a t-spanner of
G with O(n log n) edges. Emek and Peleg in [16] presented the first O(log n)-
approximation algorithm for the minimum value of t for the tree t-spanner
problem. They described a polynomial time algorithm that, given an n-vertex
graph G admitting a tree t-spanner, constructs a tree O(t log n)-spanner of G.
Later, a simpler and faster O(log n)-approximation algorithm for the problem
was given by Dragan and Köhler [11]. Their result uses a new necessary con-
dition for a graph to have a tree t-spanner: if a graph G has a tree t-spanner,
then G admits a Robertson-Seymour’s tree-decomposition with bags of radius
at most �t/2� in G.

To describe the results of [7] and to elaborate more on the Dragan-Köhler’s
approach, we need to recall definitions of a few graph parameters. They all are
based on the notion of tree-decomposition introduced by Robertson and Seymour
in their work on graph minors [27].

A tree-decomposition of a graph G = (V,E) is a pair ({Xi|i ∈ I}, T = (I, F))
where {Xi|i ∈ I} is a collection of subsets of V , called bags, and T is a tree.
The nodes of T are the bags {Xi|i ∈ I} satisfying the following three conditions:
1)

⋃
i∈I Xi = V ; 2) for each edge uv ∈ E, there is a bag Xi such that u, v ∈ Xi;

3) for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi

⋂
Xk ⊆ Xj .

Equivalently, this condition could be stated as follows: for all vertices v ∈ V , the
set of bags {i ∈ I|v ∈ Xi} induces a connected subtree Tv of T .

For simplicity we denote a tree-decomposition ({Xi|i ∈ I}, T = (I, F)) of
a graph G by T (G).

Tree-decompositions were used to define several graph parameters to measure
how close a given graph is to some known graph class (e.g., to trees or to chordal
graphs) where many algorithmic problems could be solved efficiently. The width
of a tree-decomposition T (G) = ({Xi|i ∈ I}, T = (I, F)) is maxi∈I |Xi| − 1.
The tree-width of a graph G, denoted by tw(G), is the minimum width, over
all tree-decompositions T (G) of G [27]. The trees are exactly the graphs with
tree-width 1. The length of a tree-decomposition T (G) of a graph G is λ :=
maxi∈I maxu,v∈Xi dG(u, v) (i.e., each bag Xi has diameter at most λ in G).
The tree-length of G, denoted by tl(G), is the minimum of the length, over all
tree-decompositions of G [8]. The chordal graphs are exactly the graphs with
tree-length 1. Note that these two graph parameters are not related to each
other. For instance, a clique on n vertices has tree-length 1 and tree-width n−1,

Collective Additive Tree Spanners 197

whereas a cycle on 3n vertices has tree-width 2 and tree-length n. In [11], yet
another graph parameter was introduced, which is very similar to the notion of
tree-length and, as it turns out, is related to the tree t-spanner problem. The
breadth of a tree-decomposition T (G) of a graph G is the minimum integer r
such that for every i ∈ I there is a vertex vi ∈ V (G) with Xi ⊆ Dr(vi, G) (i.e.,
each bag Xi can be covered by a disk Dr(vi, G) := {u ∈ V (G)|dG(u, vi) ≤ r} of
radius at most r in G). Note that vertex vi does not need to belong to Xi. The
tree-breadth of G, denoted by tb(G), is the minimum of the breadth, over all tree-
decompositions of G. Evidently, for any graph G, 1 ≤ tb(G) ≤ tl(G) ≤ 2tb(G)
holds. Hence, if one parameter is bounded by a constant for a graph G then the
other parameter is bounded for G as well.

We say that a family of graphs G is of bounded tree-breadth (of bounded tree-
width, of bounded tree-length) if there is a constant c such that for each graph G
from G, tb(G) ≤ c (resp., tw(G) ≤ c, tl(G) ≤ c).

It was shown in [11] that if a graph G admits a tree t-spanner then its tree-
breadth is at most �t/2� and its tree-length is at most t. Furthermore, any
graph G with tree-breadth tb(G) ≤ ρ admits a tree (2ρ�log2 n)-spanner that
can be constructed in polynomial time. Thus, these two results gave a new
log2 n-approximation algorithm for the tree t-spanner problem on general
(unweighted) graphs (see [11] for details). The algorithm of [11] is conceptually
simpler than the previous O(log n)-approximation algorithm proposed for the
problem by Emek and Peleg [16].

Dourisboure et al. in [7] concerned with the construction of additive span-
ners with few edges for n-vertex graphs having a tree-decomposition into bags
of diameter at most λ, i.e., the tree-length λ graphs. For such graphs they con-
struct additive 2λ-spanners with O(λn+n logn) edges, and additive 4λ-spanners
with O(λn) edges. Combining these results with the results of [11], we obtain
the following interesting fact (in a sense, turning a multiplicative stretch into
an additive surplus without much increase in the number of edges).

Theorem 1. (combining [7] and [11]) If a graph G admits a (multiplicative)
tree t-spanner then it has an additive 2t-spanner with O(tn+ n logn) edges and
an additive 4t-spanner with O(tn) edges, both constructible in polynomial time.

This fact rises few intriguing questions. Does a polynomial time algorithm exist
that, given an n-vertex graph G admitting a (multiplicative) tree t-spanner,
constructs an additive O(t)-spanner of G with O(n) or O(n log n) edges (where
the number of edges in the spanner is independent of t)? Is a result similar to one
presented by Elkin and Peleg in [15] possible? Namely, does a polynomial time
algorithm exist that, given an n-vertex graph G admitting a (multiplicative) tree
t-spanner, constructs an additive (t−1)-spanner ofG with O(n log n) edges? If we
allow to use more trees (like in collective tree spanners), does a polynomial time
algorithm exist that, given an n-vertex graph G admitting a (multiplicative) tree
t-spanner, constructs a system of Õ(1) collective additive tree Õ(t)-spanners of
G (where Õ is similar to Big-O notation up to a poly-logarithmic factor)? Note
that an interesting question whether a multiplicative tree spanner can be turned
into an additive tree spanner with a slight increase in the stretch is (negatively)

198 F.F. Dragan and M. Abu-Ata

settled already in [16]: if there exist some δ = o(n) and ε > 0 and a polynomial
time algorithm that for any graph admitting a tree t-spanner constructs a tree
((6/5− ε)t+ δ)-spanner, then P=NP.

We give some partial answers to these questions in Section 2. We investi-
gate there a more general question whether a graph with bounded tree-breadth
admits a small system of collective additive tree spanners. We show that any
n-vertex graphG has a system of at most log2 n collective additive tree (2ρ log2 n)
-spanners, where ρ ≤ tb(G). This settles also an open question from [7] whether
a graph with tree-length λ admits a small system of collective additive tree
Õ(λ)-spanners.

As a consequence, we obtain that there is a polynomial time algorithm that,
given an n-vertex graph G admitting a (multiplicative) tree t-spanner, con-
structs: i) a system of at most log2 n collective additive tree O(t log n)-spanners
of G (compare with [11,16] where a multiplicative tree O(t log n)-spanner was
constructed for G in polynomial time; thus, we ”have turned” a multiplicative
tree O(t log n)-spanner into at most log2 n collective additive tree O(t log n)-
spanners); ii) an additive O(t log n)-spanner of G with at most n log2 n edges
(compare with Theorem 1).

In Section 3 we generalize the method of Section 2. We define a new notion
which combines both the tree-width and the tree-breadth of a graph.

The k-breadth of a tree-decomposition T (G) = ({Xi|i ∈ I}, T = (I, F)) of
a graph G is the minimum integer r such that for each bag Xi, i ∈ I, there
is a set of at most k vertices Ci = {vij|vij ∈ V (G), j = 1, . . . , k} such that for
each u ∈ Xi, we have dG(u,Ci) ≤ r (i.e., each bag Xi can be covered with at
most k disks of G of radius at most r each; Xi ⊆ Dr(v

i
1, G) ∪ . . . ∪Dr(v

i
k, G)).

The k-tree-breadth of a graph G, denoted by tbk(G), is the minimum of the
k-breadth, over all tree-decompositions of G. We say that a family of graphs G is
of bounded k-tree-breadth, if there is a constant c such that for each graph G from
G, tbk(G) ≤ c. Clearly, for every graph G, tb(G) = tb1(G), and tw(G) ≤ k− 1 if
and only if tbk(G) = 0. Thus, the notions of the tree-width and the tree-breadth
are particular cases of the k-tree-breadth.

In Section 3, we show that any n-vertex graph G with tbk(G) ≤ ρ has
a system of at most k(1+log2 n) collective additive tree (2ρ(1+log2 n))-spanners.
In Section 4, we extend a result from [11] and show that if a graph G admits
a (multiplicative) t-spanner H with tw(H) = k − 1 then its k-tree-breadth is
at most �t/2�. As a consequence, we obtain that, for every fixed k, there is
a polynomial time algorithm that, given an n-vertex graph G admitting a (mul-
tiplicative) t-spanner with tree-width at most k−1, constructs: i) a system of at
most k(1+log2 n) collective additive tree O(t log n)-spanners of G; ii) an additive
O(t log n)-spanner of G with at most O(kn logn) edges.

All proofs omitted in this extended abstract and a few illustrative figures can
be found in the full version of the paper [9].

Preliminaries. All graphs occurring in this paper are connected, finite, un-
weighted, undirected, loopless and without multiple edges. We call G = (V,E)
an n-vertex m-edge graph if |V | = n and |E| = m. A clique is a set of pairwise

Collective Additive Tree Spanners 199

adjacent vertices of G. By G[S] we denote a subgraph of G induced by vertices of
S ⊆ V . Let also G\S be the graph G[V \S] (which is not necessarily connected).
A set S ⊆ V is called a separator of G if the graph G[V \ S] has more than one
connected component, and S is called a balanced separator of G if each connected
component of G[V \ S] has at most |V |/2 vertices. A set C ⊆ V is called a ba-
lanced clique-separator of G if C is both a clique and a balanced separator of G.
For a vertex v of G, the sets NG(v) = {w ∈ V |vw ∈ E} and NG[v] = NG(v)∪{v}
are called the open neighborhood and the closed neighborhood of v, respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number
of edges in the path. The distance dG(u, v) between vertices u and v is the
length of a shortest path connecting u and v in G. The diameter in G of a set
S ⊆ V is maxx,y∈S dG(x, y) and its radius in G is minx∈V maxy∈S dG(x, y) (in
some papers they are called the weak diameter and the weak radius to indicate
that the distances are measured in G not in G[S]). The disk of G of radius
k centered at vertex v is the set of all vertices at distance at most k to v:
Dk(v,G) = {w ∈ V |dG(v, w) ≤ k}. A disk Dk(v,G) is called a balanced disk-
separator of G if the set Dk(v,G) is a balanced separator of G.

2 Collective Additive Tree Spanners and Tree-Breadth

In this section, we show that every n-vertex graph G has a system of at most
log2 n collective additive tree (2ρ log2 n)-spanners, where ρ ≤ tb(G). We also
discuss consequences of this result. Our method is a generalization of techniques
used in [13] and [11]. We will assume that n ≥ 4 since any connected graph with
at most 3 vertices has an additive tree 1-spanner.

Note that we do not assume here that a tree-decomposition T (G) of breadth
ρ is given for G as part of the input. Our method does not need to know T (G),
our algorithm works directly on G. For a given graph G and an integer ρ, even
checking whether G has a tree-decomposition of breadth ρ could be a hard
problem. For example, while graphs with tree-length 1 (as they are exactly the
chordal graphs) can be recognized in linear time, the problem of determining
whether a given graph has tree-length at most λ is NP-complete for every fixed
λ > 1 (see [20]). We will need the following results proven in [11].

Lemma 1 ([11]). Every graph G has a balanced disk-separator Dr(v,G) cen-
tered at some vertex v, where r ≤ tb(G). For an arbitrary graph G with n vertices
and m edges a balanced disk-separator Dr(v,G) with minimum r can be found
in O(nm) time.

Hierarchical Decomposition of a Graph with Bounded Tree-Breadth.
In this subsection, following [11], we show how to decompose a graph with
bounded tree-breadth and build a hierarchical decomposition tree for it. This
hierarchical decomposition tree is used later for construction of collective addi-
tive tree spanners for such a graph.

Let G = (V,E) be an arbitrary connected n-vertex m-edge graph with
a disk-separator Dr(v,G). Also, let G1, . . . , Gq be the connected components of

200 F.F. Dragan and M. Abu-Ata

G[V \Dr(v,G)]. Denote by Si := {x ∈ V (Gi)| dG(x,Dr(v,G)) = 1} the neigh-
borhood of Dr(v,G) with respect to Gi. Let also G+

i be the graph obtained from
component Gi by adding a vertex ci (representative of Dr(v,G)) and making it
adjacent to all vertices of Si, i.e., for a vertex x ∈ V (Gi), cix ∈ E(G+

i) if and
only if there is a vertex xD ∈ Dr(v,G) with xxD ∈ E(G). In what follows,
we will call vertex ci a meta vertex representing disk Dr(v,G) in graph G+

i .
Given a graph G and its disk-separator Dr(v,G), the graphs G+

1 , . . . , G
+
q can

be constructed in total time O(m). Furthermore, the total number of edges in
the graphs G+

1 , . . . , G
+
q does not exceed the number of edges in G, and the total

number of vertices (including q meta vertices) in those graphs does not exceed
the number of vertices in G[V \Dr(v,G)] plus q.

Denote by G/e the graph obtained from G by contracting its edge e. Recall
that edge e contraction is an operation which removes e from G while simultane-
ously merging together the two vertices e previously connected. If a contraction
results in multiple edges, we delete duplicates of an edge to stay within the
class of simple graphs. The operation may be performed on a set of edges by
contracting each edge (in any order).

Lemma 2 ([11]). For any graph G and its edge e, tb(G) ≤ ρ implies tb(G/e) ≤
ρ. Consequently, if tb(G) ≤ ρ, then tb(G+

i) ≤ ρ for each i = 1, . . . , q.

Clearly, one can get G+
i from G by repeatedly contracting (in any order) edges

of G that are not incident to vertices of Gi. In other words, G+
i is a minor

of G. Recall that a graph G′ is a minor of G if G′ can be obtained from G by
contracting some edges, deleting some edges, and deleting some isolated vertices.
The order in which a sequence of such contractions and deletions is performed
on G does not affect the resulting graph G′.

Let G = (V,E) be a connected n-vertex, m-edge graph and assume that
tb(G) ≤ ρ. Lemma 1 guarantees that G has a balanced disk-separator Dr(v,G)
with r ≤ ρ, which can be found in O(nm) time by an algorithm that works
directly on graph G and does not require construction of a tree-decomposition of
G of breadth ≤ ρ. Using these and Lemma 2, we can build a (rooted) hierarchical
tree H(G) for G as follows. If G is a connected graph with at most 5 vertices,
then H(G) is one node tree with root node (V (G), G). Otherwise, find a balanced
disk-separator Dr(v,G) in G with minimum r (see Lemma 1) and construct the
corresponding graphs G+

1 , G
+
2 , . . . , G

+
q . For each graph G+

i (i = 1, . . . , q) (by

Lemma 2, tb(G+
i) ≤ ρ), construct a hierarchical tree H(G+

i) recursively and
build H(G) by taking the pair (Dr(v,G), G) to be the root and connecting the
root of each tree H(G+

i) as a child of (Dr(v,G), G).
The depth of this tree H(G) is the smallest integer k such that n

2k
+ 1

2k−1 +

. . . + 1
2 + 1 ≤ 5, that is, the depth is at most log2 n − 1. It is also easy to see

that, given a graph G with n vertices and m edges, a hierarchical tree H(G) can
be constructed in O(nm log2 n) total time. There are at most O(log n) levels in
H(G), and one needs to do at most O(nm log n) operations per level since the
total number of edges in the graphs of each level is at most m and the total
number of vertices in those graphs can not exceed O(n logn).

Collective Additive Tree Spanners 201

For an internal (i.e., non-leaf) node Y of H(G), since it is associated with
a pair (Dr′(v

′, G′), G′), where r′ ≤ ρ,G′ is a minor ofG and v′ is the center of disk
Dr′(v

′, G′) of G′, it will be convenient, in what follows, to denote G′ by G(↓ Y),
v′ by c(Y), r′ by r(Y), and Dr′(v

′, G′) by Y itself. Thus, (Dr′(v
′, G′), G′) =

(Dr(Y)(c(Y), G(↓ Y)), G(↓ Y)) = (Y,G(↓ Y)) in these notations, and we identify
node Y of H(G) with the set Y = Dr(Y)(c(Y), G(↓ Y)) and associate with this
node also the graph G(↓ Y). Each leaf Y of H(G), since it corresponds to a pair
(V (G′), G′), we identify with the set Y = V (G′) and use, for a convenience, the
notation G(↓ Y) for G′. If now (Y 0, Y 1, . . . , Y h) is the path of H(G) connecting
the root Y 0 of H(G) with a node Y h, then the vertex set of the graph G(↓ Y h)
consists of some (original) vertices of G plus at most h meta vertices representing
the disks Dr(Y)(c(Y

i), G(↓ Y i)) = Y i, i = 0, 1, . . . , h − 1. Note also that each
(original) vertex of G belongs to exactly one node of H(G).

Construction of Collective Additive Tree Spanners. Unfortunately, the
class of graphs of bounded tree-breadth is not hereditary, i.e., induced subgraphs
of a graph with tree-breath ρ are not necessarily of tree-breadth at most ρ (for
example, a cycle of length � with one extra vertex adjacent to each vertex of
the cycle has tree-breadth 1, but the cycle itself has tree-breadth �/3). Thus,
the method presented in [13], for constructing collective additive tree spanners
for hereditary classes of graphs admitting balanced disk-separators, cannot be
applied directly to the graphs of bounded tree-breadth. Nevertheless, we will
show that, with the help of Lemma 2, the notion of hierarchical tree from previous
subsection and a careful analysis of distance changes (see Lemma 3), it is possible
to generalize the method of [13] and construct in polynomial time for every n-
vertex graph G a system of at most log2 n collective additive tree (2ρ log2 n)-
spanners, where ρ ≤ tb(G). Unavoidable presence of meta vertices in the graphs
resulting from a hierarchical decomposition of the original graph G complicates
the construction and the analysis. Recall that, in [13], it was shown that if every
induced subgraph of a graph G enjoys a balanced disk-separator with radius ≤ r,
then G admits a system of at most log2 n collective additive tree 2r-spanners.

Let G = (V,E) be a connected n-vertex, m-edge graph and assume that
tb(G) ≤ ρ. Let H(G) be a hierarchical tree of G. Consider an arbitrary internal
node Y h of H(G), and let (Y 0, Y 1, . . . , Y h) be the path of H(G) connecting the

root Y 0 of H(G) with Y h. Let Ĝ(↓Y j) be the graph obtained from G(↓Y j) by

removing all its meta vertices (note that Ĝ(↓Y j) may be disconnected).

Lemma 3. For any vertex z from Y h∩V (G) there exists an index i ∈ {0, . . . , h}
such that the vertices z and c(Y i) can be connected in the graph Ĝ(↓ Y i) by
a path of length at most ρ(h+ 1). In particular, dG(z, c(Y

i)) ≤ ρ(h+ 1) holds.

Consider arbitrary vertices x and y of G, and let S(x) and S(y) be the nodes
of H(G) containing x and y, respectively. Let also NCAH(G)(S(x), S(y)) be the

nearest common ancestor of nodes S(x) and S(y) in H(G) and (Y 0, Y 1, . . . , Y h)
be the path ofH(G) connecting the root Y 0 of H(G) with NCAH(G)(S(x), S(y))

= Y h (i.e., Y 0, Y 1, . . . , Y h are the common ancestors of S(x) and S(y)).

202 F.F. Dragan and M. Abu-Ata

Lemma 4. Any path PG
x,y connecting vertices x and y in G contains a vertex

from Y 0 ∪ Y 1 ∪ . . . ∪ Y h.

Let SPG
x,y be a shortest path of G connecting vertices x and y, and let Y i

be the node of the path (Y 0, Y 1, . . . , Y h) with the smallest index such that
SPG

x,y

⋂
Y i = ∅ in G. The following lemma holds.

Lemma 5. For each j = 0, . . . , i, dG(x, y) = dG′(x, y) where G′ := Ĝ(↓Y j).

Let now Bi
1, . . . , B

i
pi

be the nodes at depth i of the tree H(G). For each node Bi
j

that is not a leaf ofH(G), consider its (central) vertex cij := c(Bi
j). If c

i
j is an orig-

inal vertex of G (not a meta vertex created during the construction of H(G)),
then define a connected graph Gi

j obtained from G(↓ Bi
j) by removing all its

meta vertices. If removal of those meta vertices produced few connected compo-
nents, choose as Gi

j that component which contains the vertex cij . Denote by T i
j

a BFS–tree of graph Gi
j rooted at vertex cij of Bi

j . If B
i
j is a leaf of H(G), then

Bi
j has at most 5 vertices. In this case, remove all meta vertices from G(↓ Bi

j)
and for each connected component of the resulting graph construct an additive
tree spanner with optimal surplus ≤ 3. Denote the resulting subtree (forest) by
T i
j . The trees T i

j (i = 0, 1, . . . , depth(H(G)), j = 1, 2, . . . , pi), obtained this way,
are called local subtrees of G. Clearly, the construction of these local subtrees
can be incorporated into the procedure of constructing hierarchical tree H(G)
of G.

Lemma 6. For any two vertices x, y ∈ V (G), there exists a local subtree T such
that dT (x, y) ≤ dG(x, y) + 2ρ log2 n− 1.

This lemma implies two important results. Let G be a graph with n vertices and
m edges having tb(G) ≤ ρ. Also, let H(G) be its hierarchical tree and LT (G) be
the family of all its local subtrees (defined above). Consider a graph H obtained
by taking the union of all local subtrees of G (by putting all of them together),
i.e., H :=

⋃
{T i

j |T i
j ∈ LT (G)} = (V,∪{E(T i

j)|T i
j ∈ LT (G)}). Clearly, H is

a spanning subgraph of G, constructible in O(nm log2 n) total time, and, for
any two vertices x and y of G, dH(x, y) ≤ dG(x, y) + 2ρ log2 n − 1 holds. Also,
since for every level i (i = 0, 1, . . . , depth(H(G))) of hierarchical tree H(G), the
corresponding local subtrees T i

1, . . . , T
i
pi

are pairwise vertex-disjoint, their union
has at most n−1 edges. Therefore, H cannot have more than (n−1) log2 n edges
in total. Thus, we have proven the following result.

Theorem 2. Every graph G with n vertices and tb(G) ≤ ρ admits an addi-
tive (2ρ log2 n)–spanner with at most n log2 n edges. Furthermore, such a sparse
additive spanner of G can be constructed in polynomial time.

Instead of taking the union of all local subtrees of G, one can fix i (i ∈
{0, 1, . . . , depth(H(G))}) and consider separately the union of only local sub-
trees T i

1, . . . , T
i
pi
, corresponding to the level i of the hierarchical tree H(G), and

then extend in linear O(m) time that forest to a spanning tree T i of G (using, for

Collective Additive Tree Spanners 203

example, a variant of the Kruskal’s Spanning Tree algorithm for the unweighted
graphs). We call this tree T i the spanning tree of G corresponding to the level i
of the hierarchical tree H(G). In this way we can obtain at most log2 n spanning
trees for G, one for each level i of H(G). Denote the collection of those spanning
trees by T (G). Thus, we obtain the following theorem.

Theorem 3. Every graph G with n vertices and tb(G) ≤ ρ admits a system
T (G) of at most log2 n collective additive tree (2ρ log2 n)–spanners. Furthermore,
such a system of collective additive tree spanners of G can be constructed in
polynomial time.

Additive Spanners forGraphsHaving (Multiplicative)Tree t–spanners.
Now we give implications of the above results for the class of tree t–spanner ad-
missible graphs. In [11], the following important (“bridging”) lemma was proven.

Lemma 7 ([11]). If a graph G admits a tree t-spanner then its tree-breadth is
at most �t/2�.

Note that the tree-breadth bounded by �t/2� provides only a necessary condition
for a graph to have a multiplicative tree t-spanner. There are (chordal) graphs
which have tree-breadth 1 but any multiplicative tree t-spanner of them has
t = Ω(logn) [11]. Furthermore, a cycle on 3n vertices has tree-breadth n but
admits a system of 2 collective additive tree 0-spanners.

Combining Lemma 7 with Theorem 2 and Theorem 3, we deduce the follo-
wing results.

Theorem 4. Let G be a graph with n vertices and m edges having a (multiplica-
tive) tree t–spanner. Then, G admits an additive (2�t/2� log2 n)–spanner with at
most n log2 n edges constructible in O(nm log2 n) time.

Theorem 5. Let G be a graph with n vertices and m edges having a (multiplica-
tive) tree t–spanner. Then, G admits a system T (G) of at most log2 n collective
additive tree (2�t/2� log2 n)–spanners constructible in O(nm log2 n) time.

3 Graphs with Bounded k-Tree-Breadth, k ≥ 2

In this section, we extend the approach of Section 2 and show that any n-vertex
graph G with tbk(G) ≤ ρ has a system of at most k(1+log2 n) collective additive
tree (2ρ(1+ log2 n))-spanners constructible in polynomial time for every fixed k.

Balanced Separators for Graphs with Bounded k-Tree-Breadth. We
say that a graph G = (V,E) with |V | ≥ k has a balanced Dk

r -separator if there
exists a collection of k disks Dr(v1, G), Dr(v2, G), . . . , Dr(vk, G) in G, centered
at (different) vertices v1, v2, . . . , vk and each of radius r, such that the union of

those disks Dk
r :=

⋃k
i=1 Dr(vi, G) forms a balanced separator of G, i.e., each

connected component of G[V \ Dk
r] has at most |V |/2 vertices. The following

result generalizes Lemma 1.

204 F.F. Dragan and M. Abu-Ata

Lemma 8. Every graph G with at least k vertices and tbk(G) ≤ ρ has a bal-
anced Dk

ρ -separator. For an arbitrary graph G with n ≥ k vertices and m edges,

a balanced Dk
r -separator with the smallest radius r can be found in O(nkm) time.

Collective Additive Tree Spanners of a Graph with Bounded k-Tree-
Breadth. Using Lemma 8, we generalize the technique of Section 2 and obtain
the following results for the graphs with bounded k-tree-breadth (k ≥ 2). Details
can be found in the full version of this extended abstract (see [9]).

Theorem 6. Every graph G with n vertices and tbk(G) ≤ ρ admits an additive
(2ρ(1+ log2 n))–spanner with at most O(kn logn) edges constructible in polyno-
mial time for every fixed k.

Theorem 7. Every n-vertex graph G with tbk(G) ≤ ρ admits a system T (G) of
at most k(1+log2 n) collective additive tree (2ρ(1+log2 n))-spanners constructible
in polynomial time for every fixed k.

4 Additive Spanners for Graphs Admitting t–Spanners of
Bounded Tree-Width

In this section, we show that if a graph G admits a (multiplicative) t-spanner H
with tw(H) = k − 1 then its k-tree-breadth is at most �t/2�. As a consequence,
we obtain that, for every fixed k, there is a polynomial time algorithm that, given
an n-vertex graph G admitting a (multiplicative) t-spanner with tree-width at
most k − 1, constructs a system of at most k(1 + log2 n) collective additive tree
O(t log n)-spanners of G.

k-Tree-Breadth of a Graph Admitting a t-Spanner of Bounded Tree-
width. Let H be a graph with tree-width k − 1, and let T (H) = ({Xi|i ∈
I}, T = (I, F)) be its tree-decomposition of width k − 1. For an integer r ≥ 0,

denote by X
(r)
i , i ∈ I, the set Dr(Xi, H) :=

⋃
x∈Xi

Dr(x,H). Clearly, X
(0)
i = Xi

for every i ∈ I. The following important lemmas hold.

Lemma 9. For every integer r ≥ 0, T (r)(H) := ({X(r)
i |i ∈ I}, T = (I, F)) is a

tree-decomposition of H with k-breadth ≤ r.

Lemma 10. If a graph G admits a t-spanner with tree-width k−1, then tbk(G) ≤
�t/2�.

Consequences. Now we give two implications of the above results for the class
of graphs admitting (multiplicative) t–spanners with tree-width k− 1. They are
direct consequences of Lemma 10, Theorem 6 and Theorem 7.

Theorem 8. Let G be a graph with n vertices and m edges having a (multiplica-
tive) t–spanner with tree-width k − 1. Then, G admits an additive (2�t/2�(1 +
log2 n))–spanner with at most O(kn logn) edges constructible in polynomial time
for every fixed k.

Collective Additive Tree Spanners 205

Theorem 9. Let G be a graph with n vertices and m edges having a (multiplica-
tive) t–spanner with tree-width k− 1. Then, G admits a system T (G) of at most
k(1 + log2 n) collective additive tree (2�t/2�(1 + log2 n))–spanners constructible
in polynomial time for every fixed k.

References

1. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic ap-
plications. In: FOCS 1996, pp. 184–193 (1996)

2. Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog-competitive algorithm for
metrical task systems. In: STOC 1997, pp. 711–719 (1997)

3. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Disc. Math. 8, 359–387 (1995)
4. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.A.: Approximating a finite

metric by a small number of tree metrics. In: FOCS 1998, pp. 379–388 (1998)
5. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. of

Comp. and Sys. Sci. 39, 205–219 (1989)
6. Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Math., vol. 173. Springer

(2000)
7. Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Spanners for bounded tree-

length graphs. Theor. Comput. Sci. 383, 34–44 (2007)
8. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter.

Disc. Math. 307, 2008–2029 (2007)
9. Dragan, F.F., Abu-Ata, M.: Collective Additive Tree Spanners of Bounded Tree-

Breadth Graphs with Generalizations and Consequences (Full version of this ex-
tended abstract), CoRR abs/1207.2506 (2012)

10. Dragan, F.F., Fomin, F.V., Golovach, P.A.: Spanners in sparse graphs. J. Comput.
Syst. Sci. 77, 1108–1119 (2011)

11. Dragan, F.F., Köhler, E.: An Approximation Algorithm for the Tree t-Spanner
Problem on Unweighted Graphs via Generalized Chordal Graphs. In: Goldberg,
L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS,
vol. 6845, pp. 171–183. Springer, Heidelberg (2011)

12. Dragan, F.F., Yan, C.: Collective Tree Spanners in Graphs with Bounded Param-
eters. Algorithmica 57, 22–43 (2010)

13. Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM J.
Disc. Math. 20, 241–260 (2006)

14. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.H.: Lower-stretch spanning trees.
SIAM J. Comput. 38, 608–628 (2008)

15. Elkin, M., Peleg, D.: Approximating k-spanner problems for k ≥ 2. Theor. Comput.
Sci. 337, 249–277 (2005)

16. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on un-
weighted graphs. SIAM J. Comput. 38, 1761–1781 (2008)

17. Fakcharoenphol, F., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69, 485–497 (2004)

18. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a pez dispenser (or, routing
issues in mpls). SIAM J. Comput. 34, 453–474 (2004)

19. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364
(1993)

20. Lokshtanov, D.: On the complexity of computing tree-length. Disc. Appl.
Math. 158, 820–827 (2010)

206 F.F. Dragan and M. Abu-Ata

21. Peleg, D.: Low Stretch Spanning Trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002.
LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002)

22. Peleg, D., Reshef, E.: Low complexity variants of the arrow distributed directory.
J. Comput. System Sci. 63, 474–485 (2001)

23. Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)
24. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.

Comput. 18, 740–747 (1989)
25. Peleg, D., Upfal, E.: A tradeoff between space and efficiency for routing tables

(extended abstract). In: STOC 1988, pp. 43–52 (1988)
26. Prisner, E.: Distance Approximating Spanning Trees. In: Reischuk, R., Morvan,

M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 499–510. Springer, Heidelberg (1997)
27. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.

J. of Algorithms 7, 309–322 (1998)

	Collective Additive Tree Spanners of Bounded Tree-Breadth Graphs with Generalizations and Consequences
	Introduction
	Collective Additive Tree Spanners and Tree-Breadth
	Graphs with Bounded k-Tree-Breadth, k2
	Additive Spanners for Graphs Admitting t–Spanners of Bounded Tree-Width
	References

