Localized Network Representations

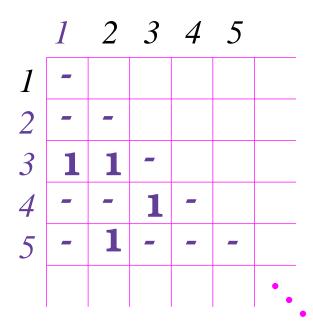
David Peleg

The Weizmann Institute

Traditional graph representations

Store adjacency information in data structure

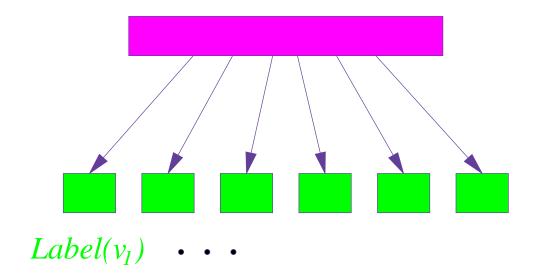
- Requires much storage
- Node labels contain no information, serve only as "pointers" to data structure



Local graph representations

Idea: Store *local* pieces of information, i.e.:

Associate label Label(v) for each node v, s.t. labels allow inferring information locally, without using additional memory



Question:

Can this be done compactly & efficiently?

"Ancient" Example: Hamming adjacency labeling

Goal: Label each v with m-bit label Label(v) s.t. Label(u), Label(v) allow deciding if u and v are adjacent:

$$u, v$$
 adjacent
$$\updownarrow$$

$$+ amming_dist(Label(u), Label(v)) \leq T$$

Lemma:

 \forall n-node graph \exists Hamming distance adjacency labeling with $m=2n\Delta,\ T=4\Delta-4$ where $\Delta=\max$ node degree [Breuer,Folkman,67]

Question: Can this be done with short labels?

Interest Revived: Adjacency Labeling

[Kannan, Naor, Rudich, 88] What's in a label?

Adjacency-labeling [for graph family \mathcal{F}]:

- 1. Function Label labeling nodes of any graph in \mathcal{F} with distinct labels
- 2. Poly-time algorithm for deciding adjacency of two nodes given their labels

Note:

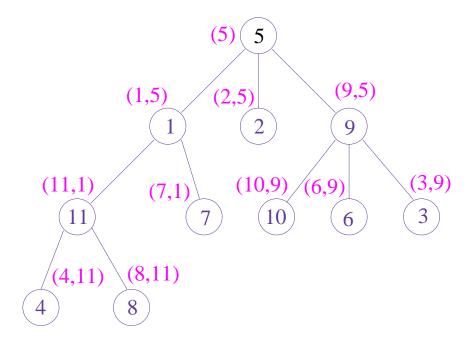
- Algorithm knows nothing beyond the labels (specifically, it does not know which graph they come from)
- Polynomiality is in the label length (logarithmic labels ⇒ polylog time)

Example:

Adjacency Labeling on Trees [Kannan, Naor, Rudich, 88]

Marker Algorithm:

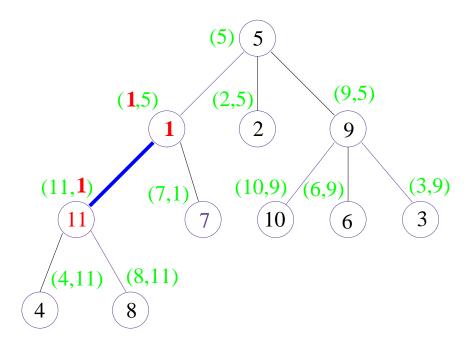
- 1. Arbitrarily root the tree and prelabel each node v with distinct integer I(v) from [1, n].
- 2. Label root r_0 by $Label(r_0) = (I(root))$.
- 3. Label each nonroot node v with parent w by Label(v) = (I(v), I(w)).



New labels contain $\leq 2\lceil \log n \rceil$ bits.

Decoder Algorithm:

To decide adjacency of v,u: Check if 1st entry in Label(v) = 2nd entry in Label(u) or vice versa



Extensions

Note: Extendable to deciding neighborhood to distance k for fixed $k \geq 1$: simply label each node by prelabels of itself plus all ancestors up to height k.

Other examples:

- Bounded arboricity graphs (including bounded-degree / bounded-genus graphs, e.g. *planar graphs*),
- Intersection-based graphs (e.g. interval graphs),
- c-decomposable graphs

Question: Is this doable for *all* graphs with $O(\log n)$ -bit labels?

Negative result

Note: Graph class \mathcal{F} is adjacency-labelable using $O(\log n)$ -bit labels

- \Rightarrow each G is fully defined by $O(n \log n)$ bits
- \Rightarrow # represented graphs $\leq 2^{O(n \log n)}$

Corollary: Graph family \mathcal{F} containing $> 2^{O(n \log n)}$ n-node graphs is not adjacency-labelable using $O(\log n)$ -bit labels

Negative examples: Bipartite / chordal graphs

Question: Can this be done

for *other* types of information

beyond adjacency?

Framework

Labeling: assignment Label(v), $\forall v \in G$

Labeling scheme: $\langle \mathcal{M}, \mathcal{D} \rangle$

1. *Marker* algorithm \mathcal{M} :

Given graph G, selects labeling Label for G

2. **Decoder** algorithm \mathcal{D} :

Given set of labels $\widehat{L} = \{L_1, \dots, L_k\}$, returns $\mathcal{D}(\widehat{L})$

f labeling scheme for graph family $\mathcal G$

Marker-decoder pair $\langle \mathcal{M}_f, \mathcal{D}_f \rangle$ satisfying, for function f on node subsets:

If marker $\mathcal{M}_f(G)$ assigns labeling Label to G

```
then \forall node subset W in G, applying decoder \mathcal{D}_f to set of labels \widehat{L}(W)=\{Label(v)\mid v\in W\} yields f(W)
```

Properties

- Decoder \mathcal{D}_f is independent of G; knows nothing beyond the labels
- Decoding polynomial in label length (logarithmic labels ⇒ polylog time)

 $\langle \mathcal{M}_f, \mathcal{D}_f \rangle$ is a method for *storing* and *extracting* f-values in "distributed" fashion

Efficiency measure

Goal: f labeling schemes assigning short labels

|Label(u)| = # bits in binary string Label(u)

Def: Given marker \mathcal{M} assigning Label to G

$$\mathcal{L}_{\mathcal{M}}(G) = \max_{u \in V} |Label(u)|$$

For finite graph family \mathcal{G} ,

$$\mathcal{L}_{\mathcal{M}}(\mathcal{G}) = \max\{\mathcal{L}_{\mathcal{M}}(G) \mid G \in \mathcal{G}\}$$

Given function f and graph family \mathcal{G} ,

$$\mathcal{L}(f,\mathcal{G}) = \min\{\mathcal{L}_{\mathcal{M}}(\mathcal{G}) \mid \\ \exists \mathcal{D}, \ \langle \mathcal{M}, \mathcal{D} \rangle = f \text{ labeling scheme for } \mathcal{G}\}$$

Distance labeling schemes

Goal: Short labels that encode distances & algorithm for computing the distance between two nodes given their labels (in time polynomial in the label lengths)

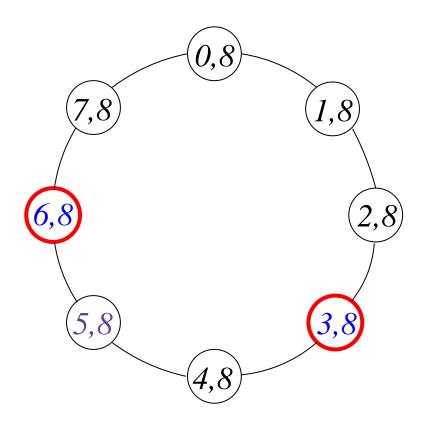
Simple examples:

Highly regular graph classes

- rings, meshes, tori, hypercubes -

enjoy $O(\log n)$ -bit distance labeling schemes

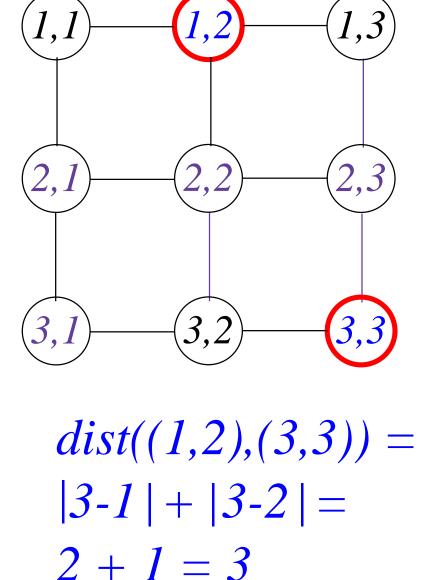
Ring



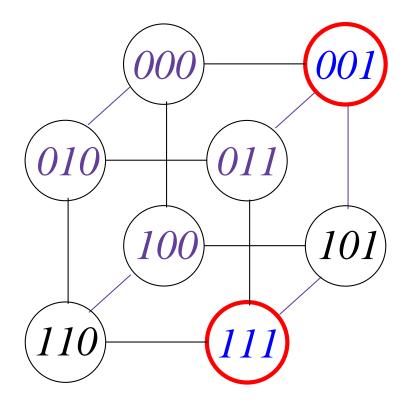
$$dist((3,8),(6,8)) =$$

 $min(6-3,8+3-6) =$
 $min(3,5) = 3$

Grid



Hypercube



dist(001,111) =
Hamming(001,111) =
2

Distance labeling on general graphs

Easy labeling:

Mark each node v_i in n-node graph G on $V = \{v_1, \dots, v_n\}$ with all its distances:

$$Label(v_i) = \langle v_i, dist_G(v_i, v_1), \dots, dist_G(v_i, v_n) \rangle$$

For the class $\mathcal{G}(n)$ of general n-node graphs,

$$\mathcal{L}(dist, \mathcal{G}(n)) = O(n \log n)$$

Thm: $\mathcal{L}(dist, \mathcal{G}(n)) = O(n)$ [Gavoille, P, Perennes, Raz, 01]

Lower bound for general graphs

Def: For graph G on $V = \{v_1, \dots, v_n\}$ and distance labeling scheme $\langle \mathcal{M}, \mathcal{D} \rangle$,

$$\mathcal{L}_{sum}(G) = \sum_{v_i \in V} |Label(v_i)|$$

Observ: the tuple $\langle Label(v_1), \ldots, Label(v_n) \rangle$ suffices to reconstruct the graph G (by testing \forall pair of nodes if distance = 1) at cost $\mathcal{L}_{sum}(G) + O(n \log n)$ (for delimiters)

Cor: \forall family $\mathcal{F}(n)$ of $2^{K(n)}$ n-node graphs and distance labeling scheme $\langle \mathcal{M}, \mathcal{D} \rangle$ for $\mathcal{F}(n)$, some graph $G \in \mathcal{F}(n)$ must satisfy $\mathcal{L}_{sum}(G) + O(n \log n) \geq K(n)$

Thm: \forall family $\mathcal{F}(n)$ of $2^{K(n)}$ n-node graphs

$$\mathcal{L}(dist, \mathcal{F}(n)) \geq \frac{K(n)}{n} - o(\log n)$$

For G(n) = family of n-node general graphs,

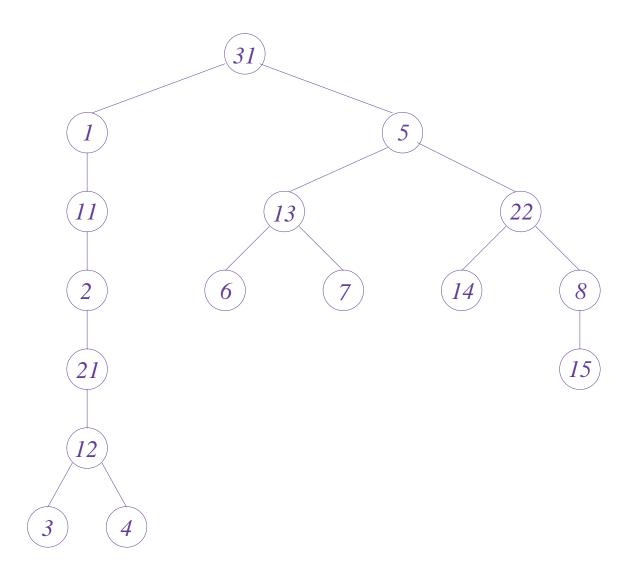
$$|\mathcal{G}(n)| = 2^{n(n-1)/2}$$

Cor:
$$\mathcal{L}(dist, \mathcal{G}(n)) \geq \frac{n-1}{2} - o(1)$$

Similar bounds apply for other large graph families (bipartite / chordal / ...)

Distance labeling on trees [P,99]

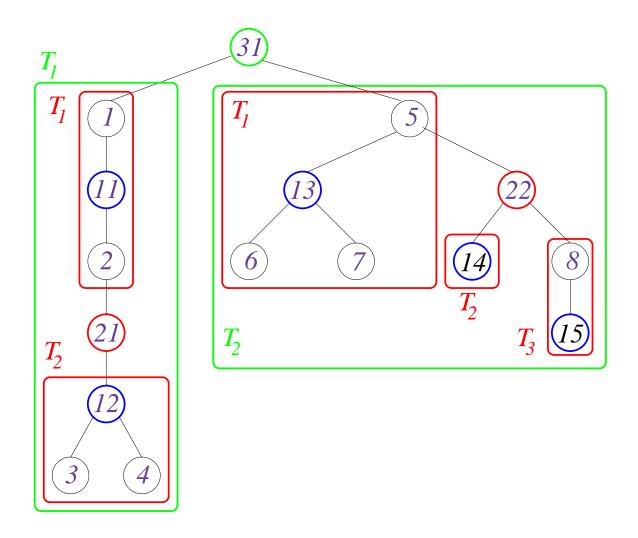
Preprocessing: Arbitrarily prelabel each node v of T with distinct integer I(v) from [1, n]



Recursive partitioning

Tree separator: Node v_0 in n-node tree T, whose removal breaks T into subtrees of size $\leq n/2$

Fact: Every tree T has a separator (can be found in linear time)

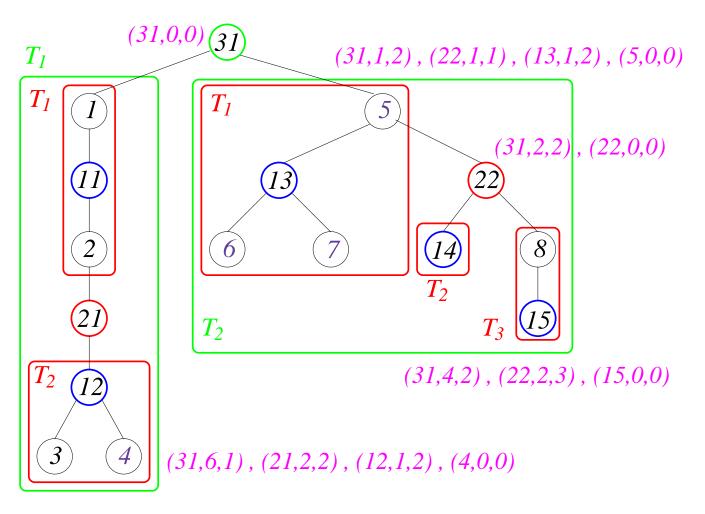


Label assignment

Recursive marker procedure $Sub_Tree_Label(T')$ (Applied to subtree T')

- 1. If T' contains single node v_0 then set $Label(v_0) \leftarrow (I(v_0), 0, 0)$ and return
- 2. /* T' contains > 1 node */Find separator v_0 for T' and remove it. /* Breaks T' into $T_1, ...$ of size < n/2 */
- 3. Recursively apply Procedure Sub_Tree_Label (T_i) , label each v in each subtree T_i by $Label_i(v)$
- **4.** For each node $v \in T_i$ do:
 - Let $\mathcal{J}(v) \leftarrow (I(v_0), dist(v, v_0, T'), i)$
 - Label v by $Label(v) \leftarrow \mathcal{J}(v) \circ Label_i(v)$
- 5. Label v_0 by $Label(v_0) \leftarrow (I(v_0), 0, 0)$

Label assignment - example



Fields: (separator, distance, tree #)

Distance computation

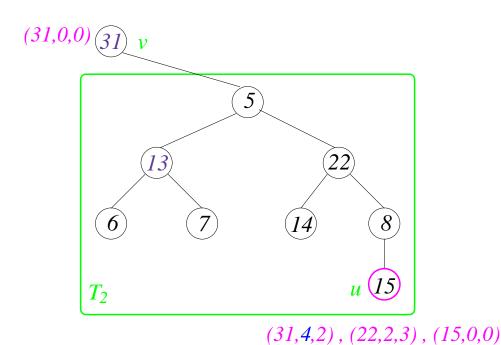
Consider two nodes u, v in T, with labels

$$Label(u) = \mathcal{J}_1(u) \circ \ldots \circ \mathcal{J}_q(u)$$

$$Label(v) = \mathcal{J}_1(v) \circ \ldots \circ \mathcal{J}_p(v)$$

Decoder Procedure Dist_Calc

p=1: /* v is the separator of T */
Return 2nd field in $\mathcal{J}_1(u)$

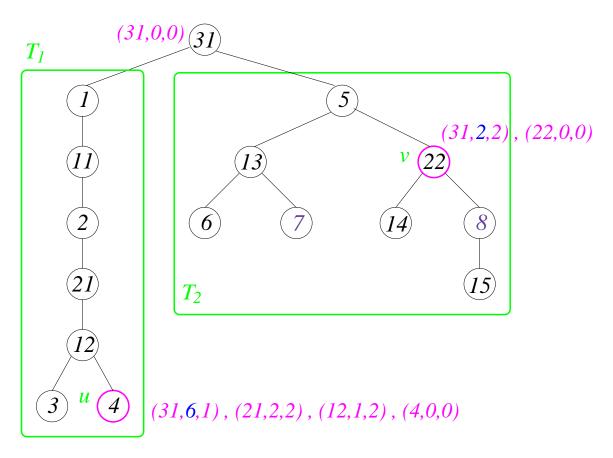


Fields: (separator, distance, tree #)

q=1: Return 2nd field in $\mathcal{J}_1(v)$

$$p,q > 1$$
: Let $\mathcal{J}_1(u) = (I(w), dist(u,w,T), i)$ $\mathcal{J}_1(v) = (I(w), dist(v,w,T), j)$

 $i \neq j$: /* u, v in different subtrees */
Return sum of 2nd fields in $\mathcal{J}_1(u)$ and $\mathcal{J}_1(v)$



Fields: (separator, distance, tree #)

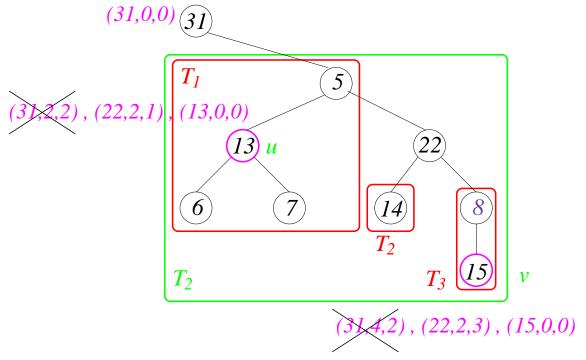
i = j: /* u, v in same subtree */

• Discard 1st triple from Label(u), Label(v), remaining with

$$Label_i(u) = \mathcal{J}_2(u) \circ \dots \circ \mathcal{J}_q(u)$$

$$Label_i(v) = \mathcal{J}_2(v) \circ \dots \circ \mathcal{J}_p(v)$$

• Invoke procedure ${\tt Dist_Calc}$ recursively on $Label_i(u)$ and $Label_i(v)$; Return $dist(u,v,T_i)$



Fields: (center, distance, tree #)

Analysis

Lemma: Label length is $O(\log^2 n)$

Proof: Each sublabel $\mathcal{J}(v)$ has $\leq \lceil 3 \log n \rceil$ bits. Recursion has $\leq \log n$ levels.

Lemma: Dist_Calc computes distances correctly

Theorem: $\exists O(\log^2 n)$ distance labeling scheme for class of n-node trees

Approach extends to c-decomposable graphs (fixed c, affects constant in length bound)

Theorem: $\exists O(\log^2 n)$ distance labeling scheme for class of n-node c-decomposable graphs

Lower bound for trees [Gavoille, P, Perennes, Raz, 01]

 $\mathcal{F}=$ all labeled trees on $V_n=\{1,\ldots n\}$

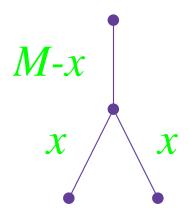
Cayley's formula: $|\mathcal{F}| = n^{n-2}$

 \Rightarrow avg/max label length $=\Omega(\log n)$

Goal: For family $\mathcal{T}(n,M) = n$ -node trees with weights from [0,M-1], any distance labeling scheme requires $\mathcal{L}(dist,\mathcal{T}(n,M)) = \Omega((\log M + \log n) \log n)$

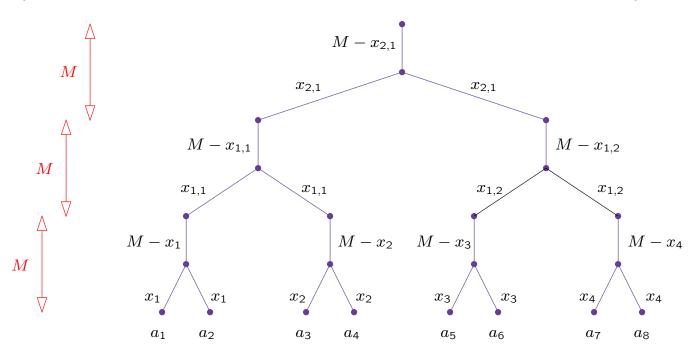
The class of trees

(1, M)-tree T: integral $x \in [0, M-1]$



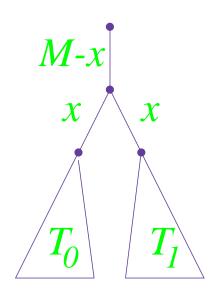
(h,M)-tree: (1,M)-tree with (h-1,M)-tree attached to each leaf $\Rightarrow 2^h$ leaves, $a_1,\ldots,a_{2^h}.$

C(h, M)= class of all (h, M)-trees (same structure, different weight assignments)



32

Note: (h, M)-tree fixed by triple (T_0, T_1, x) : x = weight of two edges of top (1, M)-tree, $T_0, T_1 = \text{two attached } (h-1, M)$ -trees



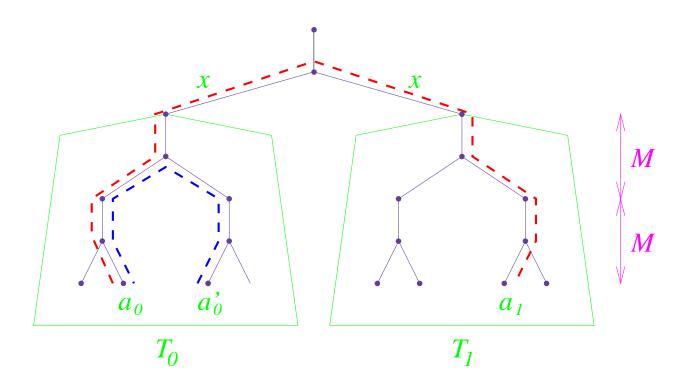
 $\mathcal{C}(h,M,x)=$ subclass of $\mathcal{C}(h,M)$ consisting of (h,M)-trees with topmost weight x

$$C(h,M) = \bigcup_{x=0}^{M-1} C(h,M,x)$$

Lemma: \forall two leaves of $T \in \mathcal{C}(h, M, x)$

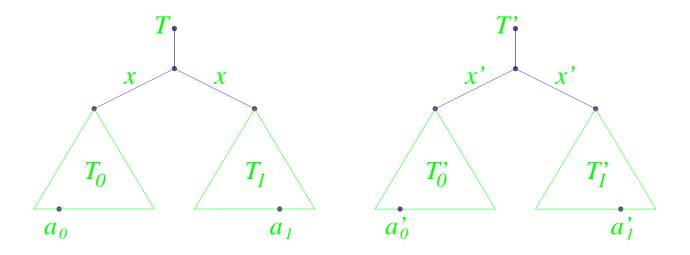
$$a_0, a'_0 \in T_0 \implies d_T(a_0, a'_0) = d_{T_0}(a_0, a'_0)$$

$$a_0 \in T_0 \land a_1 \in T_1 \Rightarrow d_T(a_0, a_1) = 2(h-1)M + 2x$$



Cor: For (h, M)-trees $T = (T_0, T_1, x)$, $T' = (T'_0, T'_1, x')$, and leaves a_0, a_1, a'_0, a'_1 as drawn,

$$d_T(a_0, a_1) = d_{T'}(a'_0, a'_1) \iff x = x'$$



Label sets

For scheme $\langle \mathcal{M}, \mathcal{D} \rangle$ on $\mathcal{C}(h, M)$: $W(\mathcal{M}, h, M) = \text{set of all labels } Label(v) \text{ assigned by } \mathcal{M}$

 $g(h, M) = \min |W(\mathcal{M}, h, M)|$ over all possible schemes for $\mathcal{C}(h, M)$

 $\widehat{L} \leftarrow \text{scheme attaining } g(h, M)$ $(|W(\widehat{L}, h, M)| = g(h, M))$

 $W(h,M,x)=\{(\lambda_0,\lambda_1)\mid \text{labels }\lambda_0,\lambda_1 \text{ assigned by }\widehat{L}$ to some leaves $a_j\in T_0,\ a_t\in T_1,\ \text{for some tree }T=(T_0,T_1,x)\in\mathcal{C}(h,M,x)\}$

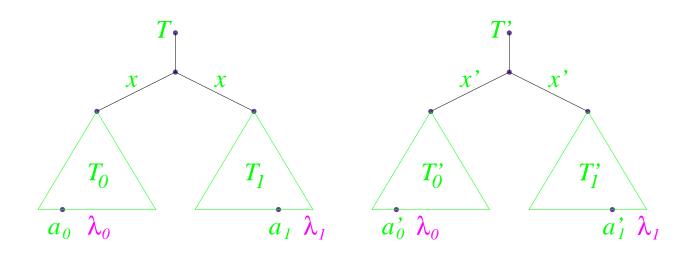
$$\mathcal{W} = \bigcup_{x=0}^{M-1} W(h, M, x)$$

Lemma: $|\mathcal{W}| \leq g(h, M)^2$

Proof: $\mathcal{W} \subseteq W(\hat{L}, h, M) \times W(\hat{L}, h, M)$

Lemma: $\forall x \neq x', \ W(h, M, x) \cap W(h, M, x') = \emptyset$

Proof: Suppose $x \neq x'$ yet $\exists (\lambda_0, \lambda_1) \in W(h, M, x) \cap W(h, M, x')$. Then \exists two (h - 1, M)-trees T, T'



$$2(h-1)M + 2x = d_T(a_0, a_1)$$

$$= f(\lambda_0, \lambda_1)$$

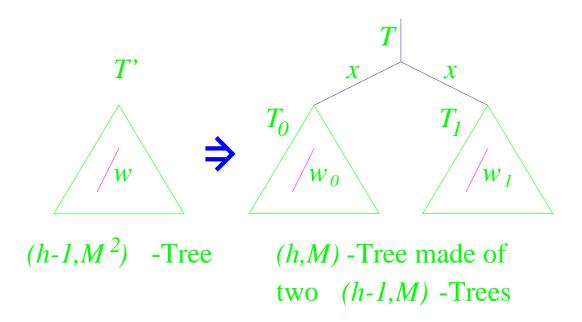
$$= d_{T'}(a'_0, a'_1) = 2(h-1)M + 2x'$$

implying x = x', contradiction.

Main Lemma:
$$\forall \ 0 \le x < M$$
, $|W(h, M, x)| \ge g(h - 1, M^2)$

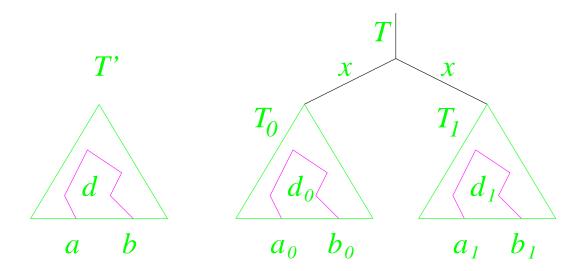
Proof idea: Derive a labeling scheme for all $(h-1,M^2)$ -trees using $\leq |W(h,M,x)|$ labels

Tree representation: Match $(h-1, M^2)$ -tree T' with (h, M)-tree $T = (T_0, T_1, x)$ in C(h, M, x)



Weight representation: $w \in [0, M^2 - 1]$ in T' represented as $w = w_0 + M \cdot w_1$ s.t. $w_0, w_1 \in [0, M - 1]$

Leaf mapping: Associate leaf a of T' with two homologous leaves a_0, a_1 of T



$$d = d_0 + M \cdot d_1$$

$$d_{T'}(a,b) = d_{T_0}(a_0,b_0) + M \cdot d_{T_1}(a_1,b_1)$$

= $d_T(a_0,b_0) + M \cdot d_T(a_1,b_1)$

Labeling T' (given \hat{L} for T):

- 1. Use \hat{L} to label T
- 2. Label leaf $a \in T'$ by

$$Label'(a) = \langle \hat{L}(a_0, T), \hat{L}(a_1, T) \rangle$$

(Note: pair belongs to W(h, M, x))

Distance decoder \mathcal{D}' for T' (given f for T):

$$\mathcal{D}'(Label'(a), Label'(b)) = f(\hat{L}(a_0), \hat{L}(b_0)) + M \cdot f(\hat{L}(a_1), \hat{L}(b_1))$$

 $\Rightarrow \langle \mathcal{M}', \mathcal{D}' \rangle$ labels $(h-1, M^2)$ -trees with labels from W(h, M, x)

$$\Rightarrow$$
 $|W(h, M, x)| \ge g(h - 1, M^2)$

Cor:
$$g(h, M) \ge \sqrt{M} \cdot \sqrt{g(h-1, M^2)}$$

Proof:
$$g(h,M)^2 \geq |\mathcal{W}| \geq M \cdot g(h-1,M^2)$$

Cor:
$$g(h, M) \ge M^{h/2}$$

Proof: By induction on h.

Cor:
$$\mathcal{L}(dist, \mathcal{C}(h, M)) \geq \frac{h}{2} \cdot \log M$$

Setting $h = \Theta(\log n)$:

Thm: For family $\mathcal{T}(n, M)$ of n-node binary trees with weights from [0, M - 1],

$$\mathcal{L}(dist, \mathcal{T}(n, M)) \geq \frac{1}{2}(\log n - 2)\log M$$

Proof:

$$\mathcal{L}(dist, \mathcal{C}(h, M)) \ge \frac{h}{2} \cdot \log M$$

$$n = 3 \cdot 2^h - 2 \implies h \ge \log n - 2 \implies$$

$$\mathcal{L}(dist, \mathcal{T}(n, M)) \ge \frac{1}{2}(\log n - 2)\log M$$

Cor: For family $\mathcal{T}(n)$ of *unweighted* n-node binary trees,

$$\mathcal{L}(dist, \mathcal{T}(n)) \geq \frac{1}{8} \log^2 n - O(\log n)$$

Distance labeling for planar graphs [Gavoille, P, Perennes, Raz, 01]

Idea: Recursively use $O(\sqrt{n})$ -separator property

Def: Separator for n-node graph G= node subset S whose deletion splits G into connected components of size $\leq \alpha n$, for constant $\alpha < 1$

Def: Graph class \mathcal{G} has r(n)-separator if \forall connected n-node graph $G \in \mathcal{G}$ \exists separator S of size $\leq r(n)$ s.t. after removing S, every resulting connected component belongs to \mathcal{G}

42

Separator-based distance labeling

Consider family $\mathcal{G}(n)$ of graphs with r(n)-separator

Marker algorithm \mathcal{M} : Given graph $G \in \mathcal{G}(n)$:

- 1. Choose separator S of size $\leq r(n)$ for G.
- 2. \forall connected component A of $V(G) \setminus S$, $G_A = \text{graph induced by nodes of } A$ c = # components
- 3. Mark each component A by unique identifier $ID(A) \in [0, 1, 2, ..., c-1]$
- 4. Asign separator S the identifier ID(S) = c
- 5. Fix *ordering* on nodes of S
- 6. \forall component G_A , apply marker \mathcal{M} recursively

Marker algorithm (cont.)

7. Assign label to each node x in component A, with following fields:

```
[a] List of distances to nodes of S, by fixed ordering (\leq |S| \log n \text{ bits})
```

```
[b] Identifier ID(A) (< \log n bits)
```

- [c] Recursive Label $Label(x, G_A)$ $(\leq \mathcal{L}_{\mathcal{M}}(\mathcal{G}(|A|))$ bits)
- 8. Assign label to each node x in S, with only first two fields

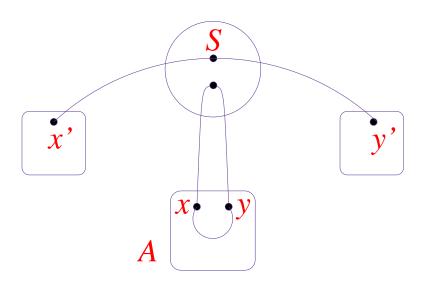
Decoding

Def: For nodes $x, y \in V(G)$, *Distance via S* is

$$\widehat{d}(x,y) = \min_{s \in S} \{ dist_G(x,s) + dist_G(s,y) \}$$

Observ:

- 1. If x and y belong to same component A, then $dist_G(x,y) = \min\{dist_{G_A}(x,y), \widehat{d}(x,y)\}$
- 2. Otherwise, $dist_G(x,y) = \hat{d}(x,y)$



Decoder algorithm \mathcal{D}

To compute $dist_G(x,y)$:

- 1. Compute $\hat{d}(x,y)$ using field [a] of Label(x,G) and Label(y,G).
- 2. Compare component identifier ID(A) of x and y from field [b] of Label(x,G) and Label(y,G)
- 3. If they are equal and $\neq c$ /* x and y belong to same component */
 then do:
 - (a) From field [c] of Label(x,G) and Label(y,G), get $Label(x,G_A)$ and $Label(y,G_A)$
 - (b) Compute $dist_{G_A}(x,y)$ recursively
 - (c) $dist_G(x,y) \leftarrow \min\{dist_{G_A}(x,y), \widehat{d}(x,y)\}$
- 4. Else return $\hat{d}(x,y)$

Analysis

$$|S| \le r(n)$$

$$|A| \le \alpha \cdot n \quad \forall \text{ connected component } A$$

$$\mathcal{L}(dist,\mathcal{G}(n)) \leq \mathcal{L}(dist,\mathcal{G}(\alpha \cdot n)) + r(n)\log n + \log n$$
 solving to

$$\mathcal{L}(dist,\mathcal{G}(n)) = O(R(n)\log n) + O(\log^2 n)$$
 where

$$R(n) = \sum_{i \le \log_{1/\alpha} n} r(\alpha^i \cdot n)$$

Thm: \forall family $\mathcal{G}(n)$ of graphs with r(n)-separator,

$$\mathcal{L}(dist, \mathcal{G}(n)) = O(R(n) \log n + \log^2 n)$$

Distance labeling on planar graphs

Thm [Lipton, Tarjan, 79]: n-node planar graphs have $O(\sqrt{n})$ -separator

Cor: For the family \mathcal{P}_n of n-node planar graphs,

$$\mathcal{L}(dist, \mathcal{P}_n) \leq O(\sqrt{n} \log n)$$

Lower bound for planar graphs [Gavoille, P, Perennes, Raz, 01]

Idea: Focus on labels of small node sets

Let
$$A \subseteq V_n = \{1, \dots, n\}$$

Consider family \mathcal{F} of labeled graphs on V_n

Def: Two graphs $G, H \in \mathcal{F}$ exhibit gap over A if $\exists x, y \in A$ s.t. $dist_G(x, y) \neq dist_H(x, y)$

 \mathcal{F} is A-family if \forall two distinct $G,H\in\mathcal{F}$ exhibit gap over A.

For $\mathcal{F}=A$ -family for $A=\{a_1,\ldots,a_\alpha\}$ and $\langle \mathcal{M},\mathcal{D}\rangle=$ distance labeling scheme on \mathcal{F} , \forall graph $G\in\mathcal{F}$:

$$\vec{L}(G) = \langle Label(a_1, G), \dots, Label(a_{\alpha}, G) \rangle$$

 $S = \{\vec{L}(G) \mid G \in \mathcal{F}\}$

Lemma: For A-family \mathcal{F} , $\vec{L}(G) \neq \vec{L}(H) \; \forall \; \text{distinct} \; G, H \in \mathcal{F}$ (i.e., $|\mathcal{S}| = |\mathcal{F}|$)

Proof: By contradiction.

Assume $\vec{L}(G) = \vec{L}(H)$ for some $G, H \in \mathcal{F}$, i.e. $\forall \ a_i \in A, \ Label(a_i, G) = Label(a_i, H)$

By definition of \mathcal{F} , $\exists a_i, a_j \in A$ s.t. $dist_G(a_i, a_j) \neq dist_H(a_i, a_j)$

But since $\langle \mathcal{M}, \mathcal{D} \rangle$ is distance labeling scheme, $\mathcal{D}(Label(a_i, G), Label(a_j, G)) = dist_G(a_i, a_j)$ \parallel $\mathcal{D}(Label(a_i, H), Label(a_j, H)) = dist_H(a_i, a_j)$

contradiction.

Main Thm: For A-family \mathcal{F} ,

$$\mathcal{L}(dist, \mathcal{F}) \geq \frac{1}{|A|} \cdot \log |\mathcal{F}|$$

Proof: Let $\mathcal{L}(dist, \mathcal{F}) = X$, $\alpha = |A|$

Then \exists distance labeling scheme $\langle \mathcal{M}, \mathcal{D} \rangle$ for \mathcal{F} s.t. $\mathcal{L}_{\mathcal{M}}(G) \leq X \ \forall \ G \in \mathcal{F}$

$$\Rightarrow \mathcal{S} \subseteq [0, 2^X - 1]^{\alpha}$$

By Lemma, $|\mathcal{F}| = |\mathcal{S}| \le 2^{X\alpha}$

$$\Rightarrow \log |\mathcal{F}| \leq \mathcal{L}_{\mathcal{M}}(\mathcal{F}) \cdot |A|$$

$$\Rightarrow \mathcal{L}_{\mathcal{M}}(\mathcal{F}) \geq \log |\mathcal{F}|/|A|.$$

The lower bound

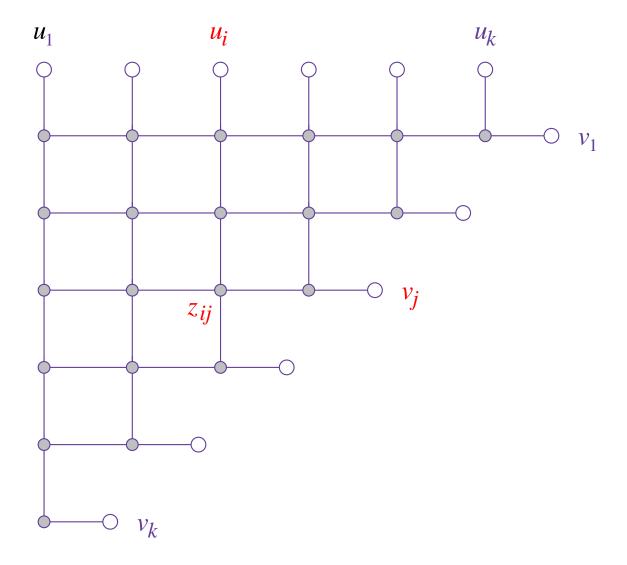
Thm: $\mathcal{L}(dist, \mathcal{P}_n) = \Omega(n^{1/3})$

Proof outline:

- 1. Construct subclass $\widehat{\mathcal{P}}_n$ of planar n-node graphs s.t.
 - $\widehat{\mathcal{P}}_n = A$ -family for set of size $|A| = O(n^{1/3})$
 - $\log |\widehat{\mathcal{P}}_n| = \Omega(n^{2/3})$
- 2. Apply Main Thm to conclude

$$\mathcal{L}(dist, \widehat{\mathcal{P}}_n) = \Omega(n^{1/3})$$

Underlying structure G_k

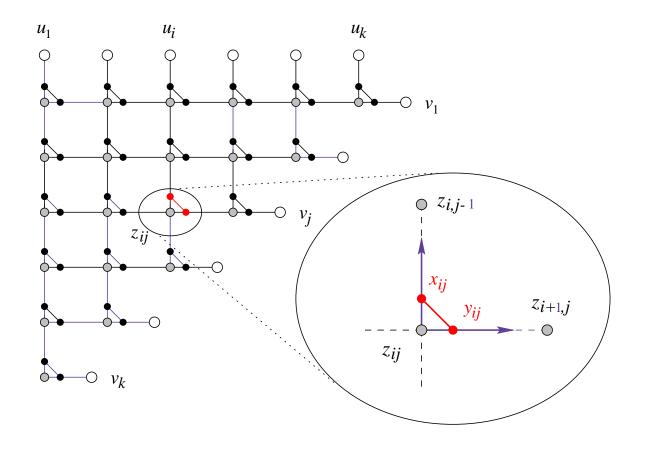


Upper-left half of $k \times k$ grid

 $z_{i,j} = \text{node on } i \text{th column, } j \text{th row}$

Attached leaves $u_i, \ v_j$ at borders

Underlying structure G_k (cont.)

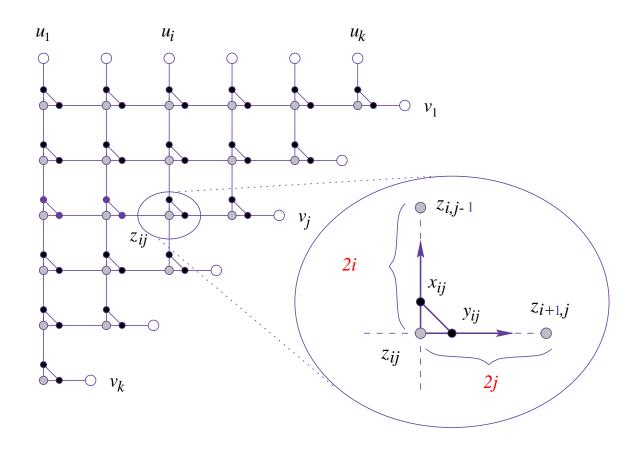


Each *vertical* edge $(z_{i,j}, z_{i,j-1})$ subdivided into $(z_{i,j}, x_{i,j})$ and $(x_{i,j}, z_{i,j-1})$ by adding node $x_{i,j}$

Each *horizontal* edge $(z_{i,j}, z_{i+1,j})$ subdivided into $(z_{i,j}, y_{i,j})$ and $(y_{i,j}, z_{i+1,j})$ by adding node $y_{i,j}$

Added *diagonal* edges $e_{i,j} = (x_{i,j}, y_{i,j}), \forall i, j$

Underlying structure G_k (cont.)



Edge weight assignment:

Edges $(x_{i,j}, z_{i,j-1})$ assigned weight 2i-1, Edges $(y_{i,j}, z_{i+1,j})$ assigned weight 2j-1, $\forall \ 2 \le i+j \le k+1$

All other edges assigned w(e) = 1

Note: G_k can be made *unweighted* by replacing each edge e of weight w(e) with simple path of w(e) edges

Resulting *unweighted* G_k has $n = \Theta(k^3)$

The A-family $\widehat{\mathcal{P}}_n$

$$A = \{u_1, \dots, u_k, v_1, \dots, v_k\}.$$

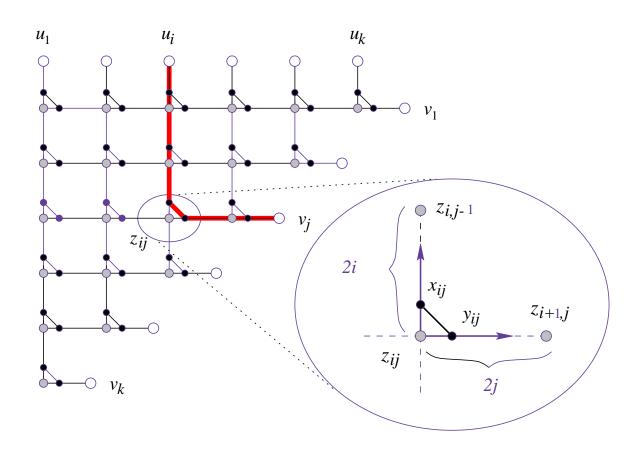
The family $\widehat{\mathcal{P}}_n$: Composed of all graphs resulting from G_k by removing some subset of diagonal edges $e_{i,j}$

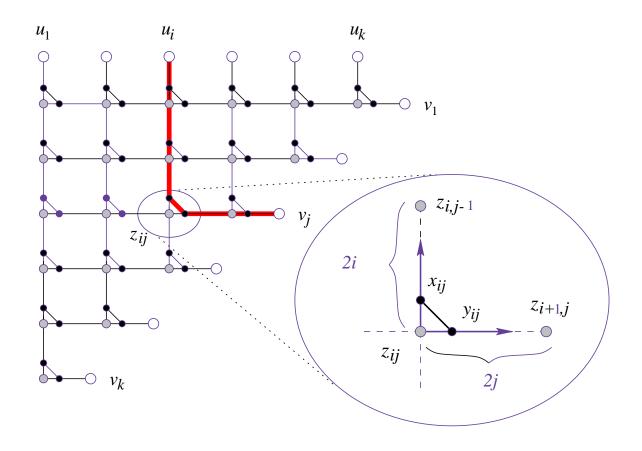
diagonal edges in $G_k = k(k+1)/2$

$$\Rightarrow |\hat{\mathcal{P}}_n| = 2^{k(k+1)/2}$$

Need to show that $\widehat{\mathcal{P}}_n$ is an A-family

Lemma: $\forall \ 2 \leq i+j \leq k+1$, the shortest path in G_k from u_i to v_j is precisely the one highlighted in figure

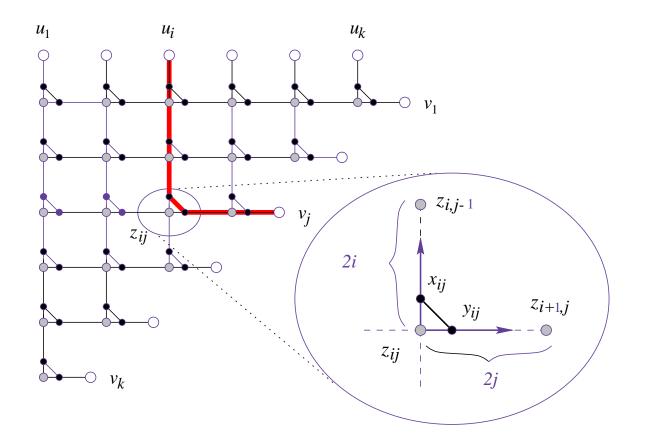




Implication 1:

Any shortest path $p(u_i,v_j)$ from u_i to v_j must use diagonal edge $e_{i,j}$

 \Rightarrow Removing this edge from the graph increases $dist_G(u_i,v_j)$ by at least 1



Implication 2:

Path $p(u_i,v_j)$ uses no *other* diagonal edge e_{i^\prime,j^\prime}

 $\Rightarrow dist_G(u_i, v_j)$ depends only on whether $e_{i,j}$ exists or not

Implication 3:

For $G, H \in \widehat{\mathcal{P}}_n$ differing by diagonal edge $e_{i,j}$, $dist_G(u_i, v_j) \neq dist_H(u_i, v_j)$

Hence $\widehat{\mathcal{P}}_n$ is an A-family.

Application of Main Thm

$$\widehat{\mathcal{P}}_n = A$$
-family

⇒ By Main Thm,

$$\mathcal{L}(dist, \widehat{\mathcal{P}}_n) \geq \frac{\log |\widehat{\mathcal{P}}_n|}{|A|} = \frac{k(k-1)}{2|A|}$$

Here
$$|A| = 2k$$
, $n = \Theta(k^3)$

thus
$$\mathcal{L}(dist, \hat{\mathcal{P}}_n) = \Omega(n^{1/3})$$

Dodging the size lower bound

Question: Can shorter labels be used

to yield approximate

distance estimates?

Approximate distance labeling [P,99]

R-approximate-distance labeling scheme:

[for family \mathcal{F}]

Decoder provides estimate $\tilde{D}(u,v)$ for distance between u,v given their labels, s.t.

$$\frac{1}{R} \cdot dist(u, v, G) \le \tilde{D}(u, v) \le R \cdot dist(u, v, G)$$

Results [P,99]:

Diameter = $Diam(G) = \max_{u,v \in V} (dist(u,v,G))$ Denote $\Lambda = \log Diam(G)$

For *n*-node weighted graphs, $\kappa \geq 1$:

 $O(\sqrt{\kappa})$ -approx-distance labeling scheme of label size $O(\text{polylog } n \cdot \kappa \cdot n^{1/\kappa})$

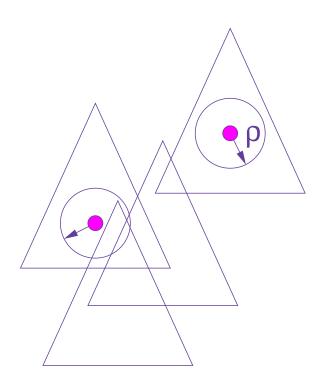
In particular: /* setting $\kappa = \log n/8$ */ $O(\sqrt{\log n})$ -approx-distance
labeling scheme of label size O(polylog n)

Distance-approx labelings

ρ -neighborhood of v:

Set of nodes at distance $\leq \rho$ from v $\Gamma_{\rho}(v) = \{w \mid dist(w, v, G) \leq \rho\}$

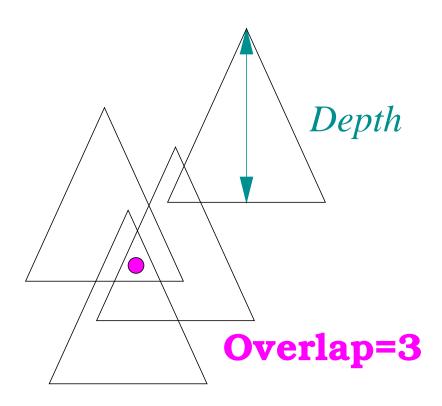
 ρ -tree cover: Set $T\mathcal{C}$ of trees in G s.t. \forall node $v \exists$ tree $T \in T\mathcal{C}$ spanning v's entire ρ -neighborhood $\Gamma_{\rho}(v) \subseteq V(T)$



Tree cover measures

$$Depth(\mathcal{TC}) = \max_{T \in \mathcal{TC}} \{Depth(T)\}$$

$$\mathtt{Overlap}(\mathcal{TC}) = \max_{v \in V} |\{T \in \mathcal{TC} \mid v \in V(T)\}|$$



Extremal tree cover constructions

Global tree cover:

Single BFS tree T

Depth: high, $Depth(\mathcal{TC}) = Diam(G)$

Overlap: low, Overlap(TC) = 1

Neighborhood tree cover:

n trees: $T(v) = \text{spanning tree for } \Gamma_{\rho}(v)$

Depth: low, $Depth(\mathcal{TC}) = \rho$

Overlap: potentially high

Tree covers tradeoff

Theorem: [Awerbuch, Kutten, P, 91]

$$\forall G = (V, E, \omega), |V| = n, \text{ and integers } \kappa, \rho \geq 1,$$

$$\exists \rho$$
-tree cover $\mathcal{TC} = \mathcal{TC}_{\kappa,\rho}$ for G , with

$$Depth(\mathcal{TC}) \leq (2\kappa - 1)\rho$$
 and

$$\mathsf{Overlap}(\mathcal{TC}) \leq \lceil 2\kappa \cdot n^{1/\kappa} \rceil$$

Distance approximation using tree covers

The marker algorithm:

1. \forall 1 $\leq i \leq \Lambda$, construct 2ⁱ-tree-cover

$$TC_i = TC_{\kappa,2^i}$$

for G as in Theorem

- 2. \forall tree cover \mathcal{TC}_i , assign distinct tag to each tree in it
- 3. $Tags_i(v) \leftarrow tags of all \mathcal{TC}_i$ trees spanning v
- 4. Label each node v

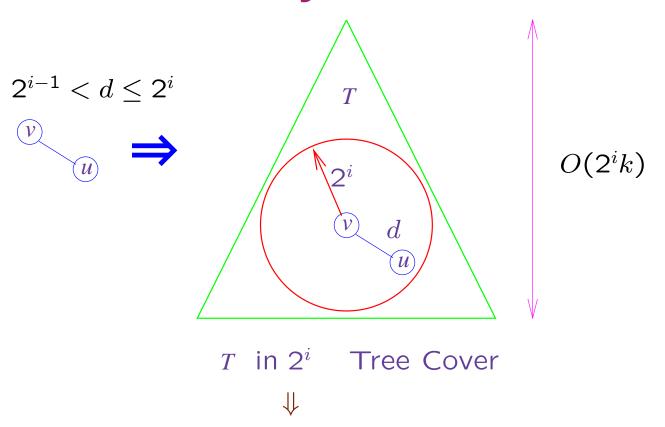
$$Label(v) = (Tags_1(v), \dots, Tags_{\Lambda}(v))$$

The distance estimation algorithm

Given Label(v) and Label(u):

- 1. Find lowest level j s.t. $Tags_j(v)$ and $Tags_j(u)$ contain a common tag
- 2. Return $\tilde{D}(u,v) = \sqrt{2\kappa} \cdot 2^j$ as dist estimate for dist(u,v,G)

Analysis



T contains both u and v \Downarrow

T's tag $\in Tags_i(v) \cap Tags_i(u)$

Lemma: $\forall G, u, v$, estimate satisfies

$$\frac{1}{R} \cdot dist(u,v,G) \leq \tilde{D}(u,v) \leq R \cdot dist(u,v,G)$$
 for $R = \sqrt{8\kappa}$

Proof: Consider u, v s.t. $2^{i-1} < dist(u, v, G) \le 2^i$ Algorithm's estimate $= \tilde{D}(u, v) = \sqrt{2\kappa} \cdot 2^j$ $j = \text{lowest level on which } u \text{ and } v \text{ share common tree } T' \text{ in } \mathcal{TC}_j$

Lower bound: Tree cover $TC_i = TC_{\kappa,2^i}$ contains tree T s.t. $\Gamma_{2^i}(u) \subseteq V(T)$

$$\Rightarrow u, v \in V(T) \Rightarrow j \leq i$$

$$\Rightarrow dist(u, v, G) \ge 2^{i-1} \ge 2^{j-1} =$$

$$= \frac{1}{\sqrt{8\kappa}} \cdot (\sqrt{2\kappa} \cdot 2^j) = \frac{1}{R} \cdot \tilde{D}(u, v)$$

Upper bound: $Depth(T') \leq (2\kappa - 1) \cdot 2^{j}$

 \Rightarrow T has u-v path of length $\leq 2 \cdot (2\kappa - 1) \cdot 2^{j}$

$$\Rightarrow dist(u, v, G) \leq 4\kappa \cdot 2^{j} = \sqrt{8\kappa} \cdot (\sqrt{2\kappa} \cdot 2^{j})$$
$$= R \cdot \tilde{D}(u, v)$$

Lemma: Label length is $O(\Lambda \log n \cdot \kappa \cdot n^{1/\kappa})$

Proof: Each tag requires $O(\log n)$ bits. Each v occurs on $\leq \text{Overlap}(\mathcal{TC}_i) \leq \lceil 2\kappa \cdot n^{1/\kappa} \rceil$ different trees in \mathcal{TC}_i $\Rightarrow i$ th tuple $Tags_i(v)$ contains $\leq \lceil 2\kappa \cdot n^{1/\kappa} \rceil$ tags

Theorem: $\forall \kappa \geq 1$:

 $\exists \ (O(\Lambda \log n \cdot \kappa \cdot n^{1/\kappa}), \sqrt{8\kappa})$ approx-distance labeling scheme for class of all graphs,

 $\exists \ (O(\log^2 n \cdot \kappa \cdot n^{1/\kappa}), \sqrt{8\kappa})$ approx-distance labeling scheme for class of all *unweighted* graphs.

Setting $\kappa = \log n/8$

Cor:

 $\exists \ (O(\Lambda \log^2 n), \sqrt{\log n})$ approx-distance labeling scheme for class of all graphs,

 $\exists (O(\log^3 n), \sqrt{\log n})$ approx-distance labeling scheme for class of all *unweighted* graphs.

More on approx distance

Theorem [Thorup, Zwick, 01]:

 $\forall \ \kappa \geq 1, \ \exists \ \sqrt{2\kappa-1}$ -approx-distance labeling scheme for the class of all graphs using $O(\log(nD) \cdot \log^{1-1/\kappa} n \cdot n^{1/\kappa})$ bit labels

Theorem [Gavoille, Katz, Katz, Paul, P, 01]:

 \exists (1 + 1/log n)-approx-distance labeling scheme for the class of trees using $O(\log n \cdot \log \log n)$ bit labels

Lower bounds for R-approx distance:

- 1. \exists graphs requiring $\Omega(n)$ bit labels for $R < \sqrt{3}$ [GPPR,99]
- 2. \exists graphs requiring $\Omega(n^{1/\kappa})$ bit labels for $R = \Omega(\kappa)$ [TZ,01], [GKKPP,01]
- 3. $\forall k \leq n/2$, $\exists k$ -separator graphs requiring $\Omega(k)$ bit labels for $R < \sqrt{3}$ [GPPR,99]
- 4. \exists trees requiring $\Omega(\log n \cdot \log \log n)$ bit labels for $R = 1 + 1/\log n$ [GKKPP,01]

Additive approx distance

 (α, β) -approximate-distance labeling scheme:

Decoder provides estimate $\tilde{D}(u,v)$ for distance between u,v given their labels, s.t.

$$dist(u, v, G) \leq \tilde{D}(u, v) \leq \alpha \cdot dist(u, v, G) + \beta$$

Multiplicative approximation scheme: $\beta = 0$

Additive approximation scheme: $\alpha = 1$

Exact scheme: $\alpha = 1$ and $\beta = 0$

Observation: Moving from (1,0)-approximate to (1+o(1),0)-approximate or (1,O(1))-approximate schemes impacts label size.

Graphs with r(n)-separator support $(1+1/\log n,0)$ -approximate scheme with $O(R(n) \cdot \log \log n)$ bit labels [GKKPP,01]

Other graphs [GKKPP,01]

Planar: (3,0)-approx, $O(n^{1/3}\log n)$ bits

Interval: (1,1)-approx, $O(\log n)$ bits

Permutation & AT-free: (1,2)-approx, $O(\log n)$ bits

c-chordal (longest induced cycle $\leq c$): $(1, \lfloor c/2 \rfloor)$ approx, $O(\log^2 n)$ bits \Rightarrow

Chordal: 1. (1,1)-approx, $O(\log^2 n)$ bits 2. Exact ((1,0)-approx) scheme requires $\Omega(n)$ bits

Open: Exact label size complexity of distance labeling scheme of interval and permutation graphs (Known: $\Omega(\log n)$, $O(\log^2 n)$ [Katz, Katz, P,00])

Discussion: Alternative approach to distance labeling

Proximity-preserving labeling schemes based on low-distortion embeddings of grneral metrics in low-dimensional Euclidean spaces [Bourgain, 85, Linial, London, Rabinovich, 95]

Can be used to derive labeling systems with properties similar to ours [Hassin, 99]

Limitations:

- Approximation ratio for general graphs $\Omega(\log n)$ (Here: any approximation ratio $\kappa \leq \log n$)
- Embedding algorithm is randomized;
 Can probably be derandomized but likely to yield random-looking labels, revealing little or nothing on network structure.

(Here: More direct, resulting labels capture information on network topology)

Question: What about

other types of information

beyond adjacency and distance?

Example information types

In trees:

- Ancestry
- Separation level
- Center
- Least common ancestor

In general graphs:

- Steiner tree weight
- flow
- Edge/node connectivity

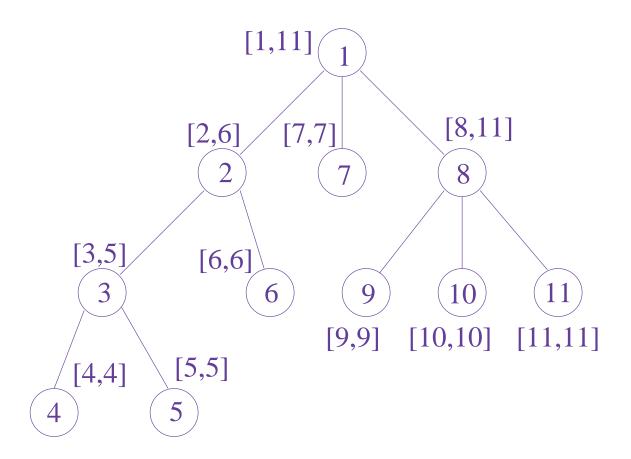
Ancestry labeling schemes [Santoro, Khatib, 85]

Marker algorithm: Assign each v

interval label Int(v) satisfying

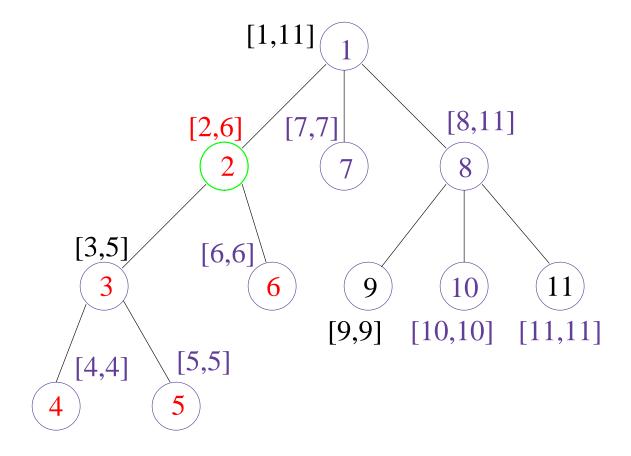
Inclusion property: $\forall u, v$

 $Int(v) \subseteq Int(u) \Leftrightarrow v$ is a descendent of u in T



Decoder algorithm: Use inclusion property.

Interval label selection



- 1. By depth-first tour of T, starting at root, assign each $u \in T$ a depth-first number DFS(u).
- 2. Label u by interval [DFS(u), DFS(w)], where w = last descendent of u visited by DFS (Labels contain $\leq \lceil 2 \log n \rceil$ bits)

Ancestry labeling - Improvements

- 1. Ancestor scheme with $\log n + O(\sqrt{\log n})$ bit labels [TZ,01],[Kaplan,Milo,01]
- 2. Combined parent and ancestor scheme with $2 \log n + O(\log \log n)$ bit labels [KM,01]

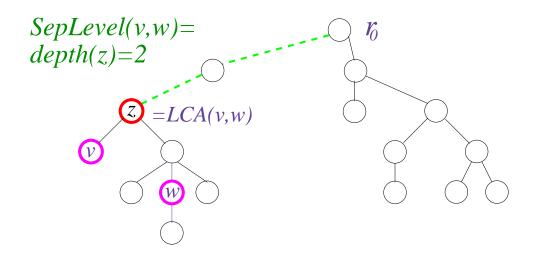
Application: Use ancestor labeling schemes on trees to optimize XML search engine queries on large database [Abiteboul, Kaplan, Milo, 01]

SEP labeling schemes [P,00]

Rooted tree T, root r_0 .

 $depth(v) = distance from r_0$

Separation level: $SEP(v, w) = \delta$ if their least common ancestor z has $depth(z) = \delta$.



T(n) = class of n-node trees

Lemma:

- 1. $\mathcal{L}(SEP, \mathcal{T}(n)) \leq \mathcal{L}(dist, \mathcal{T}(n)) + \log n$
- 2. $\mathcal{L}(dist, \mathcal{T}(n)) \leq \mathcal{L}(SEP, \mathcal{T}(n)) + \log n$

Proof of lemma

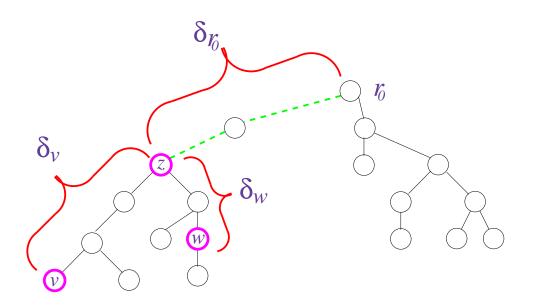
Given distance labeling scheme for trees:

Label = labeling assigned for tree T.

SEP marker: Augment each label Label(v) with depth(v) (additional log n bits)

SEP decoding: Consider v, w with z = LCA(v, w).

$$\delta_v = dist(z, v),$$
 $\delta_w = dist(z, w),$
 $\delta_{r_0} = dist(z, r_0) = depth(z)$



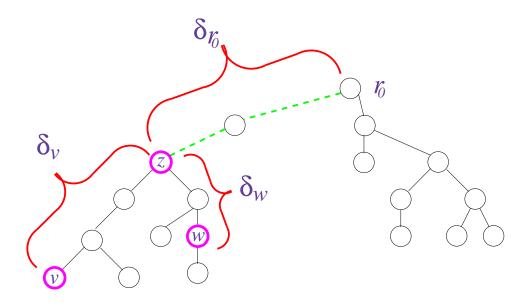
82

Given labels

$$Label'(v) = \langle Label(v), depth(v) \rangle,$$

 $Label'(w) = \langle Label(w), depth(w) \rangle,$

- 1. Deduce $dist(v, w) = \delta_v + \delta_w$,
- 2. Retrieve $depth(v) = dist(v, r_0) = \delta_v + \delta_{r_0}$ and $depth(w) = dist(w, r_0) = \delta_w + \delta_{r_0}$.
- 3. Deduce $depth(z) = \delta_{r_0}$.



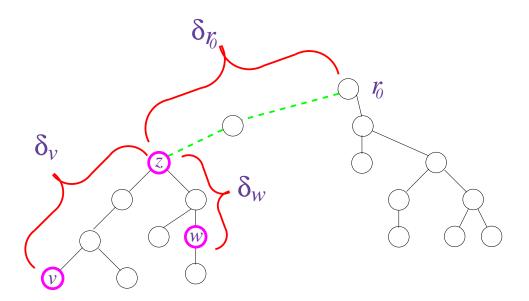
Proof - opposite direction

Given SEP labeling scheme for trees:

Distance marker: Augment each label Label(v) with depth(v) (additional log n bits)

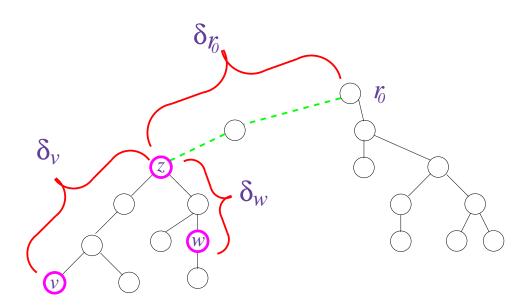
Distance decoding: Consider v, w, z = LCA(v, w)

$$\delta_v = dist(z, v),$$
 $\delta_w = dist(z, w),$
 $\delta_{r_0} = dist(z, r_0) = depth(z)$



Given
$$Label'(v) = \langle Label(v), depth(v) \rangle$$
, $Label'(w) = \langle Label(w), depth(w) \rangle$,

- 1. Deduce δ_{r_0} from Label(v) and Label(w),
- 2. Deduce depth(z) from Label(v) and Label(w),
- 3. Retrieve $depth(v) = dist(v, r_0) = \delta_v + \delta_{r_0}$ and $depth(w) = dist(w, r_0) = \delta_w + \delta_{r_0}$ from additional fields
- 4. Deduce δ_v and δ_w , hence also $\delta_v + \delta_w = dist(v, w)$.



Cor:

- \exists SEP labeling scheme for $\mathcal{T}(n)$ using $O(\log^2 n)$ bit labels;
- any SEP labeling scheme for $\mathcal{T}(n)$ requires $\Omega(\log^2 n)$ bit labels.

Thm:

$$\mathcal{L}(SEP, \mathcal{T}(n)) = \Theta(\log^2 n)$$

LCA labeling schemes [P,00]

Assumption: each node u has unique $O(\log n)$ -bit *identifier* ID(u)

LCA(u, v) = Least common ancestor of u and v

LCA labeling scheme:

Given labels Label(v), Label(w), compute least common ancestor z = LCA(v, w), return ID(z)

Thm [P,00]:

1. $\exists LCA$ labeling scheme with $O(\log^2 n)$ -bit labels for trees

Also, by reduction from SEP:

2. \forall LCA labeling scheme for trees requires some $\Omega(\log^2 n)$ -bit labels

Thm: If only required to return Label(LCA(v, w)) then \exists scheme with $O(\log n)$ bit labels [Alstrup, Gavoille, Kaplan, Rauhe, 01]

Definitions

$$T(v)=$$
 subtree of T rooted at v $\gamma_i(v)=v$'s ancestor at level i of T (E.g. $\gamma_0(v)=r_0$, $\gamma_{depth(v)}(v)=v$)

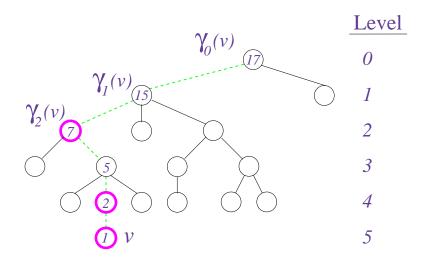
Def: v is *small* if $|T(v)| \leq |T(parent(v))|/2$

"Small ancestor" levels of v:

$$SAL(v) = \{i \mid 1 \le i \le depth(v), \ \gamma_i(v) \text{ is small}\}$$

Small ancestors of v:

$$SA(v) = \{\gamma_i(v) \mid i \in SAL(v)\}$$



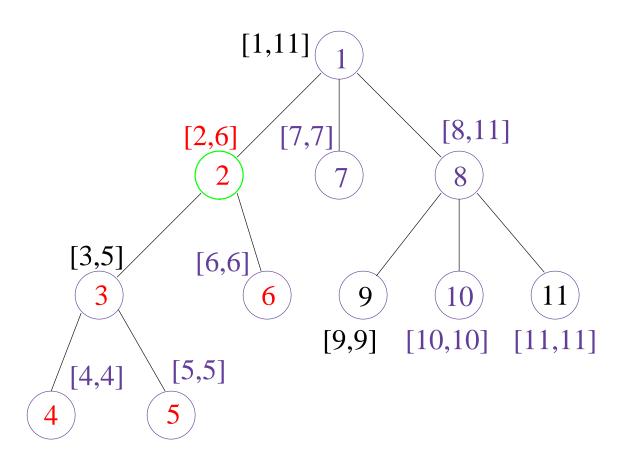
In example: $SAL(v) = \{2, 4, 5\}$

The LCA-marker

Preprocessing: Assign each v identifier ID(v) and interval Int(v) as in interval labeling of [Santoro, Khatib, 85]

Inclusion property: $\forall u, v$,

 $Int(v) \subseteq Int(u) \Leftrightarrow v$ is a descendent of u in T



i-triple of v: Identifiers of v's ancestors on levels $i-1,\ i,\ i+1,$

$$Q_{i}(v) = \langle \langle i-1, ID(\gamma_{i-1}(v)) \rangle, \langle i, ID(\gamma_{i}(v)) \rangle, \langle i+1, ID(\gamma_{i+1}(v)) \rangle \rangle$$

LCA labels:

Identifier

- + interval
- + i-triples of all small ancestor levels

$$Label(v) = \langle ID(v),$$

$$Int(v),$$

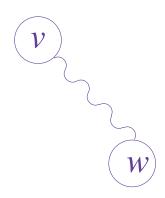
$$\{Q_i(v) \mid 1 \le i < depth(v),$$

$$i \in SAL(v)\} \rangle$$

The LCA-decoder \mathcal{D}_{LCA}

Given labels Label(v) and Label(w), infer identifier ID(z) of z = LCA(v, w)

1. /* v = ancestor of w */If $Int(w) \subseteq Int(v)$ then return ID(v)



2. /* w = ancestor of v */If $Int(v) \subseteq Int(w)$ then return ID(w) 3. /* w, v unrelated */

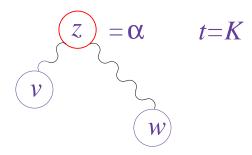
Extract from Label(v) and Label(w) the sets SAL(v), SAL(w), SA(v), SA(w)

$$\alpha = \text{highest level node in } SA(v) \cap SA(w)$$

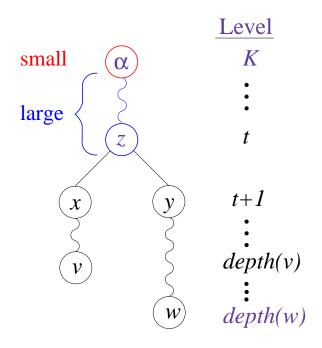
 $/* = \text{least_common_small_ancestor}(v, w) */$
 $K = \text{its level } /* \text{i.e. } \alpha = \gamma_K(v) = \gamma_K(w) */$

4. /* α is LCA(v, w) */
If $\gamma_{K+1}(v) \neq \gamma_{K+1}(w)$ then return $ID(\alpha)$

Level



5. /* α above z = LCA(v, w) (z large) */



/* Fact: Each node has ≤ 1 large child \Rightarrow either x or y is small */ $i_v \leftarrow \min\{i \in SAL(v) \mid i > K\}$ $i_w \leftarrow \min\{i \in SAL(w) \mid i > K\}$ $i_m \leftarrow \min\{i_v, i_w\}$ $/* \Rightarrow i_m = t + 1 */$

6. If $i_v \leq i_w$: get $\gamma_{i_m-1}(v)$ from i_m -triple $Q_{i_m}(v)$ Else: get $\gamma_{i_m-1}(w)$ from i_m -triple $Q_{i_m}(w)$ Return the extracted identifier.

Label size analysis

Lemma: For $T \in \mathcal{T}(n)$, every node v has $\leq \log n$ small ancestors

 $\Rightarrow \forall v, Q_i(v) \text{ has } \leq \log n \text{ } i\text{-triples}$

Thm: $\langle \mathcal{D}_{LCA}, \mathcal{M}_{LCA} \rangle$ is an LCA labeling scheme with $O(g(n) \log n)$ -bit labels for n-node trees with identifiers of size g(n).

Using log *n*-bit identifiers,

Cor: $\mathcal{L}(LCA, \mathcal{T}(n)) = O(\log^2 n)$

Lower bound

Lemma: If $\mathcal{T}(n)$ has an LCA labeling scheme with $l(n) \cdot g(n)$ -bit labels over g(n)-bit identifiers, then it has a SEP labeling scheme with $l(n) \cdot (g(n) + \log n)$ -bit labels.

Since
$$g(n) = \Omega(\log n)$$

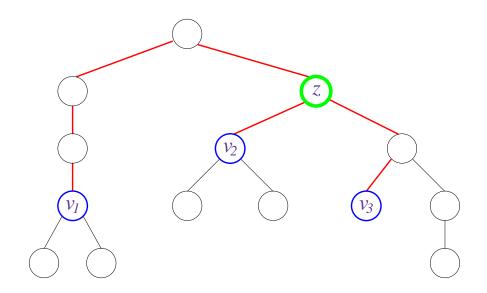
Cor: Any LCA labeling scheme for $\mathcal{T}(n)$ requires some $\Omega(\log^2 n)$ -bit labels.

Thm: $\mathcal{L}(LCA, \mathcal{T}(n)) = \Theta(\log^2 n)$

Center labeling schemes [P,00]

For nodes v_1, v_2, v_3 in tree T,

 $Center(v_1, v_2, v_3) = unique node z s.t.$ paths connecting z to v_1 , v_2 and v_3 are edge-disjoint



Claim: LCA-marker serves also as Center-marker, provided the identifiers are also ancestry and depth labelings:

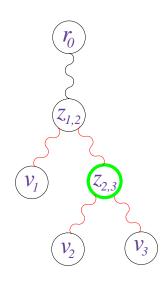
- ID(v) contains depth(v)
- two identifiers ID(v) and ID(w) allow deducing ancestry

(both achievable using $O(\log n)$ -size identifiers)

The Center-decoder \mathcal{D}_{Center}

Denote $z_{i,j} = LCA(v_i, v_j)$

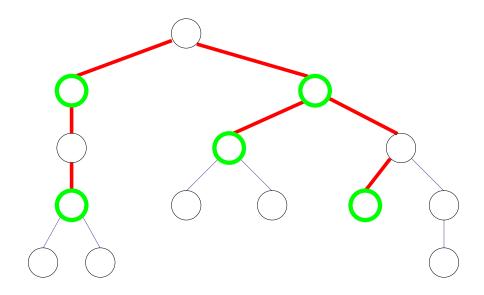
- 1. Compute $ID(z_{1,2})$, $ID(z_{1,3})$, $ID(z_{2,3})$
- 2. If three LCA's coincide then return one (say, $ID(z_{1,2})$)
- 3. If exactly two LCA's coincide, say, $z_{1,3}=z_{1,2}$, then return third, $ID(z_{2,3})$



Thm: $\mathcal{L}(Center, \mathcal{T}(n)) = O(\log^2 n)$

Steiner labeling schemes [P,00]

Steiner tree: For node set W in weighted G, $T_S(W) = \min$ -weight subtree spanning W Steiner(W) = its weight



Steiner labeling scheme: deduces Steiner(W) given labels $\{Label(v) \mid v \in W\}$

 $\mathcal{T}(n,\mu)=$ class of n-node trees with $\mu\text{-bit}$ edge weights

Thm: $\mathcal{L}(Steiner, \mathcal{T}(n, \mu)) = \Theta(\mu \log n + \log^2 n)$

Steiner labeling schemes

Claim: Center-marker serves also as Steiner-marker

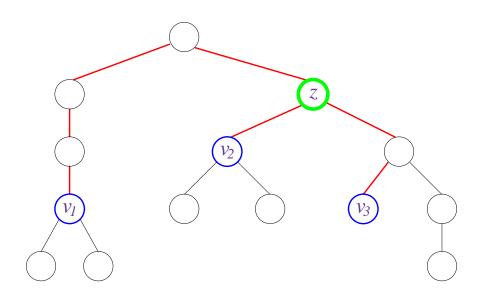
Facts used:

- 1. Center scheme can deduce distances from $z = Center(v_1, v_2, v_3)$ to each v_i
- 2. In labelings of Center-marker, the identifiers ID(v) provide depth(v)

Steiner decoder $\mathcal{D}_{Steiner}$

$$W = \{v_1, v_2, v_3\}$$
:

- 1. Deduce center $z = Center(v_1, v_2, v_3)$
- 2. Calculate distances $d_i = dist(v_i, z)$, $1 \le i \le 3$
- 3. Return $\omega(W) = d_1 + d_2 + d_3$



$$W = \{v_1, \dots, v_q\}$$
 for $q > 3$:
Denote $W_i = \{v_1, \dots, v_i\}$

- 1. Calculate $\omega(W_3)$ as before
- 2. For k = 4 to q do: /* Add $v_k */$



- (a) For every $1 \le i < j \le k$ compute:
 - $z_{i,j} = Center(v_i, v_j, v_{k+1})$
 - $\bullet \ d_{i,j} = dist(z_{i,j}, v_{k+1})$
- (b) Let $i', j' = \text{pair minimizing } d_{i,j}$
- (c) Let $\omega(W_{k+1}) = \omega(W_k) + d_{i',j'}$
- 3. Return $\omega(W_q)$

Correctness proof

Def: For subtree T' and node v in T, $\varphi(v,T')=$ unique shortest path from v to T'

Lemma: \forall node set $W = \{v_1, \dots, v_k\}$ and $v \notin W$, $\exists v_i, v_j \in W$, connected by path $P_{i,j}$ in T, s.t. $\varphi(v, T_S(W)) = \varphi(v, P_{i,j})$

Thm: $\mathcal{L}(Steiner, \mathcal{T}(n, \mu)) = \Theta(\mu \log n + \log^2 n)$

Approximate Steiner labeling schemes for general graphs

 $\mathcal{G}(n,\mu)=$ class of arbitrary n-node graphs with $\mu\text{-bit}$ edge weights.

Steiner and min-weight spanning trees:

For weighted $G(V, E, \omega)$ and node set W:

 $G'(W, E', \omega') = \text{complete weighted graph on } W$ setting $\omega'(x, y) = dist(x, y, G) \ \forall x, y \in W$.

MST(W) = min-weight of spanning tree for G'

Lemma: [Kou, Markowsky, Berman, 81] $Steiner(W) \leq MST(W) \leq 2 \cdot Steiner(W)$

Approximate Decoder $\mathcal{D}'_{Steiner}$

Claim: Given R-approximate distance labeling scheme $\langle \mathcal{D}'_{dist}, \mathcal{M}'_{dist} \rangle$, same marker algorithm yields 2R-approximate Steiner labeling scheme

Idea: Given labels $\{Label(v) \mid v \in W\}$:

- 1. Calculate distance estimates in $G' = (W, E', \tilde{\omega})$,
- 2. Construct MST for G'
- 3. Return its weight

Lemma: $\mathcal{D}'_{Steiner}$ yields 2R-approximation

Cor: If $\mathcal{G}(n,\mu)$ enjoys R-approximate distance labeling scheme, then it also enjoys 2R-approximate Steiner labeling scheme with same size labels

Lemma: [P,00]

 $\exists \ 2\sqrt{2 \log n}$ -approximate *distance* labeling scheme for $\mathcal{G}(n,\mu)$ with $O((\mu + \log n) \log^2 n)$ -size labels

Cor: $G(n, \mu)$ enjoys $4\sqrt{2 \log n}$ -approximate Steiner scheme with $O((\mu + \log n) \log^2 n)$ -size labels

Flow & connectivity

labeling schemes

[Katz, Katz, Korman, P, 02]

Weighted $G = \langle V, E, \omega \rangle$ $\omega(e) = \text{(integral)} \ \textit{edge capacity}$ (Assume infinite-capacity self-loops)

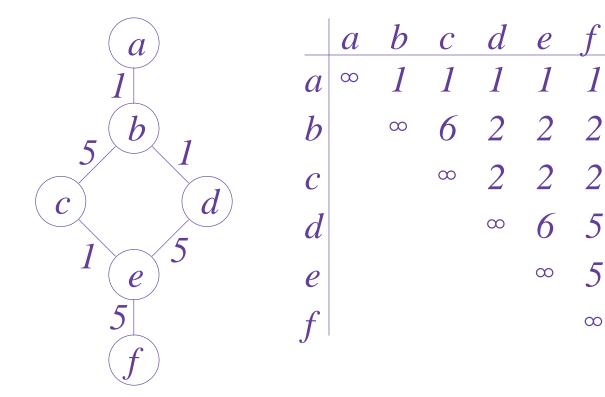
Represent each edge e of capacity $\omega(e)$ as $\omega(e)$ parallel edges of unit capacity

Maximum flow: In path $p = (e_1, ..., e_m)$: flow $(p) = \min_{1 \le i \le m} \{\omega(e_i)\}.$

Max flow in set P of edge-disjoint paths:

$$flow(P) = \Sigma_{p \in P} flow(p).$$

 $flow(u, v) = max\{flow(P) \mid P \text{ is a set of } edge-disjoint paths between } u, v\}.$



 ∞

Connectivity

Edge-connectivity: For nodes u, w:

 $\operatorname{e-conn}(u,w) = \max \text{ flow between } u,w$ assuming $\forall e, \ \omega(e) = 1$

node-connectivity: For nodes u, w:

 \mathbf{v} - $\mathbf{conn}(u,w) = \mathbf{cardinality}$ of largest set P of node-disjoint paths connecting u,w.

By Menger's theorem, for nonadjacent u, w,

 $\operatorname{v-conn}(u,w) = \min \# \operatorname{nodes in} G \setminus \{u,w\}$ whose removal from G (with incident edges) disconnects u from w.

Results

Flow:

 \exists flow labeling scheme with $O(\log n \cdot \log \omega)$ bit labels for general n-node graphs with maximum integral capacity $\widehat{\omega}$, and this is tight

Edge-connectivity:

Tight bound of $\Theta(\log^2 n)$ bit labels

Node connectivity:

Label size depends on connectivity parameter:

1. Label sizes in k-node-connectivity labeling scheme for general n-node graphs:

```
\log n \text{ for } k = 1
3 \log n \text{ for } k = 2
5 \log n \text{ for } k = 3
2^k \log n \text{ for } k > 3
```

2. Lower bound of $\Omega(k \log n)$ on label size for $k = \operatorname{polylog} n$.

Flow labeling schemes

Graph family: $\mathcal{G}(n, \hat{\omega}) =$ capacitated n-node graphs with maximum capacity $\hat{\omega}$

Flow relations:

Given $G = \langle V, E, \omega \rangle$ and integer $1 \leq k \leq \widehat{\omega}$,

$$R_k = \{(x,y) \mid x,y \in V, \text{ flow}(x,y) \ge k\}.$$

Lemma: R_k is an equivalence relation.

Proof:

 ∞ -capacity self-loops $\Rightarrow R_k$ is reflexive

G undirected $\Rightarrow R_k$ is symmetric.

Transitivity follows by duality of flows and cuts:

Suppose (for contradiction) that \exists nodes x, y, z s.t. $R_k(x, y)$, $R_k(y, z)$ hold, but $R_k(x, z)$ doesn't.

$$R_k(x,z)$$
 does not hold ψ flow $G(x,z) \leq k-1$ ψ

 \exists cut $(S; \overline{S})$ of capacity $\leq k-1$ in G s.t. $x \in S$ and $z \in \overline{S}$.

W.I.o.g. $y \in S$.

Then same cut also implies $flow_G(y,z) \le k-1$, hence $R_k(y,z)$ is false too, contradiction.

Equivalence class tree

 $\forall k \geq 1$, R_k induces a collection

$$\mathcal{C}_k = \{C_k^1, \dots, C_k^{m_k}\},\$$

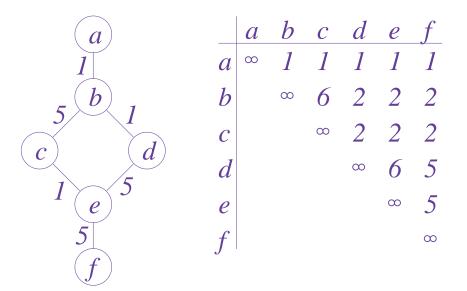
of equivalence classes on V, s.t.

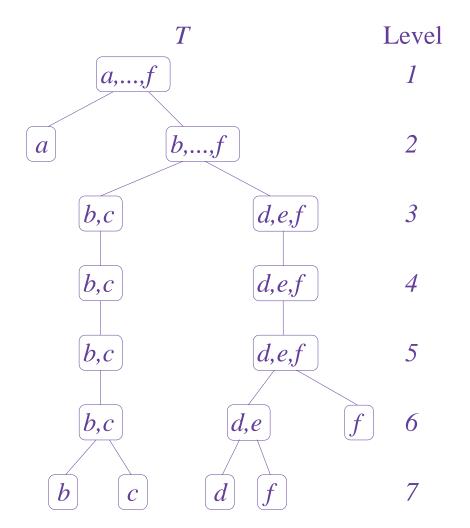
$$C_k^i \cap C_k^j = \emptyset$$
 and $\bigcup_i C_k^i = V$

Note: For k < k', $R_{k'}$ is a *refinement* of R_k , namely, \forall class $C_{k'}^i \exists$ class C_k^j s.t. $C_{k'}^i \subseteq C_k^j$.

Given G, construct a tree T_G corresponding to its equivalence relations:

- k'th level corresponds to relation R_k , i.e., has m_k nodes marked by classes $C_k^1, \ldots, C_k^{m_k}$.
- Root of T_G marked by $C_1^1 = V =$ unique equivalence class of R_1 .
- ullet T_G is truncated at a node once equivalence class associated with it is singleton.





Separation level

For nodes x, y in tree T rooted at r,

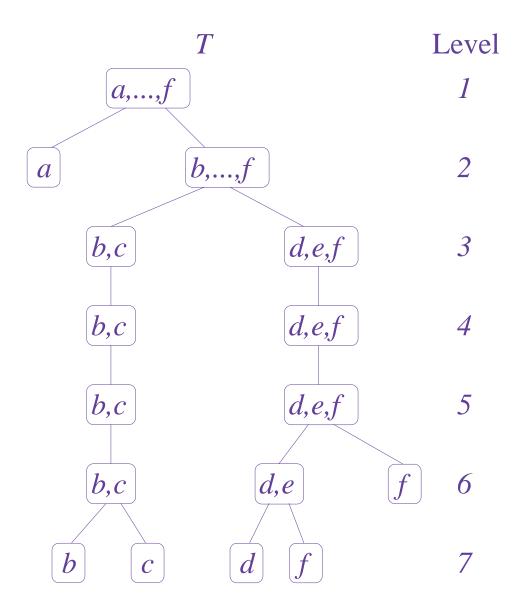
 $SEP_T(x,y) = \text{depth of least common ancestor}$ of x and y, z = LCA(x,y).

I.e., $SEP_T(x,y) = dist_T(z,r)$.

 $\forall v \in G$, let t(v) = leaf in equivalence class tree T_G associated with the singleton $\{v\}$.

Lemma: $\forall v, w \in V$,

$$flow_G(v, w) = SEP_T(t(v), t(w)) + 1.$$



Recall:

For class $\mathcal{T}(n)$ of n-node unweighted trees, $\exists \ SEP$ labeling scheme with $O(\log^2 n)$ -bit labels (and this is tight)

Observe:

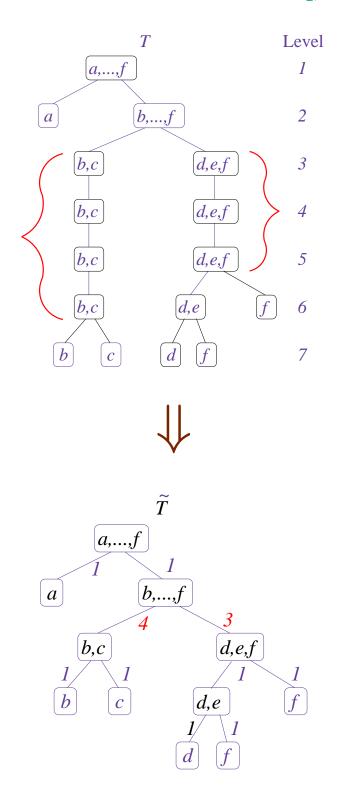
If maximum capacity in n-node graph G is $\widehat{\omega}$, then depth of tree $T_G \leq n\widehat{\omega}$ levels, and it has $\leq n$ nodes per level,

 \Rightarrow # nodes in $T_G = O(n^2 \hat{\omega})$.

Cor: $\mathcal{L}(flow, \mathcal{G}(n, \hat{\omega})) = O(log^2(n\hat{\omega})).$

More careful design

- Compact *long chains*
- Get compacted $\emph{weighted}$ tree $ilde{T}_G$



Analysis improvement

Define separation level for weighted rooted trees: $SEP_T(x,y) = weighted$ depth of LCA(x,y).

Observe: Bounds for SEP labeling schemes on unweighted trees - apply to weighted trees too: For class $\mathcal{T}(\tilde{n}, \tilde{\omega})$ of weighted \tilde{n} -node trees with maximum weight $\tilde{\omega}$, $\exists SEP$ schemes with $O(\log \tilde{n} \log \tilde{\omega} + \log^2 \tilde{n})$ -bit labels.

Observe: Separation level of leaves t(x), t(y) in \tilde{T}_G - still related to $flow_G(x,y)$ as in Lemma.

Observe: \tilde{T}_G has n leaves, every non-leaf node in \tilde{T}_G has ≥ 2 children \Rightarrow # nodes in \tilde{T}_G is $\tilde{n} \leq 2n-1$. Max edge weight in \tilde{T}_G is $\tilde{\omega} \leq \hat{\omega} \cdot n$.

Theorem:

$$\mathcal{L}(\mathsf{flow}, \mathcal{G}(n, \hat{\omega})) = O(\log n \cdot \log \hat{\omega} + \log^2 n).$$

Let $\mathcal{G}(n) = \text{class of } n\text{-node unweighted graphs}$

Cor:
$$\mathcal{L}(e\text{-conn}, \mathcal{G}(n)) = O(\log^2 n)$$
.

Lower bound for flow

Tree class $\mathcal{T}(n, \hat{\omega})$:

n-node balanced binary trees, max capacity $\widehat{\omega}$

Def: For nodes u, v in tree T, path(u, u) = unique path from <math>u to v in T $MaxE(u, v) = \max$ edge weight on path(u, v) $MinE(u, v) = \min$ edge weight on path(u, v).

Observe 1: On a tree, flow(u, v) = MinE(u, v).

Observe 2: On trees, MaxE and MinE are equivalent w.r.t. labeling schemes.

Transformation: Given weighted tree T, let T' = weighted tree obtained by replacing weight $\omega(e)$, $\forall e$, with $\omega'(e) = \hat{\omega} - \omega(e)$.

 \Rightarrow To get lower bound for *flow* labeling schemes on trees, suffices to prove it instead for MaxE.

Thm:

$$\mathcal{L}(MaxE, \mathcal{T}(n, \widehat{\omega})) \geq \frac{1}{2}(\log(n+1)\log(\widehat{\omega}+1) - \log(n+1)\log\log(n+1))$$

Proof idea: Modification of lower bound proof for distance labeling schemes.

Cor: For
$$\hat{\omega}>\log(n+1)-1$$
,
$$\mathcal{L}(\operatorname{flow},\mathcal{T}(n,\hat{\omega}))=\Omega(\log n\log\hat{\omega})$$

Cor:
$$\mathcal{L}(e\text{-conn}, \mathcal{G}(n)) = \Theta(\log^2 n)$$
.

Application 1: Connection setup [P,99]

Model: circuit-switched communication network (represented as unweighted graph G(V, E))

Virtual channel: VC(x,y) = logical connection for transmitting all traffic between x and y

VC setup: By *connection setup (CS)* proc, in response to request by an endpoint

"Best-service" connection setup procedures

Satisfy two "Quality-of-service" properties:

(P1) Shortest channel: VC(x,y) uses shortest (length dist(x,y,G)) route between endpoints x,y

Time measure: Time elapsing since request until VC(x,y) is established

Assume: message crosses link in ≤ 1 time unit

(P2) Minimal setup time: VC(x,y) is established in time dist(x,y,G) once request is issued

Complexity measures for connection setup procedures

Memory:

 $M_{CS} =$ memory requirements per switch

Quiescence time:

 $T_{CS}(x,y)$ = termination time of procedure CS

(Note: Procedure might continue operating after virtual channel VC(x,y) is set up)

Two extreme approaches

Full tables (FT) method:

Store full routing tables in each node
Use to set-up virtual channel upon request

Quiescence time: $T_{FT}(x,y) = dist(x,y,G)$

Memory: $M_{FT} = \Theta(n \log n)$ bits per switch

Bellman-Ford (BF) method:

Search for shortest path for the virtual channel from scratch upon request, by applying shortestpath algorithm

Quiescence time: $T_{BF}(x,y) = Diam(G)$

Memory: M_{BF} is minimal

New label-based (LB) approach

- 1. Assign distance-approximating labels to nodes
- 2. Upon request for setting up VC(x,y):

 Use BF-style flooding for connection setup but limit flooding to distance

$$\hat{d} = \tilde{D}(x, y) \cdot \sqrt{\log n}$$

 $(\tilde{D}(x,y) = \text{estimate obtained from labels} \\ Label(x) \text{ and } Label(y) \text{ to } dist(x,y,G))$

Analysis

Quiescence time:

Shortest path is contained within range \widehat{d} (upper bounds actual distance)

$$\widehat{d}/\log n$$
 lower bounds actual distance $\Rightarrow T_{LB}(x,y) = dist(x,y,G) \cdot \log n$

Memory requirements: $M_{LB} = O(\log^3 n)$, as each node x stores only its own label Label(x)

Theorem: Label-based procedure LB achieves best-service connection setup, with quiescence time and memory requirements within polylog factor of optimum,

$$T_{LB}(x,y) = dist(x,y,G) \cdot \log n$$

$$M_{LB} = O(\log^3 n)$$

Application 2: Memory-free routing [P,99]

Traditional routing schemes:

- 1. Addresses: Attached to messages (Must be very small)
- 2. Local routing tables: Stored at nodes (Hopefully not too large)

Memory-free routing schemes:

Only one type of labels

Goal: Route messages between x, y relying solely on Label(x), Label(y) (+ labels of nodes along route) without any additional information

Routing labeling schemes for trees

Traditional:

 $3 \log n$ bit addresses, $O(\min \{deg(v) \log n, \sqrt{n} \log n\})$ bit routing tables [Cowen, 01]

Lower bound:

 \forall routing scheme with addresses $\in [1, n]$ requires $\Omega(\sqrt{n})$ bit local routing tables [Eilam, Gavoille, P, 98]

Memory-free:

- 1. Routing labeling schemes with $c \log n$ bit labels for small const c [Frigniaud, Gavoille, 01]
- 2. Improved to $c = 1 + O(1/\log \log n)$ [TZ,01]

Contrasting with $\Omega(\sqrt{n})$ lower bound of [EGP,98]: \Rightarrow Variation of $O(\frac{\log n}{\log \log n})$ additive term on address size affects routing table size

Dynamic distributed setting

Motivation: Applications in distributed systems / telecomm networks:

- Topology changes dynamically;
- online scheme must reflect current situation

Goal: localized labeling schemes using distributed adaptive marker protocols

Setting: Dynamic tree networks

- Tree topology
- Each node is a processor

Possible events:

Leaf addition:

New leaf u added; Parent is informed; assigns unique Child# to u

Leaf removal:

Leaf u is deleted:

Parent is informed

Main results

Result 1: \exists *distributed* distance labeling scheme for dynamic trees using $O(\log^2 n)$ bit labels with amortized message complexity $O(\log^2 n)$ per change

Result 2: ∃ general transformation extending a *static* labeling scheme on trees to the *dynamic* setting with *polylogarithmic* overheads

Applicable to a number of natural tree functions (distance, separation level, flow)

Settings & complexity measures

Static topology, distributed scheme:

Fixed *n*-node tree

Label Size:

$$\mathcal{LS}(\mathcal{M}, n) = \max \text{ label size}$$

Message Complexity:

 $\mathcal{MC}(\mathcal{M},n) = \max \# \text{ messages sent by } \mathcal{M}$ during labeling

Semi-dynamic topology

Only node additions are allowed

Marker protocol $\mathcal M$ activated after each node addition.

May modify existing labels.

$$n_0 = \text{initial tree size}$$

 $n_+ = \# \text{ leaf additions}$
 $n_f = n_0 + n_+$

Assume: Topological changes are sufficiently spaced

- $\mathcal{LS}(\mathcal{M}, n)$ remains as for static setting
- $\mathcal{MC}(\mathcal{M}, n_0, n_+) = \max \# \text{ messages sent}$

Dynamic topology

Both leaf additions and deletions allowed

$$\bar{n} = (n_1 = 1, n_2, \dots, n_t)$$

 $n_i = \text{tree size after } i\text{th topology change}$

- $\mathcal{LS}(\mathcal{M},n)$ remains as for static setting
- $\mathcal{MC}(\mathcal{M}, \bar{n}) = \max \# \text{ messages sent}$

Dynamic distance labeling scheme

Step 1: Static scheme StatDL $\mathcal{LS}(\mathsf{StatDL}, n) = O(\log^2 n)$ $\mathcal{MC}(\mathsf{StatDL}, n) = O(n \log n)$

Step 2: Semi-dynamic scheme SemDL $\mathcal{LS}(\mathsf{SemDL}, n) = O(\log^2 n)$ $\mathcal{MC}(\mathsf{SemDL}, n_0, n_+) = O(n_f \log^2 n_f)$

Step 3: Dynamic scheme DL $\mathcal{LS}(DL, n) = O(\log^2 n)$ $\mathcal{MC}(DL, \bar{n}) = O(\sum_i \log^2 n_i)$

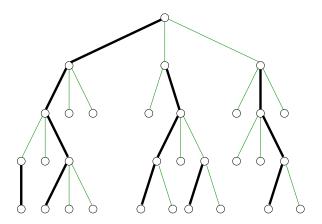
Amortized message complexity per topology change: $O(\log^2 n)$

Static scheme StatDL

Def: $\omega(u) = \#$ nodes in u's subtree

Marked & common children:

Each node u marks edge to heaviest child

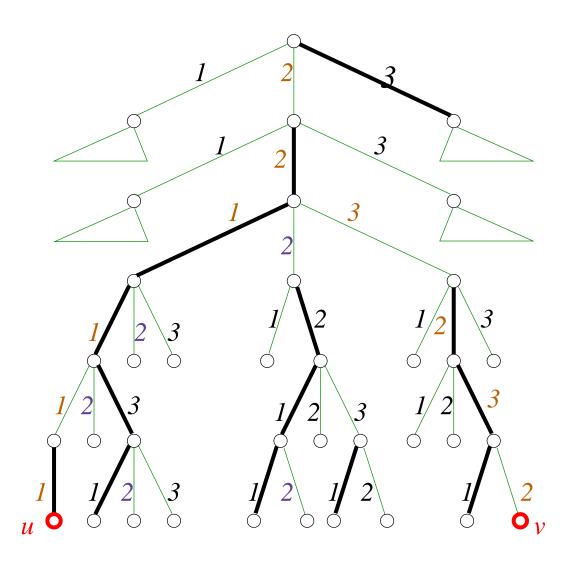


Common(u) = set of unmarked children

Observ: For common child v of u, $\omega(v) \leq \omega(u)/2$

Balance property: $\forall u, path(u)$ (from root) contains $O(\log n)$ unmarked edges

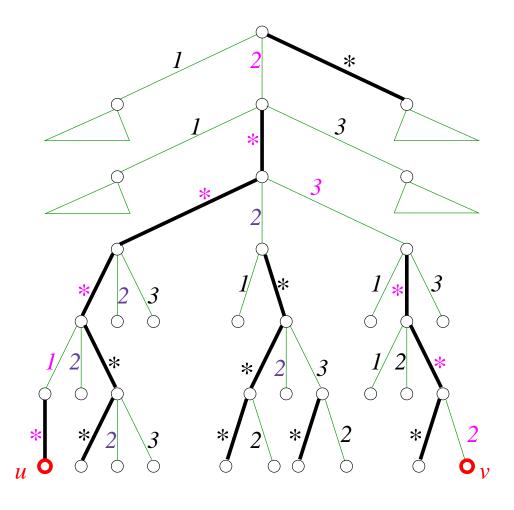
The label structure



$$L^{\text{simple}}(u) = (2.2.1.1.1.1)$$

$$L^{\text{simple}}(v) = (2.2.3.2.3.2)$$

Compacting the labels



$$L^{\text{full}}(u) = (2, *, *, *, 1, *)$$

$$L^{\text{comp}}(u) = (2, *^3, 1, *)$$

$$L^{\text{full}}(v) = (2, *, 3, *, *, 2)$$

$$L^{\text{comp}}(v) = (2, *, 3, *^2, 2)$$

Distributed marker protocol

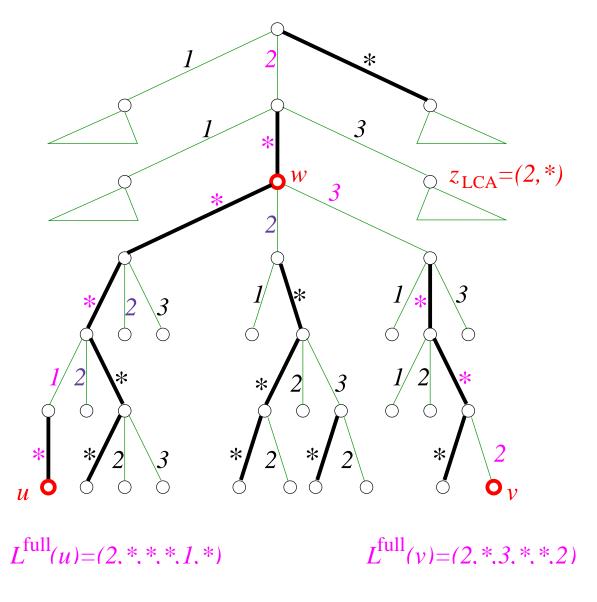
Def: $\omega(u) = \#$ nodes in u's subtree

- 1. Assign Child# 1, 2, ... to children in arbitrary order
- Calculate node weights bottom-up by convergecast
- 3. Node u marks edge at heaviest child
- 4. Assign distance labels top-down:
 - (a) For v = root: $L^{\text{full}}(v) \leftarrow \langle \rangle$ /* empty list For v child of u with Child # = s:

$$L^{\text{full}}(v) \leftarrow \begin{cases} L^{\text{full}}(u) \cdot \langle \star \rangle, & \text{if } v \text{ is marked,} \\ L^{\text{full}}(u) \cdot \langle s \rangle, & \text{otherwise.} \end{cases}$$

(b) Compute $L^{\text{comp}}(v)$ from $L^{\text{full}}(v)$; send to all children

Distance computation



$$dist(u,v) = dist(u,w) + dist(w,v)$$
$$= Depth(u) + Depth(v) - 2Depth(w)$$

Analysis

Observations:

- 1. New child-numbers are of size $\log n$ bits.
- 2. \forall common child v of u: $\omega(v) \leq \omega(u)/2$
- 3. Balance property is satisfied.

Thm:

$$\mathcal{LS}(\mathsf{StatDL}, n) = O(\log^2 n)$$

 $\mathcal{MC}(\mathsf{StatDL}, n) = O(n \log n)$

Dynamic distributed tools

General idea:

- 1. Keep track of node weights
- 2. Change marked edges & labels accordingly

Main difficulty:

Maintaining exact weights incurs high overhead

Solution: Keep weight *estimates*

⇒ Not clear exactly which child is heaviest, yet common children are small

Important: Minimize # marked edge changes
(each costs in communication)

Weight-Watch Protocol WW

Modifying the method of [Afek, Awerbuch, Plotkin, Saks, 1989], derive weight estimation protocol WW for dynamically growing trees, satisfying

Property WW: \forall node v maintains weight estimation $\tilde{\omega}(v)$ s.t. at any time,

$$\omega(v) \leq \tilde{\omega}(v) \leq \frac{5}{4} \cdot \omega(v)$$

Note: Modification fails in fully dynamic model

Lemma: $\mathcal{MC}(WW, n_0, n_+) = O(n_f \log^2 n_f)$

Weight ratios

Exact ratio:

$$\varrho(u) = \frac{\omega(u)}{\omega(parent(u))}$$

Estimated ratio:

$$\tilde{\varrho}(u) = \frac{\tilde{\omega}(u)}{\tilde{\omega}(parent(u))}$$

Property WW guarantees:

Lemma:

$$\frac{4}{5} \cdot \varrho(u) \leq \tilde{\varrho}(u) \leq \frac{5}{4} \cdot \varrho(u)$$

Heavy-Child Protocol HC

- 1. \forall node v keeps estimated weight $\tilde{\omega}(v)$ + all children's estimated weights
- 2. Each node calculates $\tilde{\varrho}(u)$ for each child u
- 3. Shuffle event $\gamma(v, u', u)$:

Whenever node v observes a common child u satisfies

$$\tilde{\varrho}(u) > \frac{3}{4}$$

it changes its marked edge from u' to u

Properties

- 1. If $\tilde{\varrho}(u) > 3/4$ then $\varrho(u) > 3/5$ $\Rightarrow \forall v$, at most one child u has $\tilde{\varrho}(u) > 3/4$
- 2. $\forall v, \forall \text{ common child } u \text{ of } v, \varrho(u) < 15/16$
- 3. Protocol HC satisfies balance property

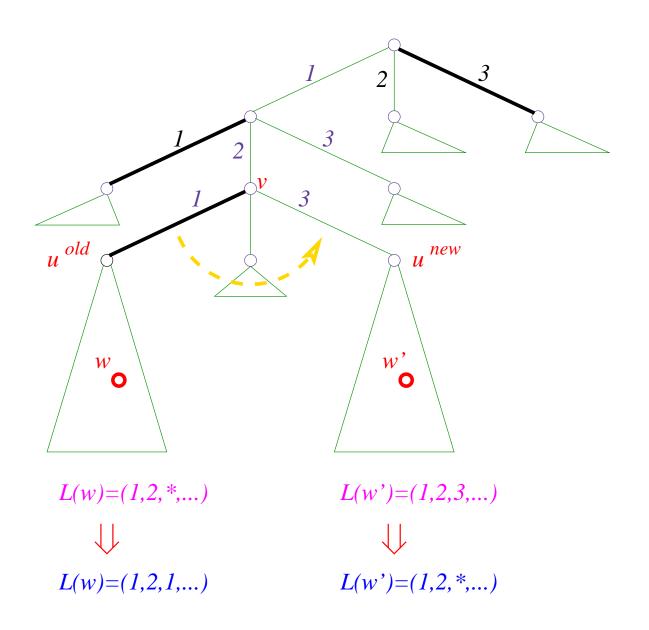
4.
$$\mathcal{MC}(\mathsf{HC}, n_0, n_+) \leq 2 \cdot \mathcal{MC}(\mathsf{WW}, n_0, n_+)$$
$$= O(n_f \log^2 n_f)$$

Semi-dynamic Protocol SemDL

- 1. Run Protocol StatDL
- 2. Initiate Protocol HC, monitor its behavior
- 3. For new v added as child of u with Child# = s:

$$L^{\text{full}}(v) \leftarrow \begin{cases} L^{\text{full}}(u) \cdot \langle \star \rangle, & \text{if } v \text{ is marked} \\ L^{\text{full}}(u) \cdot \langle s \rangle, & \text{otherwise.} \end{cases}$$

- 4. If shuffle $\gamma(v, u^{old}, u^{new})$ occurs in HC where v shifts its pointer from u^{old} to u^{new} with Child# = s^{old} and s^{new} resp, then:
 - (a) $\forall w \in subtree(u^{new})$ changes entry depth(v) of $L^{\text{full}}(w)$ from s^{new} to \star
 - (b) $\forall w \in subtree(u^{old})$ changes entry depth(v) of $L^{\mathsf{full}}(w)$ from \star to s^{old}



Analysis

Label size:

- 1. Protocol SemDL maintains correct labels
- 2. Protocol HC maintains the balance property

Complexity:

- Step 2 takes $O(n_f \log^2 n_f)$ messages
- Step 3 takes one $O(\log^2 n)$ -bit message
- Step 4 takes $O(\omega(v)) \equiv O(\omega(\gamma))$ messages
- ullet Tree size satisfies $n < n_f$ at all times

Lemma: $\sum_{\gamma} \omega(\gamma) = O(n_f \log n_f)$

Proof:

$$\psi(v) = \sum_{u \in Common(v)} \omega(u)$$

$$\Psi = \sum_{v} \psi(v)$$

Adding v:

 $\psi(u)$ increases by 1

- $\Leftrightarrow v \in subtree(w) \text{ for some } w \in Common(u)$
- \Leftrightarrow u is on path(v) with unmarked outgoing edge

path(v) has $O(\log n) \le O(\log n_f)$ unmarked edges

- $\Rightarrow \Psi \text{ increases by } O(\log n_f)$
- \Rightarrow all additions contribute $O(n_+ \log n_f)$

Initially: $\Psi \leq O(n_0 \log n_0)$

Shuffle $\gamma(v, u^{old}, u^{new})$:

$$\varrho(u^{new}) \ge 3/5 \Rightarrow \varrho(u^{old}) \le 2/5 \Rightarrow$$

$$\psi^{post}(v) - \psi^{pre}(v) = \omega(u^{old}) - \omega(u^{new}) \le -\frac{1}{5} \cdot \omega(v)$$

 \Rightarrow shuffle decreases Ψ by $\Omega(\omega(v)) = \Omega(\omega(\gamma))$

$$\Rightarrow \Psi \leq O(n_0 \log n_0) + O(n_+ \log n_f) - \Omega(\sum_{\gamma} \omega(\gamma))$$
.

$$\Psi \geq 0 \Rightarrow \sum_{\gamma} \omega(\gamma) \leq O(n_f \log n_f)$$

Thm:

- 1. $\mathcal{LS}(\mathsf{SemDL}, n) = O(\log^2 n)$
- 2. $\mathcal{MC}(\mathsf{SemDL}, n_0, n_+) = O(n_f \log^2 n_f)$

Algorithm DL - dynamic setting

General idea: Run SemDL ignoring deletions, i.e., treat deleted nodes as if they still exist

Problem: If tree size falls significantly then labels that were *small* before might be *large* now

Accounting for deletions: Parallel to SemDL, run protocol estimating # topology changes

Every $\Theta(n)$ topology changes, restart SemDL

Change-Watch Protocol CW

 $\tau = \#$ topology changes during execution

Change-Watch Protocol CW: Instance of the protocol of [AAPS,89] in which the root maintains estimate $\tilde{\tau}$ of τ satisfying

$$au \leq ilde{ au} \leq frac{5}{4} \cdot au$$

Lemma [AAPS,89]:

$$\mathcal{MC}(CW, \bar{n}) = O((n_1 + \tau) \log^2(n_1 + \tau))$$

(Note: Here n_1 is not necessarily 1)

Protocol DL

- 1. Root calculates initial # nodes n_0
- 2. Start Protocols SemDL and CW.
- 3. If node v is deleted during run: u = parent(v) simulates its behavior as if v and its descendents are still in the tree:
 - (a) For Protocols WW and HC, simulation is trivial requires no extra messages
 - (b) For Protocol SemDL, u simply avoids passing new labels to v following shuffles
 - (c) Protocol CW accounts for node deletions
- 4. When estimateed count of topology changes grows ($\tilde{\tau} \geq n_0/4$): return to Step 1

Thm:

1.
$$\mathcal{LS}(DL, n) = O(\log^2 n)$$

2.
$$\mathcal{MC}(\mathsf{DL},\bar{n}) = O(\sum_i \log^2 n_i)$$

Main proof observations:

- 1. Restart occurs every au changes for $\frac{n_0}{5} \le au \le \frac{n_0}{4}$
- 2. During a phase (between restarts), $\frac{3n_0}{4} \leq n_i \leq \frac{5n_0}{4}$
- 3. During a phase, the overall communication complexity is

$$O(n_0 \log^2 n_0) = O(\sum_i n_i \log^2 n_i)$$