Permutation Graphs and Applications

ASAAD Y. GHAWI
Kent State University

In this Presentation:

- Idea of Permutation Graphs
- Applications
- Classical problem (Coloring)

Introduction

- Let's consider the sequence of natural numbers:
$\mathrm{N}=\{\mathbf{1 , 2 , 3 , 4 , 5 , 6 \}}$
- Then a permutation is a sequence as follows:

$$
\begin{aligned}
& P_{1}=\{\mathbf{1 , 2 , 3 , 4 , 5 , 6}\} \\
& P_{2}=\{\mathbf{6 , 2 , 4 , 3 , 1 , 5 \}} \\
& P_{3}=\{\mathbf{5 , 4 , 3 , 6 , 1 , 2}\}
\end{aligned}
$$

Notice there are N of permutations π

Introduction

- Given a permutation π, we can construct a graph $G(\pi)$:
> Example:

$$
\begin{aligned}
N & =[1,2,3,4,5,6] \\
\pi & =[4,3,6,1,5,2]
\end{aligned}
$$

Introduction

Properties:

- Reversing the order of π gives us the complement
- The complement is also a permutation graph
- Transitively Orientable
- $\mathrm{G}(\pi)$ and $\mathrm{G}^{\prime}(\pi)$ are transitively orientable

Introduction

Properties:

- Corollary 7.4(Key point):

The chromatic number of $\mathrm{G}(\pi)=$ minimum number of queues required to sort π.

- Also:

Theorem : A graph is a permutation graph IFF G and G' are comparability graphs.

Application

- Matching Diagram
- is drawn by adjoining pairs of matching elements from the sets N and π.
- Intersections depict adjacency.
- characterizes Permutation Graphs.

Matching Diagram of $\pi=[4,3,6,1,5,2]$

Permutation Graph for $\pi=[4,3,6,1,5,2]$

Application

- Airline Routes (our real-life problem)
- Suppose two collections of cities -airports
- Assign flight altitudes to connecting cities
- Prevent intersecting flights colliding mid-air
- Example:

Application

- Draw a matching diagram
- Each edge of the flight diagram is an "element"
- Gives us a permutation and a graph

Classical Problem

- The Coloring problem
- Distinct colors need distinct altitudes
- Algorithm:

Sorting Permutation

- We use n queues in parallel to demonstrate:

- Each element goes into one of the n-queues
- But cannot go "behind" a larger element

Sorting Permutation

- The "unpacking/withdrawing" stage is done
- By pulling out elements in proper order

Conclusion: We only allow non-inverted pairs in same queue

Sorting Permutation

- Assigning unique color to each queue

Corollary 7.4:
chromatic number = minimum number of queues

Coloring of Airline Routes

4 sidall

1	3	5	7	9									
4	1	3	8	10	2	5	7	9	6	11		2	6
:---	:---												

Thank you!

