Art Gallery Problem

-Tarun Chalasani

R-W Problem Statement

- Art Gallery needs to be guarded.
- Objective: Appoint minimum number of guards to efficiently guard the entire building.

Generic Solution

- Usually the buildings are rectangular in shape.
- Therefore it is easy to find the minimum number of guards.
- Consider the buildings with different shapes for which finding a general answer is difficult.

Constructing a graph

- Considering the object in the R-W problem is a building, the graph will be a simple polygon joining the vertices of the building.
- n - Number of Vertices
- e - Number of Edges

Types of Problems

- There are two types of problems that arise from this example based on what visibility is important:
- Considering Museum Problem where the valuables are placed inside of it, Interior Visibility is preferred.
- Consider a Fort where is it important to be vigilant and watchful, Exterior Visibility is preferred.

Interior Visibility

- Definition of Problem:
- P - Simple Polygon
- x, y are points in P
- x "covers" y if the edge $x y$ also belongs to P
- $G(P)$ - minimum number of point of P such that for any y in P, some $x=x 1, x 2, \ldots . . x k$ covers y
- $g(n)$ be the $\max (G(P))$ over all n-vertex polygons

Fisk's Clever Argument

- Consider a simple polygon bounded by straight line segments that do not cross each other.
- Number of guards depend on number of vertices in the polygon.
- According to Fisk's Clever Argument, you will not need more than $n / 3$ guards to guard the building where n is the number of vertices.
- This is equivalent to saying that a guard is needed for ever third vertex.

Is the Fisk's Proof always true?

- The answer is NO!

- The following examples will prove the same.

one of x_{i} is not visible

Constraints

- Unlike Exterior Visibility the placements of guards is efficient if they can see all the edges.
- They must also be able to see the interior.
- Decision to choose the vertices or edges to place the guards or a combination of both.

Fisk's Proof

- Necessity:
- $\mathrm{g}(\mathrm{n})$ is always greater than or equal to "floor(n/3)"
- Sufficiency:
- $\mathrm{g}(\mathrm{n})$ is always less than or equal a to "floor(n/3)"
- To satisfy both it is said that $\mathrm{g}(\mathrm{n})=$ floor($\mathrm{n} / 3$)

Proving Necessity

- $n=3$

- $n=5$

- $n=4$

- $n=6$

Proving Sufficiency

- Triangulation Theorem:
- Triangulate (join the vertices to form triangles without overlapping) the polygon
- If there are n vertices, the number of triangles formed are n-2
- Color the vertices of a graph by ensuring that there are different colors in the graph.
- Considering Fisk's algorithm, 1 guard can replace all the points in the triangle.

Contd.

- It is observed that every color is used no more than floor(1/3) times.
- As there are three colors, lets say a, b and c represent the number of nodes of each color.
- $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$
- $\mathrm{n}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
- Therefore $\mathrm{a} \leq$ floor(n/3).
- Assumption made here is that every triangle is treated as an individual polygon where a covers the other two nodes.

Thank You

