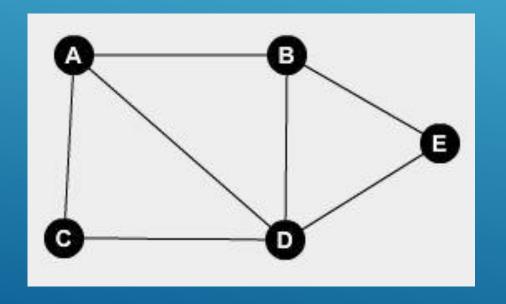
DEGREE SEQUENCES AND SPLIT GRAPHS

ESRAA R. ALZAIDI

DEGREE SEQUENCES

A sequence of integers d1,...,dn is said to be a degree sequence (or graphic sequence) if there exists a graph in which vertex i is of degree di It is often required to be non-increasing, i.e. that $d1 \ge ... \ge dn$.



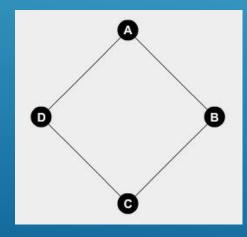
deg. seq.=[4,3,3,2,2]

DEGREE SEQUENCES

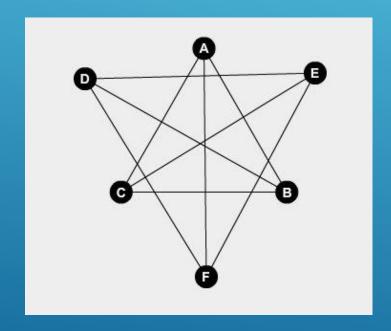
Finding a graph with given degree sequence is known as graph realization problem.

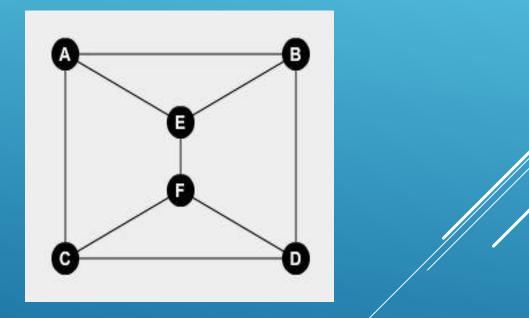
> Example:

The sequence [2,2,2,2] corresponds to the cordless 4-cycle C4



The degree sequence does not uniquely identify a graph this sequence [3,3,3,3,3,3] corresponds to both:





CHARACTERIZATIONS

- 1- Handshaking lemma
- The **degree sum formula** states that, given a graph G=(V,E):

$$\sum_{v \in V} \deg(v) = 2|E|$$

• The formula implies that in any graph.

To **prove** that in any group of people the number of people who have shaken hands with an odd number of other people from the group is even.

CHARACTERIZATIONS

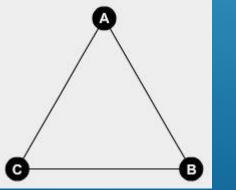
2- in a degree sequence of length *n* no integer can be larger than *n*-1.

n= 8

deg. Seq.=[7,6,5,5,5,4,4,2]

3- The sum of these integer numbers is at most n(n-1)

4- If all the vertices with degree *n*-1, the corresponding graph of this sequence is a clique.



n=3 deg. seq.=[2,2,2]

GRAPHIC DEGREE SEQUENCE RECOGNITION PROBLEM

An integer sequence is not necessarily a degree sequence (graphic degree sequence), such as [1,1,1] and [4,4,2,1,1].

Theorem (Havel [1955], Hakimi [1962]). A sequence A of integers $n - l \ge d1 \ge d2 \ge ... \ge dn$ ≥ 0 is graphic if and only if the modified sequence :

$$\Delta' = [d_2 - 1, d_3 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n]$$

(sorted into decreasing order) is graphic.

7,6,5,5,5,4,4,2	< Order
5,4,4,4,3,3,1	< remove 7. Subtract 1 to 7 below
3,3,3,2,2,1	< remove 5. Subtract 1 to 5 below
2,2,1,2,1	< remove 3. Subtract 1 to 3 below
2,2,2,1,1	< Order
1,1,1,1	< remove 2. Subtract 1 to 2 below
0,1,1	< remove 1. Subtract 1 to 1 below
1,1,0	< Order
0,0	< remove 1. Subtract 1 to 1 below

THE SEQUENCE IS GRAPHIC

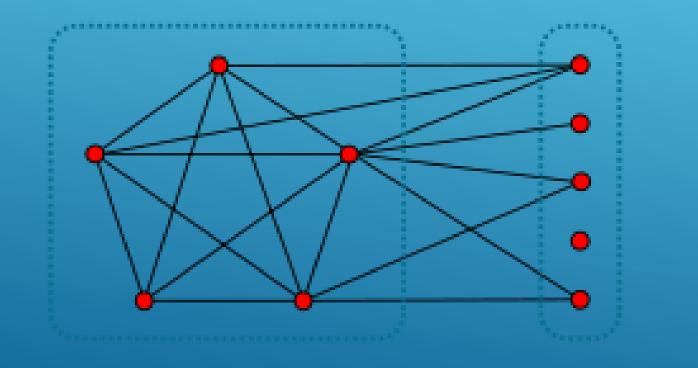
GRAPHIC DEGREE SEQUENCE RECOGNITION PROBLEM

Theorem (Erdos and Gallai [1960]). A sequence of integers $n - l \ge d1 \ge d2 \ge ... \ge dn \ge 0$ is graphic if and only if:

(i)
$$\sum_{i=1}^{n} d_i$$
 is even, and
(ii) $\sum_{i=1}^{r} d_i \le r(r-1) + \sum_{i=r+1}^{n} \min\{r, d_i\},$
for $r = 1, 2, ..., n - 1.$

SPLIT GRAPHS

a **split graph** is a graph in which the vertices can be partitioned into a clique and an independent set.



GENERAL CHARACTERIZATIONS

• An undirected graph G is a split graph if and only if its complement G is a split graph.

• G contains no induced subgraph isomorphic toC4, or C5.

• G is chordal graph

SPLIT GRAPH CHARACTERIZATIONS

Theorem. Let G be a split graph whose vertices have been partitioned

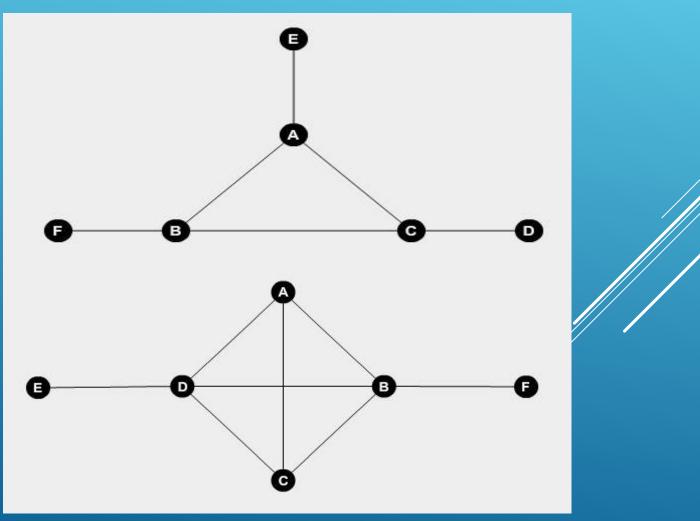
into a stable set S and a complete set K. Exactly one of the following conditions

holds:

1- S= a(G) and K= ω(G) S+K is unique

2- S= a(G) and K= $\omega(G)$ -1 Exists x in S, K+{x} is complete

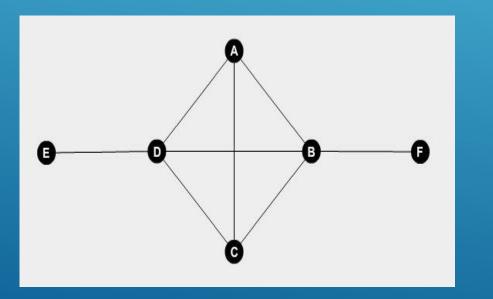
3- S= a(G)-1 and K= $\omega(G)$ Exists y in K, S +{y} is stable

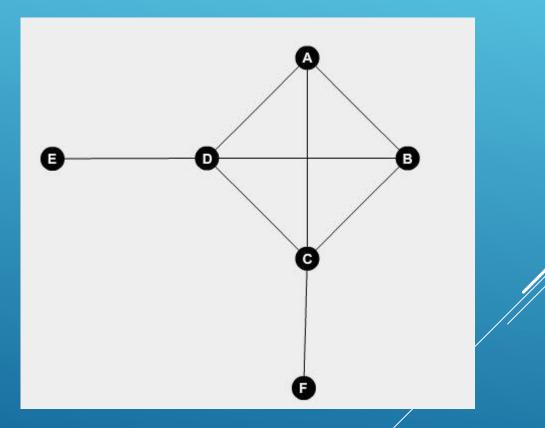


SPLIT GRAPH CHARACTERIZATIONS

- If G is a split graph, then every graph with the same degree sequence as G is also a split graph.
- Example:

deg. Seq.=[4,4,3,3,1,1]





SPLIT GRAPH AS REAL WORLD APPLICATION

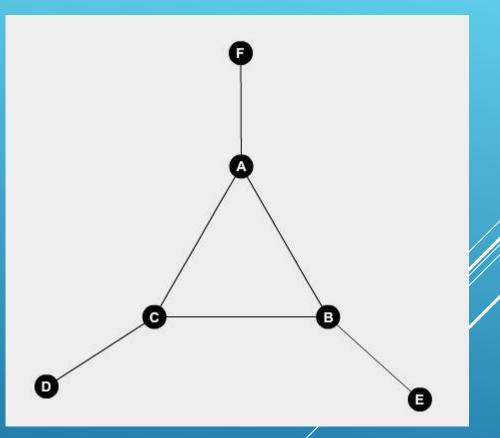
Privacy Policy in Facebook

sharing contents with friends of friends represents a split graph.

PRIVACY POLICY IN FACEBOOK

Assume A,B, and C are friends, and F is friend of A E is friend of B D is friend of C If F shared contents with friends of friends, these contents will be seen by A,B, and C,

but not D and E. In this case, $K = \{F, A, B, C\}$, and $S = \{D, E\}$.



REFERENCES

- <u>http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/degree_se</u>
 <u>quences.html</u>
- <u>https://en.wikipedia.org/wiki/Degree_(graph_theory)</u>
- Algorithmic Graph Theory and Perfect Graphs, by Martin Charles Golumbic
- https://www.youtube.com/watch?v=aNKO4ttWmcU