Frequency Assignment in cellular networks

\author{

- Mahitha Reddy
}

Agenda

Problem statement

Graph coloring
Solution to the problem
1/ /

Explanation

Problem Statement

- High Demand for Cellular Mobile Services.
- Has already reached its Capacity Threshold.
- Different techniques can be used to increase the capacity. (give examples)
- Best solution : Frequency Reuse.
- Frequency assignment is an important problem in the operation of the mobile networks.
- So, I propose a solution using Graph Coloring Method.
- The solution is to assign a frequency for every call from the mobile device.

Agenda

Problem statement

Graph coloring

Solution to the problem

II/

Explanation

Graph Coloring

Graph coloring is an assignment of colors to the elements of a graph.

- Graph coloring is composed of three types :-
- Vertex coloring
- Edge coloring
- Region coloring

Vertex Coloring:

DEFINITION: The vertex coloring of a graph is coloring of the vertices such that no 2 adjacent sides receive same color.
USES:

- Model many scheduling problems
- Optimal assignments of channels to radio stations and spectrum frequencies to mobile operations

OBJECTIVE:

- Find the minimum number of colors needed to color the vertices of a graph as possible.
- This minimum number to color the vertices of a graph is known as Chromatic number.

Edge coloring:

- The edge coloring is to color the edges of a given graph with fewest colors such that no two edges incident to a common vertex are assigned with the same color.
- The problem finds application in assigning class room to course and in scheduling problems.
- The minimum number of colors needed to color a graph is known as chromatic index.

Region Coloring:

- Region coloring is generally used to color a map.
- The graph has a vertex for each region of the map and an edge connecting two vertices if and only if the regions share a common boundary.
- Region coloring is done in a way that no two regions sharing a common boundary are assigned with same color.

Agenda

Problem statement

Graph Coloring

Solution to the Problem

Explanaion

Solution to the problem

- The problem is now divided into three sub problems :-
- Graph Creation
- Graph Coloring

Solution to the problem

- Graph Creation
- The Graph $G=(V, E)$ where V represents non- empty sets of vertices and E represents non empty set of edges which shows relationship among vertices.

Solution to the problem

- Graph Creation
- The Graph which has to be colored is represented with 8 vertices
- The graph G which is a collection of vertices and edges, where $V=\{1,2,3,4,5,6,7,8\}$ and $E=$ $\{(1,2),(1,4),(1,6),(1,7),(2,1),(2,4),(2,7)$, $(2,8),(3,4),(3,7),(3,8),(4,1),(4,2),(4,3),(5,1),(5,8),(6,1),(7,3)$, $(7,2),(7,1),(8,5),(8,3),(8,2)\}$.

Solution to the problem

- Here is the graph with coloring

Agenda

Problem Statement

Graph Coloring

Solution to the problem
Explanation

Explanation

- From the above graph ,consider the frequencies allocating to network users as colors.
- The minimum number of colors i.e., the communication between users is obtained by using minimum number of frequencies.
- The nodes of a cellular graph connected with an edge must be assigned different colors i.e., users located close to each other.

By this our Agenda gets completed. THANK YOU

Questions??

