Lecture #2

Plan

- solving Berge Mystery Story (<u>island-story.pdf</u>, <u>library-story.pdf</u>)
- interval graphs
 - o interval model to graph
 - graph to interval model (interval graph recognition problem)
 - other applications of interval graphs
 - physical mapping of DNA
 - \circ archeology
 - o temporal reasoning
 - o scheduling
- 0
- talks
 - o a real-world problem leading to a graph problem
 - special properties of those graphs
 - o how to solve the graph problem efficiently utilizing those properties
 - interpreting graph solution to real-life problem
- basic graph notions and notations
 - simple graphs (undirected, unweighted, loopless, w/o multiple edges)
 - path and simple path
 - cycle and simple cycle
 - induced subgraph, induced cycle, induced path
 - o adjacency lists
 - o adjacency matrix
 - the complement of a graph
- Interval graph characterizations
 - chordality
 - o co-comparability, comparability
 - induced cycles
 - asteroidal triples
 - umbrella-free ordering
- 4 classical graph problems
 - cliques and clique number
 - o independent set and stability number
 - coloring and chromatic number
 - clique cover and clique cover number
 - inequalities between corresponding numbers
- solving 4 classical problems on interval graphs efficiently
 - equalities between corresponding numbers
 - implications for real-life problems
- the world of intersection graphs

References:

- 1. Chapters 1 and 8 of M. Golumbic's book plus related papers/material
- 2. <u>http://videolectures.net/sicgt07_kratochvil_gig/</u>
- 3. <u>http://www.fi.muni.cz/~hlineny/Vyuka/GT/Grafy-lect-eng-9.pdf</u>
- 4. <u>http://en.wikipedia.org/wiki/Intersection_graph</u>