Lecture \#5

Plan

- Each graph is the intersection graph of some family of objects.
- Interval graphs as the intersection graphs of a family of subpaths of a path.
- What are the intersection graphs of subtrees of a tree? Are they special?
- Triangulated graphs (alias chordal graphs).
- Simplicial vertices and perfect elimination orderings (P.E.O.S).
- Basic properties of chordal graphs
- Existence of at least two simplicial vertices.
- Minimal separators.
- First characterization: three equivalent statements
- G is chordal \leftrightarrows
- G has a P.E.O. \leftrightarrows
- Every minimal separator is a clique.
- How to find a P.E.O.?
- Naïve (polynomial)
- LexBFS (linear)
- MCS (linear)
- Linear time recognition algorithm.
- Chordal graphs as the intersection graphs of a family of subtrees of a tree.
- A family of subtrees of a tree has the Helly property.
- The intersection graph of a family of subtrees of a tree is chordal.
- Second characterization: three equivalent statements
- G is chordal \longleftrightarrow
- G is the intersection graph of a family of subtrees of a tree $\leftrightarrows \rightarrow$
- There is tree T(G) whose nodes are the maximal cliques of G and for every vertex v of G the cliques containing it form a subtree in $T(G)$.
- Solving 4 classical problems on chordal graphs in linear time.
- Equalities between corresponding numbers.
- Chordal graphs are perfect.
- $\quad \mathrm{p}$-Centers and r-domination in trees.
- Efficient solutions via chordal graph.
- Other applications of chordal graphs.

References:

1. Chapters 4 of M. Golumbic's book plus related papers/material
2. http://www.fi.muni.cz/~hlineny/Vyuka/GT/Grafy-lect-eng-9.pdf
3. http://en.wikipedia.org/wiki/Intersection_graph
4. http://www.cse.iitd.ac.in/~naveen/courses/CSL851/uwaterloo.pdf
