Register Allocation (via Graph Coloring)

Presented By

Rakesh Kaparthi

Register Allocation

- Intermediate code uses unlimited temporaries
 - Simplifies code generation and optimization
 - Complicates final translation to assembly
- Typical intermediate code uses too many temporaries

Register Allocation

• The Problem:

Rewrite the intermediate code to use no more temporaries than there are machine registers

• Method:

> Assign multiple temporaries to each register

> But without changing the program behavior

Simple Example:

• Consider the program

a := c + d e := a + b f := e - 1

• Assume a & e dead after use

➤ A dead temporary can be "reused"

• Can allocate a, e, and f all to one register (r_1) :

```
r_1 := r_2 + r_3

r_1 := r_1 + r_4

r_1 := r_1 - 1
```

Steps to Perform Register Allocation

Step 1: Draw the Control Flow Graph (CFG)

Step 2: Perform Liveness Analysis

Step 3: Draw the Register Interference Graph (RIG)

Step 4: Perform Graph Coloring

Step 5: Allocate Registers based on Colored Graph

Example

```
L1: a=b + c
d:= -a
e:= d + f
if(expression) then
   f:= 2 * e
else
    b:= d + e
   e:= e - 1
    . . .
end if
b := f + c
goto to L1
. . . .
. . . .
```

Step 1: Control Flow Graph

Step 2: Perform Liveness Analysis

Step 3: Register Interference Graph

- E.g., b and c cannot be in the same register
- E.g., b and d can be in the same register

Step 4:Register Allocation Through Graph Coloring

- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (temporaries)
- Let k = number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers

Graph Coloring Heuristic

- Observation:
 - Pick a node t with fewer than k neighbors in RIG
 - Eliminate **t** and its edges from RIG
 - If the resulting graph has a k-coloring then so does the original graph
- Why:
 - Let c_1, \ldots, c_n be the colors assigned to the neighbors of t in the reduced graph
 - Since n < k we can pick some color for t that is different from those of its neighbors

Graph Coloring Heuristic

- The following works well in practice:
 - Pick a node t with fewer than k neighbors
 - Put t on a stack and remove it from the RIG
 - Repeat until the graph has one node
- Then start assigning colors to nodes on the stack (starting with the last node added)
 - At each step pick a color different from those assigned to already colored neighbors

Graph Coloring Example(1)

• Start with the RIG and with k = 4:

Stack: { }

• Remove a and then d

Graph Coloring Example(2)

• Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f

Stack: {d, a}

Graph Coloring Example(3)

• Start assigning colors to: f, e, b, c, d, a

- What if during simplification we get to a state where all nodes have k or more neighbors ?
- Example: try to find a 3-coloring of the RIG:

- Remove a and get stuck (as shown below)
- Pick a node as a candidate for spilling
 A spilled temporary "lives" in memory
- Assume that f is picked as a candidate

Remove f and continue the simplification
Simplification now succeeds: b, d, e, c

- On the assignment phase we get to the point when we have to assign a color to **f**
- We hope that among the 4 neighbors of **f** we use less than 3 colors ⇒<u>optimistic</u> <u>coloring</u>

Spilling

- Since optimistic coloring failed we must spill temporary **f**
- We must allocate a memory location as the home of **f**
 - Typically this is in the current stack frame
 - Call this address fa
- Before each operation that uses f, insert

f := load fa

• After each operation that defines f, insert store f, fa

Recomputing Liveness Information

• The new liveness information after spilling:

Recompute RIG After Spilling

- The only changes are in removing some of the edges of the spilled node
- In our case f still interferes only with c and d
- And the resulting RIG is 3-colorable

Spilling (Cont.)

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- Possible heuristics:
 - Spill temporaries with most conflicts
 - Spill temporaries with few definitions and uses

THANK YOU