
Register Allocation
 (via Graph Coloring)

Presented By

Rakesh Kaparthi

Register Allocation

• Intermediate code uses unlimited temporaries

 Simplifies code generation and optimization

 Complicates final translation to assembly

• Typical intermediate code uses too many temporaries

Register Allocation

• The Problem:
 Rewrite the intermediate code to use no more temporaries than there are
 machine registers

• Method:

 Assign multiple temporaries to each register

 But without changing the program behavior

Simple Example:

• Consider the program

a := c + d

e := a + b

f := e - 1

• Assume a & e dead after use

 A dead temporary can be “reused”

• Can allocate a, e, and f all to one register (r1):

r1 := r2 + r3

r1 := r1 + r4

 r1 := r1 - 1

Steps to Perform Register Allocation

Step 1: Draw the Control Flow Graph (CFG)

Step 2: Perform Liveness Analysis

Step 3: Draw the Register Interference Graph (RIG)

Step 4: Perform Graph Coloring

Step 5: Allocate Registers based on Colored Graph

Example

L1: a=b + c
d:= -a
e:= d + f
 if(expression) then
 f:= 2 * e
else
 b:= d + e
 e:= e - 1
 …
end if
b := f + c
goto to L1
….
….

Step 1: Control Flow Graph

a := b + c

d := -a

e := d + f

f := 2 * e
b := d + e

e := e - 1

b := f + c

Step 2: Perform Liveness Analysis

a := b + c

d := -a

e := d + f

f := 2 * e b := d + e

e := e - 1

b := f + c

{b}

{c,e}

{b}

{c,f}
{c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}
{a,c,f}

{c,d,f}

Step 3: Register Interference Graph

f

e

d

c

b

a

• E.g., b and c cannot be in the same register

• E.g., b and d can be in the same register

Step 4:Register Allocation Through Graph Coloring

• In our problem, colors = registers

– We need to assign colors (registers) to graph nodes (temporaries)

• Let k = number of machine registers

• If the RIG is k-colorable then there is a register assignment that uses no more

than k registers

Graph Coloring Heuristic

• Observation:

– Pick a node t with fewer than k neighbors in RIG

– Eliminate t and its edges from RIG

– If the resulting graph has a k-coloring then so does the original graph

• Why:

– Let c1,…,cn be the colors assigned to the neighbors of t in the reduced graph

– Since n < k we can pick some color for t that is different from those of

its neighbors

Graph Coloring Heuristic

• The following works well in practice:

– Pick a node t with fewer than k neighbors

– Put t on a stack and remove it from the RIG

– Repeat until the graph has one node

• Then start assigning colors to nodes on the stack (starting with the last node

added)

– At each step pick a color different from those assigned to already colored

neighbors

Graph Coloring Example(1)

• Start with the RIG and with k = 4:

a

f

e
c

b

Stack: {}

• Remove a and then d

d

Graph Coloring Example(2)

• Now all nodes have fewer than 4 neighbors and can be

removed: c, b, e, f

f

e
c

b

Stack: {d, a}

Graph Coloring Example(3)

• Start assigning colors to: f, e, b, c, d, a

b r3

r e
c r4

r1 f

r3

2

d

a r2

• What if during simplification we get to a state where all nodes have k or more

neighbors ?

• Example: try to find a 3-coloring of the RIG:

f

e

d

c

b

What if the Heuristic Fails?

a

What if the Heuristic Fails?

e
c

• Remove a and get stuck (as shown below)

• Pick a node as a candidate for spilling

– A spilled temporary “lives” in memory

• Assume that f is picked as a candidate

f
b

d

What if the Heuristic Fails?

• Remove f and continue the simplification

– Simplification now succeeds: b, d, e, c

e

d

c

b

What if the Heuristic Fails?

• On the assignment phase we get to the point when we have to assign a color to f

• We hope that among the 4 neighbors of f we use less than 3 colors ⇒ optimistic

coloring

f

r e

d

c r1

b r3

2

r3

?

Spilling

• Since optimistic coloring failed we must spill temporary f

• We must allocate a memory location as the home of f

– Typically this is in the current stack frame

– Call this address fa

• Before each operation that uses f, insert

f := load fa

• After each operation that defines f, insert

store f, fa

• The new liveness information after spilling:

a := b + c

d := -a

f := load fa
e := d + f

f := 2 * e

store f, fa

b := d + e

e := e - 1

f := load fa

b := f + c

{c,e}

{b}

{c,f}
{c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}
{a,c,f}

{c,d,f}

{c,d,f}

{c,f}

{c,f}

Recomputing Liveness Information

{b}

Recompute RIG After Spilling

• The only changes are in removing some of the edges of the spilled node

• In our case f still interferes only with c and d

• And the resulting RIG is 3-colorable

f

e
c

b

a

d

Spilling (Cont.)

• Additional spills might be required before a coloring is found

• The tricky part is deciding what to spill

• Possible heuristics:

– Spill temporaries with most conflicts

– Spill temporaries with few definitions and uses

THANK YOU

