## Register Allocation

 (via Graph Coloring)Presented By<br>Rakesh Kaparthi

## Register Allocation

- Intermediate code uses unlimited temporaries
$>$ Simplifies code generation and optimization
$>$ Complicates final translation to assembly
- Typical intermediate code uses too many temporaries


## Register Allocation

- The Problem:

Rewrite the intermediate code to use no more temporaries than there are machine registers

- Method:
$>$ Assign multiple temporaries to each register
$>$ But without changing the program behavior


## Simple Example:

- Consider the program

$$
\begin{aligned}
& \mathrm{a}:=\mathrm{c}+\mathrm{d} \\
& \mathrm{e}:=\mathrm{a}+\mathrm{b} \\
& \mathrm{f}:=\mathrm{e}-1
\end{aligned}
$$

- Assume a \& e dead after use
$>$ A dead temporary can be "reused"
- Can allocate $\mathrm{a}, \mathrm{e}$, and f all to one register $\left(\mathrm{r}_{1}\right)$ :

$$
\begin{aligned}
\mathrm{r}_{1} & :=\mathrm{r}_{2}+\mathrm{r}_{3} \\
\mathrm{r}_{1} & :=\mathrm{r}_{1}+\mathrm{r}_{4} \\
\mathrm{r}_{1} & :=\mathrm{r}_{1}-1
\end{aligned}
$$

## Steps to Perform Register Allocation

Step 1: Draw the Control Flow Graph (CFG)
Step 2: Perform Liveness Analysis
Step 3: Draw the Register Interference Graph (RIG)
Step 4: Perform Graph Coloring
Step 5: Allocate Registers based on Colored Graph

## Example

$$
\begin{aligned}
& \text { L1: } \mathbf{a}=\mathrm{b}+\mathrm{c} \\
& \mathrm{~d}:=-\mathrm{a} \\
& \mathrm{e}:=\mathrm{d}+\mathbf{f} \\
& \text { if(expression) then } \\
& \quad \mathbf{f}:=2 * \mathrm{e} \\
& \text { else } \\
& \quad \mathrm{b}:=\mathrm{d}+\mathrm{e} \\
& \quad \mathrm{e}:=\mathrm{e}-1 \\
& \ldots \ldots \\
& \text { end if } \\
& \mathrm{b}:=\mathrm{f}+\mathrm{c} \\
& \text { goto to } \mathrm{L} 1 \\
& \ldots . \\
& \ldots
\end{aligned}
$$

## Step 1: Control Flow Graph



## Step 2: Perform Liveness Analysis



## Step 3: Register Interference Graph



- E.g., b and c cannot be in the same register
- E.g., b and d can be in the same register


## Step 4:Register Allocation Through Graph Coloring

- In our problem, colors = registers
- We need to assign colors (registers) to graph nodes (temporaries)
- Let $\mathrm{k}=$ number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers


## Graph Coloring Heuristic

- Observation:
- Pick a node t with fewer than k neighbors in RIG
- Eliminate t and its edges from RIG
- If the resulting graph has a k-coloring then so does the original graph
- Why:
- Let $c_{1}, \ldots, c_{n}$ be the colors assigned to the neighbors of $t$ in the reduced graph
- Since $\mathrm{n}<\mathrm{k}$ we can pick some color for t that is different from those of its neighbors


## Graph Coloring Heuristic

- The following works well in practice:
- Pick a node $t$ with fewer than $k$ neighbors
- Put $t$ on a stack and remove it from the RIG
- Repeat until the graph has one node
- Then start assigning colors to nodes on the stack (starting with the last node added)
- At each step pick a color different from those assigned to already colored neighbors


## Graph Coloring Example(1)

- Start with the RIG and with $\mathrm{k}=4$ :


Stack: \{ \}

- Remove a and then d


## Graph Coloring Example(2)

- Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f


Stack: $\{d, a\}$

## Graph Coloring Example(3)

- Start assigning colors to: $\mathrm{f}, \mathrm{e}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{a}$



## What if the Heuristic Fails?

- What if during simplification we get to a state where all nodes have k or more neighbors ?
- Example: try to find a 3-coloring of the RIG:



## What if the Heuristic Fails?

- Remove a and get stuck (as shown below)
- Pick a node as a candidate for spilling
- A spilled temporary "lives" in memory
- Assume that f is picked as a candidate



## What if the Heuristic Fails?

- Remove f and continue the simplification
- Simplification now succeeds: b, d, e, c



## What if the Heuristic Fails?

- On the assignment phase we get to the point when we have to assign a color to f
- We hope that among the 4 neighbors of f we use less than 3 colors $\Rightarrow \underline{\text { optimistic }}$ coloring



## Spilling

- Since optimistic coloring failed we must spill temporary f
- We must allocate a memory location as the home of $f$
- Typically this is in the current stack frame
- Call this address fa
- Before each operation that uses $f$, insert

$$
\mathrm{f}:=\text { load fa }
$$

- After each operation that defines f, insert store f , fa


## Recomputing Liveness Information

- The new liveness information after spilling:



## Recompute RIG After Spilling

- The only changes are in removing some of the edges of the spilled node
- In our case f still interferes only with c and d
- And the resulting RIG is 3 -colorable



## Spilling (Cont.)

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- Possible heuristics:
- Spill temporaries with most conflicts
- Spill temporaries with few definitions and uses


## THANK YOU

