Register Allocation
(via Graph Coloring)

Presented By
Rakesh Kaparthi

Register Allocation

* Intermediate code uses unlimited temporaries
» Simplifies code generation and optimization
» Complicates final translation to assembly

* Typical intermediate code uses too many temporaries

Register Allocation

e The Problem:

Rewrite the intermediate code to use no more temporaries than there are
machine registers

e Method:

» Assign multiple temporaries to each register
» But without changing the program behavior

Simple Example:

Consider the program

a:=c+d
e:=a+b
f:=e-1

Assume a & e dead after use
» A dead temporary can be “reused”

Can allocate a, e, and f all to one register (r,):
I =1, + 15
r; ;=1 +1y4
rp=r;-1

Steps to Perform Register Allocation

Step 1: Draw the Control Flow Graph (CFG)

Step 2: Perform Liveness Analysis

Step 3: Draw the Register Interference Graph (RIG)
Step 4: Perform Graph Coloring

Step 5: Allocate Registers based on Colored Graph

L1:a=b +c

d:=-a

ee=d+f

if(expression) then
f:=2*%e

else
b:=d + e
ec=e-1

end if
b:=f+c
goto to L1

Example

Step 1: Control Flow Graph

b+c

a:
d
e

P —
J

f:=2%e bi=dre

e =¢e-1

b:=f+c

—

Step 2: Perform Liveness Analysis

facf) = [1707¢ e tben
_,|d=-a
te.d] e:=d+f
{cel —% «—1cdet]
fi=2*e br=dre “—(Db.c,e.f}
e=e-1

{c.f) — {c.f} —=
b:=f+c¢ 4_{‘b}

Step 3: Register Interference Graph

* E.g., b and ¢ cannot be 1n the same register

* E.g., b and d can be in the same register

Step 4:Register Allocation Through Graph Coloring

In our problem, colors = registers

— We need to assign colors (registers) to graph nodes (temporaries)
Let k = number of machine registers

If the RIG 1s k-colorable then there 1s a register assignment that uses no more
than k registers

Graph Coloring Heuristic

Observation:
- Pick a node t with fewer than k neighbors in RIG
- Eliminate t and its edges from RIG
- If the resulting graph has a k-coloring then so does the original graph
* Why:
- Let c,,...,c, be the colors assigned to the neighbors of t in the reduced graph

- Since n < k we can pick some color for t that 1s different from those of
its neighbors

Graph Coloring Heuristic

The following works well in practice:
- Pick a node t with fewer than k neighbors
- Put t on a stack and remove it from the RIG

- Repeat until the graph has one node

Then start assigning colors to nodes on the stack (starting with the last node
added)

- At each step pick a color different from those assigned to already colored
neighbors

Graph Coloring Example(1)

« Start with the RIG and with k = 4:

Stack: {}

e Remove a and then d

Graph Coloring Example(2)

* Now all nodes have fewer than 4 neighbors and can be

removed: c, b, e,

Stack: {d, a}

Graph Coloring Example(3)

Start assigning colors to: f, e, b, ¢, d, a

ar,

What ifthe Heuristic Fails?

* What if during simplification we get to a state where all nodes have k or more
neighbors ?

* Example: try to find a 3-coloring of the RIG:

What if the Heuristic Fails?

Remove a and get stuck (as shown below)
Pick a node as a candidate for spilling

— A spilled temporary “lives” in memory

* Assume that f 1s picked as a candidate

What if the Heuristic Fails?

* Remove f and continue the simplification

— Simplification now succeeds: b, d, e, C

What if the Heuristic Fails?

On the assignment phase we get to the point when we have to assign a color to

* We hope that among the 4 neighbors of { we use less than 3 colors =optimistic
coloring

Spilling

Since optimistic coloring failed we must spill temporary

We must allocate a memory location as the home of
- Typically this is in the current stack frame

- (all this address fa

Before each operation that uses f, insert
f :=load fa

After each operation that defines f, insert
store f, fa

Recomputing Liveness Information

* The new liveness information after spilling:

{&,C/k} — | a = b+c < /{bacfk}
{C,d;k} — d:=-a

f := load fa)\f
_—Te=d+f {c,d,e
{c,d,f} (ce) —
{c,f} _yf=2%e bi=dte le—ibced
store f, fa {C/\,} e:=e-1
{c. ¥ \AA/l—>

f := load fa

{c,f) / b:=f+ <+—{b}

s &

Recompute RIG After Spilling

The only changes are in removing some of the edges of the spilled node
In our case 1 still interferes only with ¢ and d
And the resulting RIG 1s 3-colorable

Spilling (Cont.)

* Additional spills might be required before a coloring 1s found
* The tricky part 1s deciding what to spill
* Possible heuristics:

- Spill temporaries with most conflicts

- Spill temporaries with few definitions and uses

THANK YOU

