

Register Allocation

(via Graph Coloring)

Presented By
Rakesh Kaparthi

Register Allocation

- Intermediate code uses unlimited temporaries
 - Simplifies code generation and optimization
 - Complicates final translation to assembly
- Typical intermediate code uses too many temporaries

Register Allocation

- **The Problem:**

Rewrite the intermediate code to use no more temporaries than there are machine registers

- **Method:**

- Assign multiple temporaries to each register
- But without changing the program behavior

Simple Example:

- Consider the program

$a := c + d$

$e := a + b$

$f := e - 1$

- Assume a & e dead after use

➤ A dead temporary can be “reused”

- Can allocate a , e , and f all to one register (r_1):

$r_1 := r_2 + r_3$

$r_1 := r_1 + r_4$

$r_1 := r_1 - 1$

Steps to Perform Register Allocation

Step 1: Draw the Control Flow Graph (CFG)

Step 2: Perform Liveness Analysis

Step 3: Draw the Register Interference Graph (RIG)

Step 4: Perform Graph Coloring

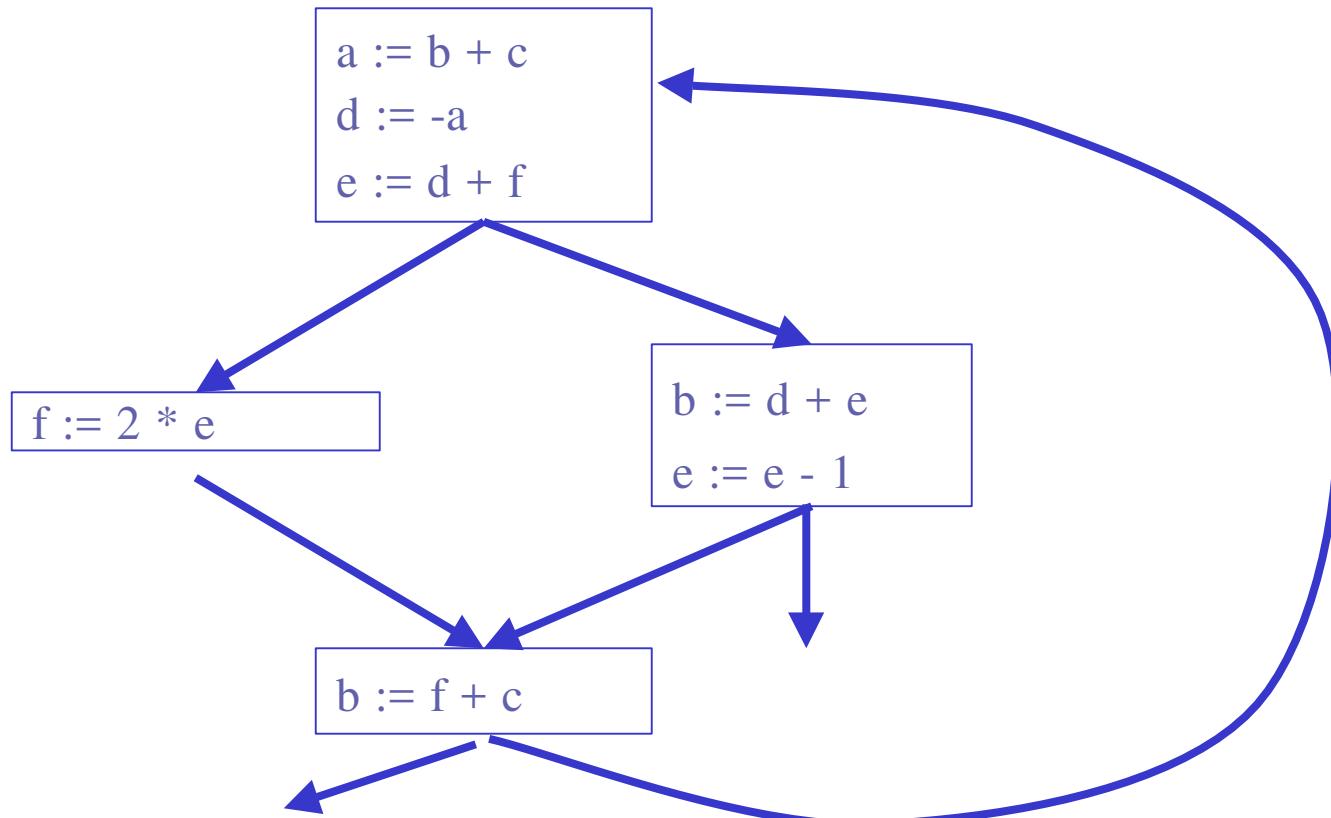
Step 5: Allocate Registers based on Colored Graph

Example

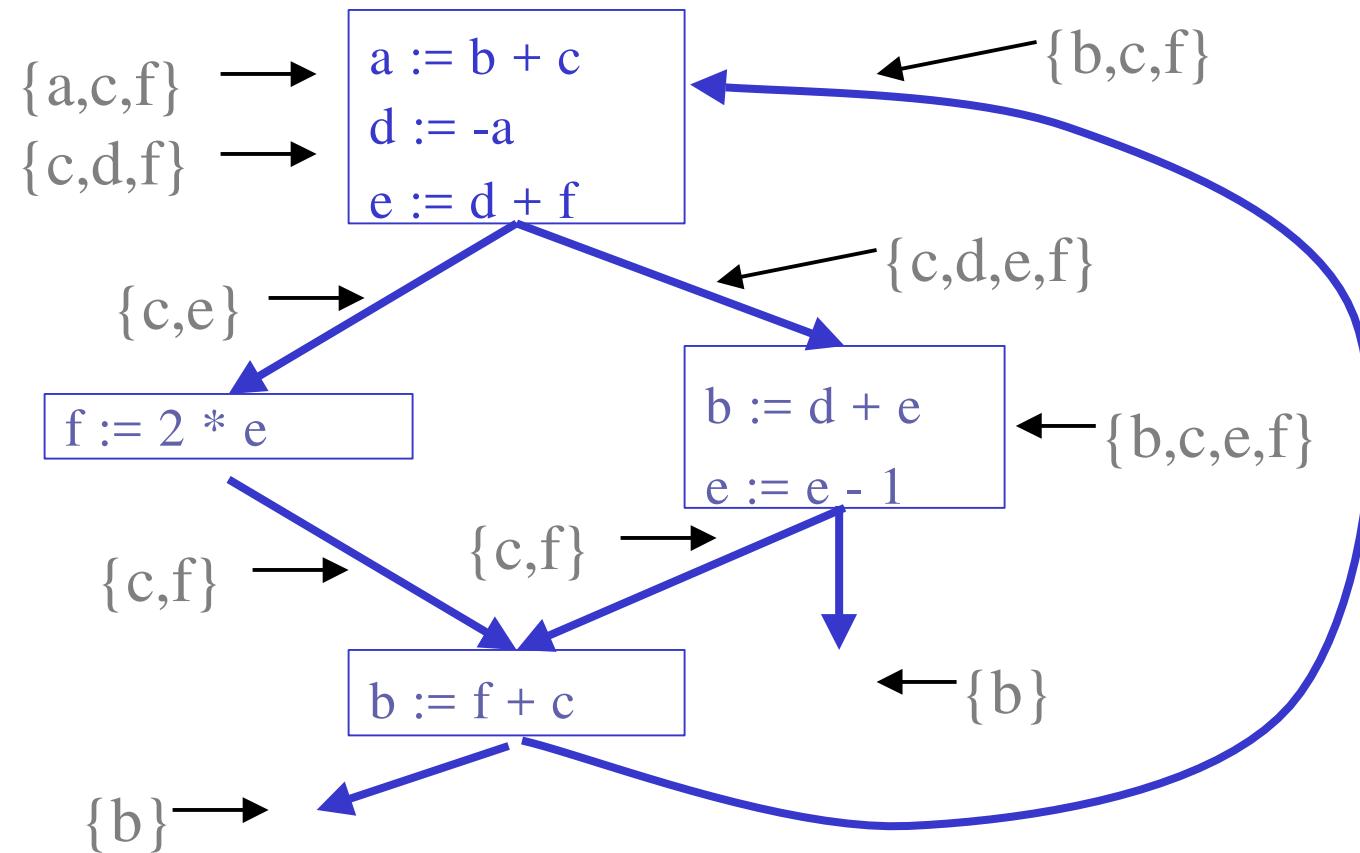
```
L1: a:=b + c
d:= -a
e:= d + f
if(expression) then
    f:= 2 * e
else
    b:= d + e
    e:= e - 1
    ...
end if
b := f + c
goto to L1
....
```

.....

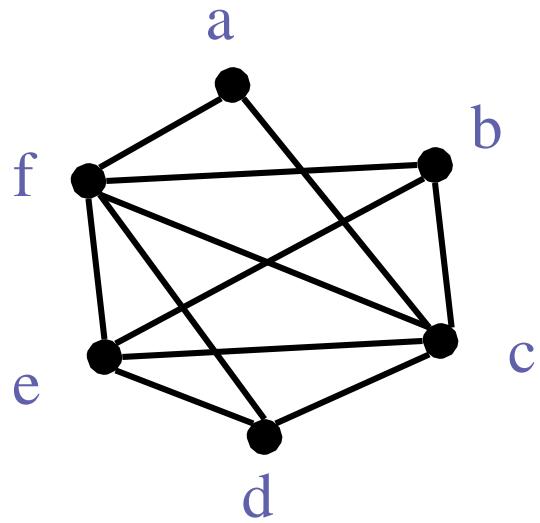
Step 1: Control Flow Graph



Step 2: Perform Liveness Analysis



Step 3: Register Interference Graph



- E.g., **b** and **c** cannot be in the same register
- E.g., **b** and **d** can be in the same register

Step 4: Register Allocation Through Graph Coloring

- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (temporaries)
- Let k = number of machine registers
- If the RIG is k -colorable then there is a register assignment that uses no more than k registers

Graph Coloring Heuristic

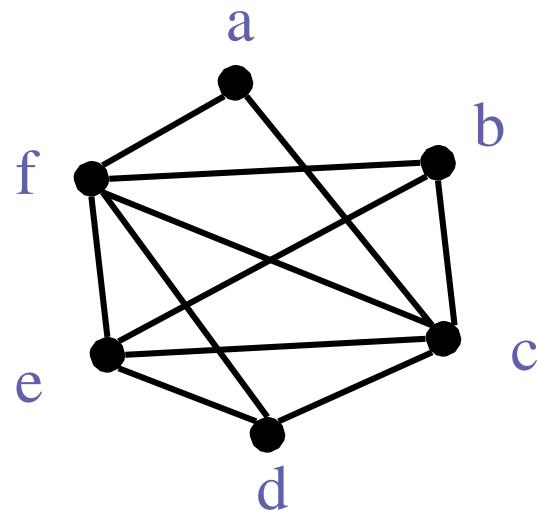
- Observation:
 - Pick a node t with fewer than k neighbors in RIG
 - Eliminate t and its edges from RIG
 - If the resulting graph has a k -coloring then so does the original graph
- Why:
 - Let c_1, \dots, c_n be the colors assigned to the neighbors of t in the reduced graph
 - Since $n < k$ we can pick some color for t that is different from those of its neighbors

Graph Coloring Heuristic

- The following works well in practice:
 - Pick a node t with fewer than k neighbors
 - Put t on a stack and remove it from the RIG
 - Repeat until the graph has one node
- Then start assigning colors to nodes on the stack (starting with the last node added)
 - At each step pick a color different from those assigned to already colored neighbors

Graph Coloring Example(1)

- Start with the RIG and with $k = 4$:

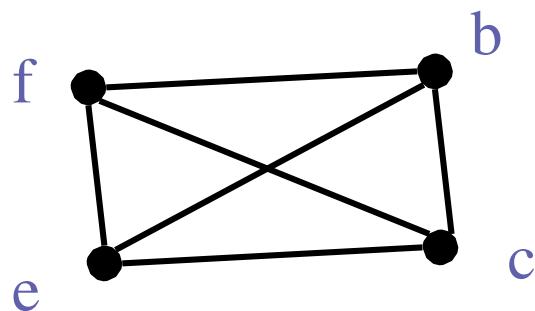


Stack: { }

- Remove a and then d

Graph Coloring Example(2)

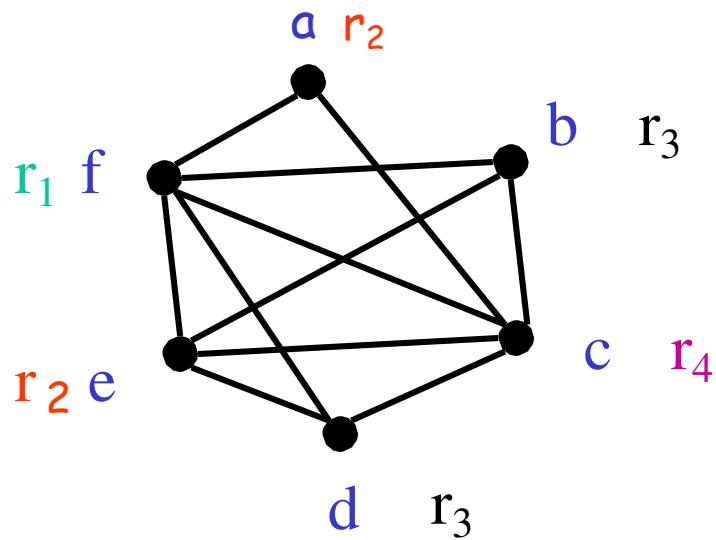
- Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f



Stack: {d, a}

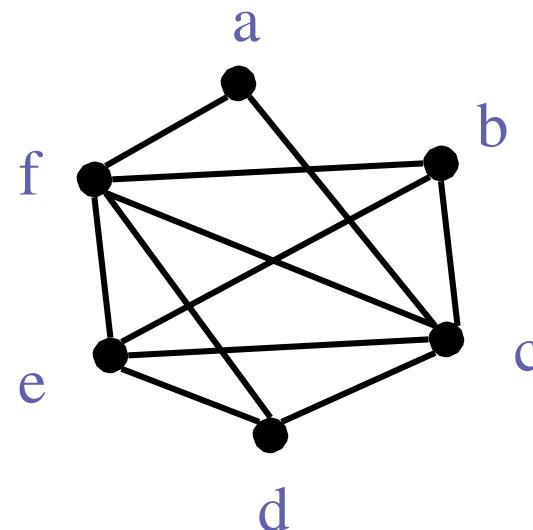
Graph Coloring Example(3)

- Start assigning colors to: f, e, b, c, d, a



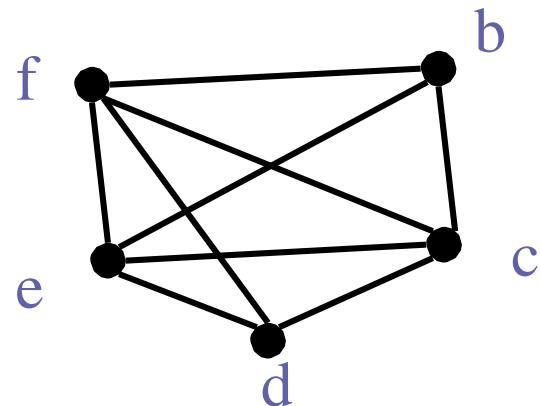
What if the Heuristic Fails?

- What if during simplification we get to a state where all nodes have k or more neighbors ?
- Example: try to find a 3-coloring of the RIG:



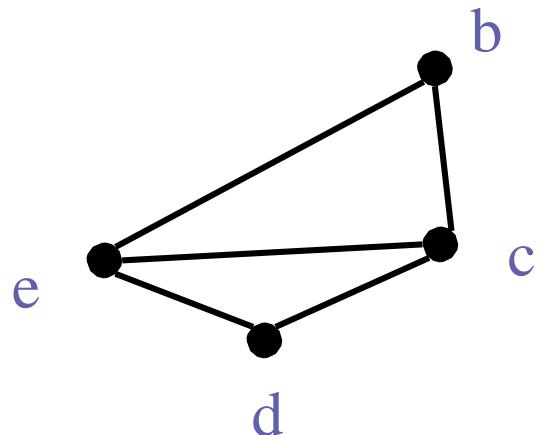
What if the Heuristic Fails?

- Remove **a** and get stuck (as shown below)
- Pick a node as a candidate for spilling
 - A spilled temporary “lives” in memory
- Assume that **f** is picked as a candidate



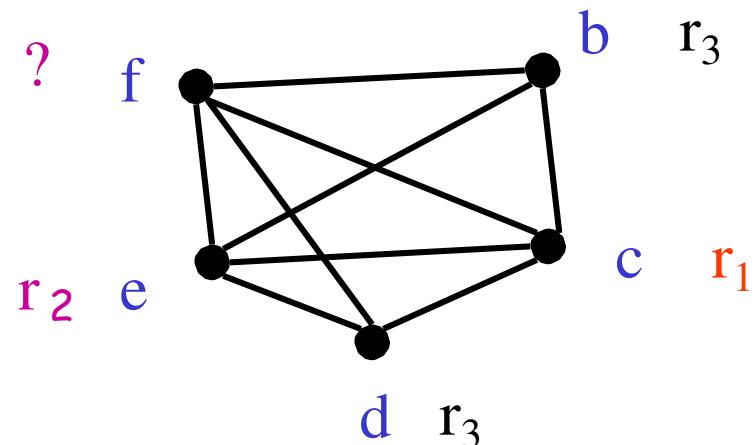
What if the Heuristic Fails?

- Remove f and continue the simplification
 - Simplification now succeeds: b, d, e, c



What if the Heuristic Fails?

- On the assignment phase we get to the point when we have to assign a color to f
- We hope that among the 4 neighbors of f we use less than 3 colors \Rightarrow optimistic coloring

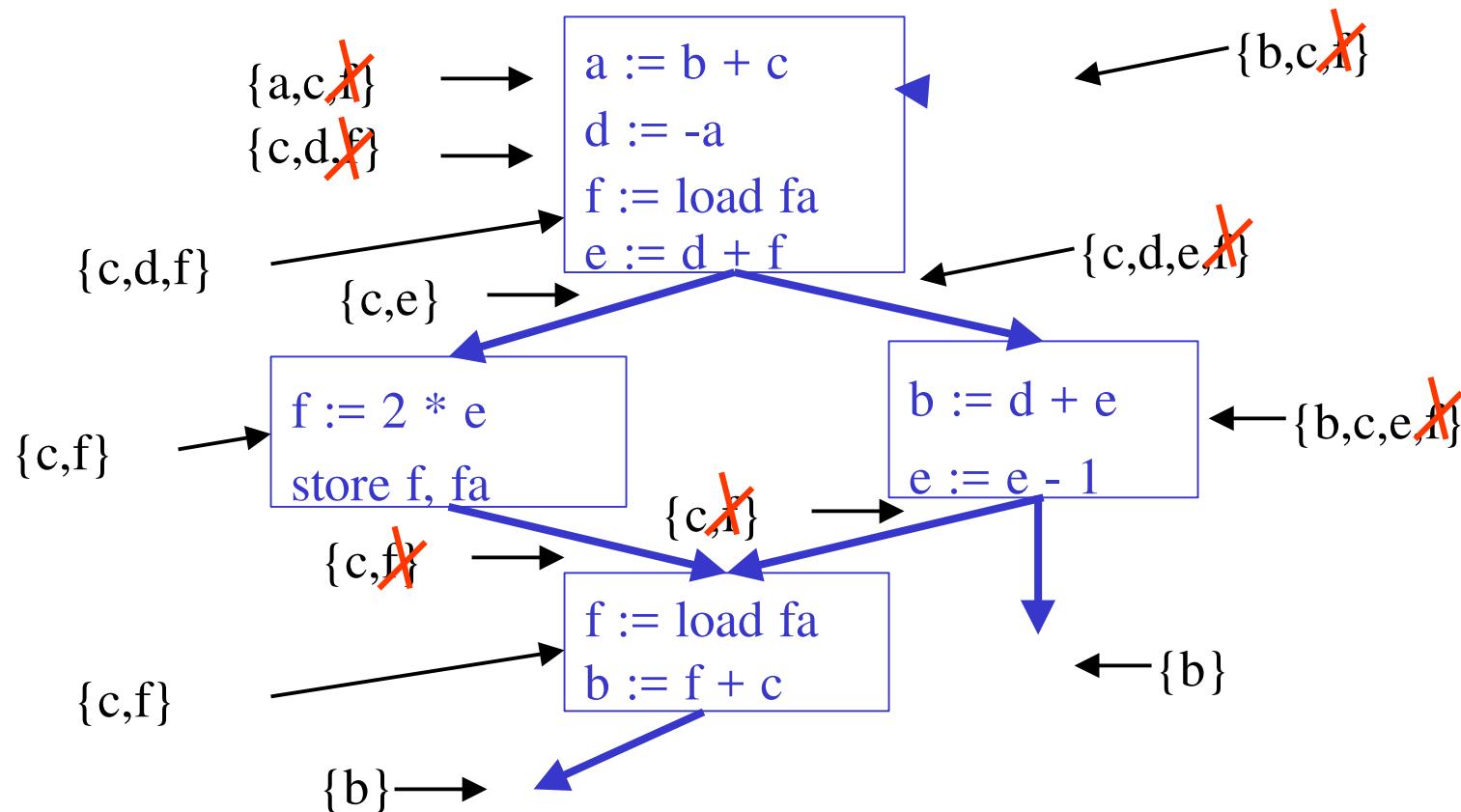


Spilling

- Since optimistic coloring failed we must spill temporary f
- We must allocate a memory location as the home of f
 - Typically this is in the current stack frame
 - Call this address fa
- Before each operation that uses f , insert
 $f := \text{load } fa$
- After each operation that defines f , insert
 $\text{store } f, fa$

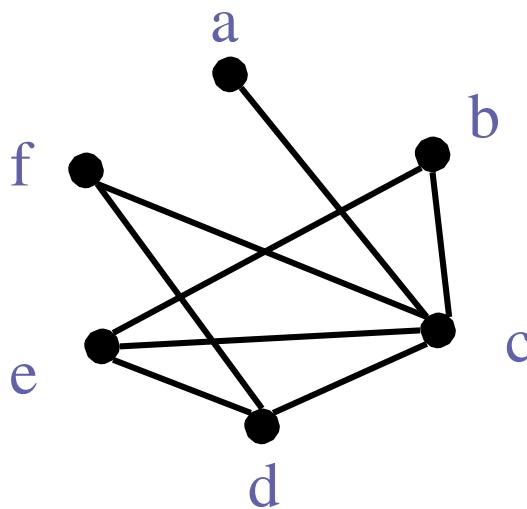
Recomputing Liveness Information

- The new liveness information after spilling:



Recompute RIG After Spilling

- The only changes are in removing some of the edges of the spilled node
- In our case **f** still interferes only with **c** and **d**
- And the resulting RIG is 3-colorable



Spilling (Cont.)

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- Possible heuristics:
 - Spill temporaries with most conflicts
 - Spill temporaries with few definitions and uses

THANK YOU