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Outline
• Simplified cops vs. robbers in real life 
• Cop-win graphs and strategy 

• examples of cops winning/losing 
• corners 
• retracts 
• dismantling 
• strategy and solution 

• Variations 
• Bounds on cop-number
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Problem: Cops vs. Robbers
• Given a map, a cop, and a robber - can the cop 

catch the robber, and if so, how? 

• The cop and robber always see each other 

• The cop and robber take turns moving (but can 
pass), starting with the cop 

• The cop and robber move at the same speed 

• If the cop catches the robber, the cop wins
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Similar problems
• More applications in other pursuit/evasion 

scenarios 

• search and rescue 

• modeling network security problems 

• surveillance and tracking 

• artificial intelligence in games
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Map and Graph 
Construction
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• Cops and robber each 
occupy a node on a graph, 
and take turns moving to 
adjacent nodes via the edges. 

• Graph is reflexive 
• Cops win if they can occupy 

the same space as the robber 
• Robber wins if he never gets 

caught (indefinitely evades)



Graph Problem

Is the constructed graph a cop-win graph? 

If yes, what strategy should the cop use to win? 

Cops and Robbers on graphs introduced 
independently by Nowakowski and Winkler (1983) 

and Quilliot (1978)
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Preliminaries

• The cop-number of a graph, c(G), is the minimum 
number of cops to catch a robber in G. 

• If c(G)=k, then G is k-cop-win. 

• If c(G)=1, then G is cop-win. 

• Examples…
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Corners
• Definition: A vertex u is a corner (or a trap, pitfall, or 

irreducible) if there is some vertex v such that 
N[u]⊆N[v]. 

• Lemma 1: If G is cop-win, then it has at least one 
corner.
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Retracts
• Definition: Let H be an induced subgraph of G formed by 

deleting one vertex. We say that H is a retract of G if there is 
a homomorphism f from G onto H so that f(x)=x for x∈V(H) 

• The subgraph formed by deleting a corner u is a retract, 
given by the mapping 

• Theorem 2: If H is a retract of G, then c(H) ≤ c(G). 
• Corollary 3: If G is cop-win, then so is each retract of G. 
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Dismantling
• Definition: A graph is dismantlable if some sequence 

of deleting corners results in the graph K1.  

• Theorem 4: A graph G is cop-win if and only if it is 
dismantlable.
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Cop-win Ordering
• Definition: A cop-win ordering is a sequence of 

positive integers [n] such that for each i<n, the vertex 
i is a corner in the subgraph induced by {i, i+1, …, n}. 

• A cop-win ordering for the above graph is {1,2,3,4,5}
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Cop-win Strategy 
(Preliminaries)

Assume [n] is a cop-win ordering of G 
• The winning strategy involves the cop “shadowing” 

the movements of the robber in increasingly larger 
induced subgraphs of G 

• for 1≤i≤n define Gi = G↾{n, n-1, …, i} (the increasingly 
smaller subgraphs of G) 

• for each 1 ≤ i ≤ n-1, let fi : Gi→Gi+1 (the retractions 
which remove a corner to make a smaller subgraph) 

• Fi = fi-1 o …. o f2 o f1 (a composition of retractions - this 
will be the “shadow” that the cop will follow)
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Cop-win Strategy 
(Preliminaries)
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Cop-win Strategy 
(Preliminaries)
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Example: F2(5)=5 (the shadow of 5 in G2)



Cop-win Strategy 
(Preliminaries)
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Example: F4(3)=5 (the shadow of 3 in G4)



Cop-win Strategy 
(Preliminaries)
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Example: F5(1)=5 (the shadow of 1 in G5)



Cop-win Strategy
• Cop starts at Gn, (the shadow of 

all other positions, including the 
robber’s, under Fn) 

• Suppose the robber is on u and 
the cop occupies the shadow of 
the robber, Fi(u), in Gi 

• If the robber moves to v, then 
the cop moves onto the image 
Fi-1(v) in the larger graph Gi-1.
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Cop-win Strategy
• Cop starts at Gn, (the shadow of 

all other positions, including the 
robber’s, under Fn) 

• Suppose the robber is on u and 
the cop occupies the shadow of 
the robber, Fi(u), in Gi 

• If the robber moves to v, then 
the cop moves onto the image 
Fi-1(v) in the larger graph Gi-1.

54

5
4

3 2

1

Turn 1   C:5   R:2

C

Turn 0   C:5   R:1

R

Turn 2   C:3   R:1
Turn 3… (in progress)
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Cop-win Strategy
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Cop-win Strategy
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Cop-win Strategy

• May not be the fastest strategy, but guarantees the 
robber will be captured in at most n moves. 

• Also not a unique for a graph because it relies on 
the cop-win ordering, which is not unique.
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Hardness
• Checking if c(G)=k for some fixed k can be done in 

polynomial time. 

• Determining k in which c(G)=k, when k is not fixed is 
NP-hard 

• Determining the cop-number of a general graph is NP-
hard, but for cop-win graphs, the cop-number is 
exactly 1. 

• We can check in polynomial time if a graph is cop-
win
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Problem Solution
• Given a map, a cop, and a robber - (1) can the cop catch 

the robber, and if so, (2) how? 
(1) In our example, yes! Determine the graph’s cop-win 
ordering in polynomial time 

(2) Given the cop-win ordering, find a guaranteed win 
strategy for the cop using this ordering 

• (we make some assumptions about where the robber 
will go to finish the example, but the strategy will work 
regardless of where robber picks to go next) 

• Cop follows the shadow of the robber in maps with 
increasingly more corners, until he finally reaches him
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Variations
• Imperfect information (limited visibility): alarm indicates 

general location of robber, blind-spots of security system 
• Cops set traps to catch or impede robbers 
• Tandem-win: two cops patrol together within close 

proximity of each other 
• A cop only needs to “see” a robber within distance k to 

catch/shoot him 
• Minimize capture time (steps for cops to win) 
• Varying speeds of cops and robbers 
• Minimize number of cops to win
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How many cops are 
needed, at most?

• Every graph can catch a robber with n cops. 
• Upper bound 

• on unconnected graphs: c(G) = O(n) 
• on connected graphs [Lu and Peng, 2011]:
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How many cops are 
needed, at least?

• Lower bound 
• Meyniel’s Conjecture: c(n)=O(√n) 

• Depends on the graph 
• For n≥4 0, c(Pn) = c(Wn) = c(Kn) = 1. 
• For Cn n≥4, c(Cn) = 2. 
• [Aigner and Fromme, 1984] Planar graphs are 3-cop-win 
• [Seymour and Thomas, 1993] A k-cop-win graph has tree width k-1. 
• [Chepoi, 1997] Bridged graphs are cop-win graphs. 

• Other interesting bounds based on girth (length of minimum order 
cycle), minimum degree, maximum degree
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Questions?
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