Synchronizing parallel processes using threshold graphs

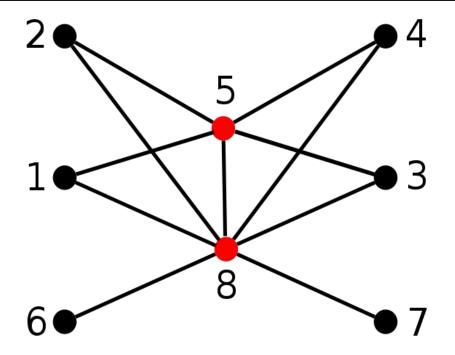
Presented by Christian D. Newman

Threshold Graphs

- Named due to their use of a 'threshold'
 - Number used to differentiate between stable and unstable sets of nodes
 - Determined using node/edge weights
- Hypergraphs and hyperedges
 - Discussion stays low level but this underlies the concept

Example

- Numbering is order of insertion
- Black nodes are isolated vertices
- Red nodes are dominating vertices



Threshold Dimension

- Minimum number k of linear inequalities such that
 - We can separate stable set from non-stable set
- Abstract characteristic that extends to hypergraphs
 - For simplicity, we assume threshold dimension = 1
 - I will provide short discussion of when it is >1

Node label and threshold

Nodes can be labeled in a variety of ways.
 For example, the label could be their degree.
 Threshold is defined using the labels:

X is stable $\Leftrightarrow \sum_{x \in X} a(x) \le t$ $(X \subseteq V).$

 Where a(x) is a label for x, X is a set of nodes in V. General labeling is np-complete.

Building Threshold Graph

- Threshold graph can be built by repeating the following:
 - Add a single, isolated vertex to the graph or
 - Isolated vertex is connected to no other vertex
 - Add a single, dominating vertex to the graph
 - Dominating vertex is a vertex connected to all others currently in the graph

Special Properties

- There exists a threshold, t, after which a stable set becomes unstable
- We can determine whether a node is stable or unstable with a single inequality (assuming threshold dimension <=1)

Problem 1

- Have a set of programs, P, to be run in parallel.
- Memory constraints cause conflict to arise when certain subsets of P run simultaneously
- E is the collection of all such forbidden P

Problem 1 (cont)

- Given the previous, a set of programs X in P can be run if and only if X contains no member of E
- Assuming (P, E) is a hypergraph, then we can do the following:

Solution

- Call P(s,ci) before each program Pi
- Call V(s,ci) after each program Pi
- Initialize a new global variable s with value t

procedure P(s, c): if $s \ge c$ then $s \leftarrow s - c$ enter P_i else call again return

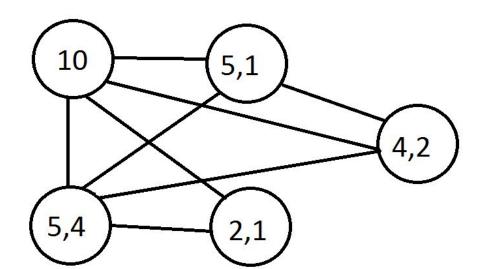
procedure V(s, c): $s \leftarrow s + c$

return

Example Graph

Processes: 10,5,4,2,1. Each number is the weight (memory) that the corresponding process requires.

t = 10



Discussion

• 's' is a semaphore

- Never allows sum of Ci to exceed t since it forces the program to call the procedure again when Ci is greater than or equal to s.
- We will look at a rough graph of the situation

Problem 2

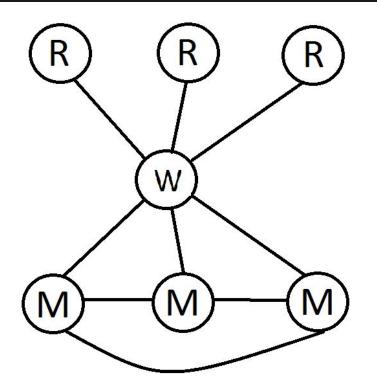
- Set of Mathematicians, readers, and writers.
- Can execute most one mathematician and an unlimited number of readers or at most one writer:

$$c(R_i) = 1 (i = 1, ..., r),c(M_j) = r + 1 (j = 1, ..., m),c(W_k) = 2r + 1 (k = 1, ..., w),t = 2r + 1.$$

Discussion

- We can execute any number of readers at any time.
- Mathematicians need a calculator and there is only one.
- Once something is being written, no one else can access

Example Graph



$$c(R_i) = 1 (i = 1, ..., r),c(M_j) = r + 1 (j = 1, ..., m),c(W_k) = 2r + 1 (k = 1, ..., w),t = 2r + 1.$$

Conclusion

- Threshold graphs allow us to specify a threshold based on node weights
 - Perfect for synchronization problem where node weight is:
 - # of resources acquired or
 - Amount of a limited resource
 - Or both

References

- <u>https://en.wikipedia.</u>
 <u>org/wiki/Threshold_graph</u>
- Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57)

Hypergraphs

Let $V = \{v_1, v_2, ..., v_n\}$ be the vertex set of an undirected graph G. Any subset $X \subseteq V$ can be represented by its *characteristic vector* $\mathbf{x} = (x_1, x_2, ..., x_n)$, where for all i

$$x_i = \begin{cases} 1 & \text{if } v_i \in X, \\ 0 & \text{if } v_i \notin X. \end{cases}$$

Hypergraph

The threshold dimension $\theta(G)$ of the graph G = (V, E) is defined to be the minimum number k of linear inequalities

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \leq t_{1}, \\\vdots \\ a_{k1}x_{1} + a_{k2}x_{2} + \dots + a_{kn}x_{n} \leq t_{k},$$
(1)

such that X is a stable set if and only if its characteristic vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$ satisfies (1). Regarding each inequality of (1) as a hyperplane in *n*-space, X is stable iff x lies on or within the "good" side of each of those k hyperplanes. Since G is finite, $\theta(G)$ is finite and well defined.