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G multiplicative tree 4- and  additive tree 

3-spanner of G

Well-known Tree Tree t t --Spanner ProblemSpanner Problem
Given unweighted undirected graph G=(V,E) and integers t,r.
Does G admit a spanning tree T =(V,E’)  such that

 ),(),(,, uvdisttuvdistVvu GT 

rvudistvudistVvu GT  ),(),(,,

(a multiplicative tree t-spanner of G) 
or

(an additive tree r-spanner of G)?



G multiplicative 2- and  additive 1-spanner of G

Well-known Sparse Sparse t t --Spanner ProblemSpanner Problem
Given unweighted undirected graph G=(V,E) and integers t, m,r.
Does G admit a spanning graph H =(V,E’) with |E’|  m such that

 ),(),(,, uvdisttuvdistVvu GH 

rvudistvudistVvu GH  ),(),(,,

(a multiplicative t-spanner of G) 
or

(an additive r-spanner of G)?



New Collective Additive Tree Collective Additive Tree 
r r --Spanners ProblemSpanners Problem

Given unweighted undirected graph G=(V,E) and integers , r.
Does G admit a system of  collective additive tree r-spanners  

{T1 , T2 …, T} such that

 ),(),(,0, ruvdistuvdistiandVvu GTi
 

(a system of  collective additive tree r-spanners of G )?

2 collective additive tree 2-spanners



Applications of Collective Tree Applications of Collective Tree 
SpannersSpanners

• message routing in networks
Efficient  routing scheme is known for trees
but very hard for graphs. For any two nodes, 
we can route the message between them in 
one of the trees which approximates the 
distance between them.

• solution for sparse t-spanner 
problem
If a graph admits a system of  collective 
additive tree r-spanners, then the graph admits 
a sparse additive r-spanner with at most (n-1) 
edges, where n is the number of nodes.

2 collective tree 2- 
spanners for G



Some known results for the tree Some known results for the tree 
spanner problemspanner problem

• general graphs [CC’95]
– t  4 is NP-complete. (t=3 is still open, t  2 is P)

• approximation algorithm for general graphs [EP’04]
– O(logn) approximation algorithm 

• chordal graphs [BDLL’02]
– t  4 is NP-complete. (t=3 is still open.)

• planar graphs [FK’01]
– t 4 is NP-complete. (t=3 is polynomial time solvable.)

(mostly multiplicative case)



Some known results for sparse Some known results for sparse 
spanner problemsspanner problems

• general graphs [PS’89]
– t, m1 is NP-complete

• n-vertex chordal graphs (multiplicative case) [PS’89] 
(G is chordal if it has no chordless cycles of length >3)
– multiplicative 3-spanner with O(n logn) edges
– multiplicative 5-spanner with 2n-2 edges 

• n-vertex c-chordal graphs (additive case) [CDY’03] 
(G is c-chordal if it has no chordless cycles of length >c)
– additive (c+1)-spanner with 2n-2 edges

 For chordal graphs:  additive 4-spanner with 2n-2 edges



• (, r)-decomposable graph
– Sparse additive 2r -spanner with (n-1)log1/

 

n edges in                         
polynomial time

– log1/

 

n collective additive tree  2r - spanners in polynomial time

• c-chordal graphs 
– Sparse additive 2 c/2 -spanner with O(n log n) edges in

polynomial time
(extension & improvement of [PS’89] from chordal to c-chordal)

– log n collective additive tree 2 c/2 -spanners in polynomial time
• chordal graphs

– Sparse additive 2 -spanner with O(n log n) edges in polynomial 
time 

– log n collective additive tree 2-spanners in polynomial time

Our results on the collective tree Our results on the collective tree 
spanners problemspanners problem



Our routing resultsOur routing results

Graph class Scheme 
construction 

time

Addresses and 
routing tables

Message 
initiation 

time

Routing 
decision 

time

Devia 
tion

Chordal O(m log n+
n log2n)

O(log3n/loglog n) log n O(1) 2

Chordal 
bipartite

O(n m log n) O(log3n/loglog n) log n O(1) 2

Cocomparabi- 
lity

O(m log n+
n log2n)

O(log3n/loglog n) log n O(1) 2

c-Chordal O(n3 log n) O(log3n/loglog n) log n O(1) 2c/2

• Better routing scheme for c-chordal graphs



Constructing a Rooted Balanced Constructing a Rooted Balanced 
Tree for (Tree for (, r, r))--decomposable graphdecomposable graph

(chordal graph)

• An (, r)-decomposable graph has 
– Balanced separator
– Bounded separator radius
– Hereditary family 
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Decompose the GraphDecompose the Graph

• Find the balanced separator S of G. 

1841

9 16 17

10 11

12

19

1356

1532 1487



Decompose the Graph (Decompose the Graph (contcont.).)

•Use S as the root of the rooted balanced tree. 
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Decompose the Graph (Decompose the Graph (cont.cont.))

• For each connected component of G\S, find their 
balanced separators.
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Decompose the Graph (Decompose the Graph (contcont.).)

• Use the separators as nodes of the rooted balanced tree 
and let S be their father.
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Decompose the Graph (Decompose the Graph (cont.cont.))

• Recursively repeat previous procedure until each 
connected component has radius less than or equal to r .
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Decompose the Graph (Decompose the Graph (cont.cont.))

• Get the rooted balanced tree.
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Rooted Balanced TreeRooted Balanced Tree

• Final rooted balanced tree.
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Constructing Local Spanning TreesConstructing Local Spanning Trees

• Construction of local spanning trees of the 2nd layer.

• Construction of a spanning tree of the 2nd layer.
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Main ResultMain Result

• Thm. Given an (,r)-decomposable graph G=(V, E), a 
system of  log1/

 

n collective additive tree 2r-spanners of 
G can be constructed in polynomial time.

x y

Length is at most r+l2Length is at most r+l1

l1 l2r



Further ResultsFurther Results
 Any (, r)-decomposable graph G=(V, E)  admits an 
additive 2r-spanner with at most n log1/

 

n edges which            
can be constructed in polynomial time.

 Any (, r)-decomposable graph G=(V, E)   admits a 
routing scheme of deviation 2r and with labels of size 
O(log1/

 

n log2n/loglog n) bits per vertex. Once computed by 
the sender in log1/

 

n  time, headers never change, and the 
routing decision is made in constant time per vertex. 

• The class of c-chordal graphs is (1/2, c/2)-decomposable.

 log n trees with collective additive stretch factor 2c/2



Further ResultsFurther Results
• The class of chordal graphs is (1/2, 1)-decomposable.
 log n trees with collective additive stretch factor 2

• The class of chordal bipartite graphs is (1/2, 1)-decomp.
 log n trees with collective additive stretch factor 2

(A bipartite graph G=(XY, E) is chordal bipartite if it does not 
contain any induced cycles of length greater than 4.)

• There are chordal bipartite graphs on 2n vertices for which any system 
of collective additive tree 1-spanners will need to have at least (n) 
spanning trees.

• There are chordal graphs on n vertices for which any system of 
collective additive tree 1-spanners will need to have at least (n) 
spanning trees.



Open questions and future plansOpen questions and future plans

• Find best possible trade-off between number of trees and 
additive stretch factor for planar graphs (currently: √n log n 
collective additive tree 0-spanners). 

• Consider the collective additive tree spanners problem for 
other structured graph families. 

• Complexity of the collective additive tree spanners 
problem for different  and r on general graphs and special 
graph classes.  

• More applications of …



Thank YouThank You
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