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Abstract. δ-Hyperbolic metric spaces have been defined by M. Gromov in 1987 via a simple
4-point condition: for any four points u, v, w, x, the two larger of the distance sums d(u, v) +
d(w, x), d(u, w) + d(v, x), d(u, x) + d(v, w) differ by at most 2δ. They play an important role
in geometric group theory, geometry of negatively curved spaces, and have recently become
of interest in several domains of computer science, including algorithms and networking. For
example, (a) it has been shown empirically that the internet topology embeds with better
accuracy into a hyperbolic space than into an Euclidean space of comparable dimension, (b)
every connected finite graph has an embedding in the hyperbolic plane so that the greedy
routing based on the virtual coordinates obtained from this embedding is guaranteed to work. A
connected graph G = (V, E) equipped with standard graph metric dG is δ-hyperbolic if the metric
space (V, dG) is δ-hyperbolic. In this paper, using our Layering Partition technique, we provide
a simpler construction of distance approximating trees of δ-hyperbolic graphs on n vertices with
an additive error O(δ log n) and show that every n-vertex δ-hyperbolic graph has an additive
O(δ log n)-spanner with at most O(δn) edges. As a consequence, we show that the family of
δ-hyperbolic graphs with n vertices enjoys an O(δ log n)-additive routing labeling scheme with
O(δ log2 n) bit labels and O(log δ) time routing protocol, and an easier constructable O(δ log n)-
additive distance labeling scheme with O(log2 n) bit labels and constant time distance decoder.

Keywords: algorithms, distance and routing labeling schemes, additive spanners, δ-hyperbolic
graphs.

1 Introduction

This paper investigates distributed abilities of δ-hyperbolic graphs for the problems of dis-
tance computation and routing. Commonly, when we make a query concerning a pair of
vertices in a graph (adjacency, distance, shortest route, etc.), we need to make a global access
to the structure. A compromise to this approach is to store enough information locally in a
label associated with a vertex such that the query can be answered using only the informa-
tion in the labels of two vertices in question and nothing else. Motivation of localized data
structure in distributed computing is surveyed and widely discussed in [47, 34].

We are mainly interested here in the distance and routing labeling schemes, introduced
by Peleg (see, e.g., [47]). Distance labeling schemes (DLS, for short) are schemes that label
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the vertices of a graph with short labels in such a way that the distance between any two
vertices u and v can be determined or estimated efficiently by merely inspecting the labels
of u and v, without using any other information. Routing labeling schemes (RLS, for short)
are schemes that label the vertices of a graph with short labels in such a way that given the
label of a source vertex and the label of a destination, it is possible to compute efficiently
the port number of the edge from the source that heads in the direction of the destination.
Routing is one of the basic tasks that a distributed network of processors must be able to
perform. A routing scheme is a mechanism that can deliver packets of information from any
vertex of the network to any other vertex.

More formally, a graph family D is said to have an l(n) bit (s, r)-approximate distance
labeling scheme if there is a function L labeling the vertices of each n-vertex graph in D
with distinct labels of up to l(n) bits, and there exists an algorithm/function f , called dis-
tance decoder, that given two labels L(v), L(u) of two vertices v, u in a graph G from D,
computes, in time polynomial in the length of the given labels, a value f(L(v), L(u)) such
that dG(v, u) ≤ f(L(v), L(u)) ≤ s · dG(v, u) + r. Note that the algorithm is not given any
additional information, other that the two labels, regarding the graph from which the vertices
were taken. Similarly, a family ℜ of graphs is said to have an l(n) bit (s, r)-approximate rout-
ing labeling scheme if there exist a function L, labeling the vertices of each n-vertex graph
in ℜ with distinct labels of up to l(n) bits, and an efficient algorithm/function f , called the
routing decision or routing protocol, that given the label of a current vertex v and the label
of the destination vertex (the header of the packet), decides in time polynomial in the length
of the given labels and using only those two labels, whether this packet has already reached
its destination, and if not, to which neighbor of v to forward the packet. Furthermore, the
routing path from any source s to any destination t produced by this scheme in a graph G
from ℜ must have the length at most s ·dG(s, t)+r. For simplicity, (1, r)-approximate labeling
schemes (distance or routing) are called r-additive labeling schemes, and (s, 0)-approximate
labeling schemes are called s-multiplicative labeling schemes. The distance and routing label-
ing schemes, we propose for δ-hyperbolic graphs, are additive in nature.

In this paper, using our Layering Partition technique, we provide a simpler construction
of distance approximating trees of δ-hyperbolic graphs on n vertices with an additive error
O(δ log n) and show that every n-vertex δ-hyperbolic graph has an additive O(δ log n)-spanner
with at most O(δn) edges. As a consequence, we show that the family of δ-hyperbolic graphs
with n vertices enjoys an O(δ log n)-additive routing labeling scheme with O(δ log2 n) bit
labels and O(log δ) time routing protocol, and an easier constructable O(δ log n)-additive
distance labeling scheme with O(log2 n) bit labels and constant time distance decoder.

1.1 δ-Hyperbolicity

Introduced by Gromov [38], δ-hyperbolicity measures, to some extent, the deviation of a
metric from a tree metric. Recall that a metric space (X, d) embeds into a tree network (with
positive real edge lengths), that is, d is a tree metric, iff for any four points u, v,w, x, the two
larger of the distance sums d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v,w) are equal. A
metric space (X, d) is called δ-hyperbolic if the two largest distance sums differ by at most
2δ. A connected graph G = (V,E) equipped with standard graph metric dG is δ-hyperbolic
if the metric space (V, dG) is δ-hyperbolic. Every 4-point metric d (tree-realizable or not)
has a canonical representation in the rectilinear plane, cf. [25]. In Fig. 1, the three distance
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sums are ordered from small to large, thus implying ξ ≤ η. Then η is half the difference of
the largest and the smallest sum, while ξ is half the largest minus the medium sum. Hence,
a metric space (X, d) is δ-hyperbolic iff ξ does not exceed δ for any four points u, v,w, x of
X. 0-Hyperbolic metric spaces are exactly the tree metrics. On the other hand, the Poincaré
half space in Rk with the hyperbolic metric is δ-hyperbolic with δ = log2 3. Several classes
of geodesic metric spaces are known to be hyperbolic [6, 42] (a metric space (X, d) is called
hyperbolic if it is δ-hyperbolic for some constant δ).

ξ R

η

sx

su

x

z

v

u

sw

sv

Fig. 1. Realization of a 4-point metric in the rectilinear plane.

δ-Hyperbolic metric spaces play an important role in geometric group theory and in
geometry of negatively curved spaces [4, 37, 38]. δ-Hyperbolicity captures the basic common
features of “negatively curved” spaces like the classical real-hyperbolic space Hk, Riemannian
manifolds of strictly negative sectional curvature, and of discrete spaces like trees and the
Caley graphs of word-hyperbolic groups. It is remarkable that a strikingly simple concept
leads to such a rich general theory [4, 37, 38].

More recently, the concept of δ-hyperbolicity emerged in discrete mathematics, algorithms,
and networking. For example, it has been shown empirically in [49] (see also [1]) that the
internet topology embeds with better accuracy into a hyperbolic space than into an Eu-
clidean space of comparable dimension. A few algorithmic problems in hyperbolic spaces
and hyperbolic graphs have been considered in recent papers [1, 14, 16, 31, 43, 45]. Kleinberg
showed [43] that every connected finite graph has an embedding in the hyperbolic plane so
that the greedy routing based on the virtual coordinates obtained from this embedding is
guaranteed to work. Krauthgamer and Lee [45] presented a PTAS for the Traveling Salesman
Problem when the set of cities lie in Hk. They also show how to preprocess a finite subset of
a δ-hyperbolic geodesic space with a uniformly bounded local geometry to efficiently answer
nearest-neighbor queries with an additive error O(δ). Chepoi and Estellon [16] established a
relationship between the minimum number of balls of radius R+2δ covering a finite subset S
of a δ-hyperbolic geodesic space and the size of the maximum R-packing of S and showed how
to compute such coverings and packings in polynomial time. Chepoi et al. [14] gave efficient
algorithms for fast and accurate estimations of diameters and radii of δ-hyperbolic geodesic
spaces and graphs.

In [7, 14, 44], some classes of graphs with small hyperbolicity were investigated. For chordal
graphs as well as dually chordal graphs and strongly chordal graphs one can construct trees
approximating the graph-distances within an additive factor 2 or 3 [10], from which it follows
that those graphs have low δ-hyperbolicity (this result has been extended in [13] to all graphs
in which the largest induced cycle is bounded by some constant δ; this result implies that
those graphs are δ-hyperbolic). In general, the distance in a δ-hyperbolic space on n points
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can be approximated within an additive factor of 2δ log2 n by a weighted tree metric [38,
37] and this approximation is sharp. For n-vertex δ-hyperbolic graphs G, in the conference
paper [14] we described an alternative (linear time) construction of a tree approximating the
distances of G with an additive error of O(δ log2 n). Since this construction is intensively used
in the current paper, we present it here in more details.

1.2 Related work on distance and routing labeling schemes

Distance labeling. The main results in this area are that general graphs support an (exact)
distance labeling scheme with labels of O(n) bits [35], and that trees [5, 48], bounded tree-
width graphs [35], distance-hereditary graphs [32], bounded clique-width graphs [18], non-
positively curved plane graphs [15], all support distance labeling schemes with O(log2 n) bit
labels. The O(n) bit upper bound is tight for general graphs, and a lower bound of Ω(log2 n)
bit on the label length is known for trees [35], implying that all the results mentioned above
are tight as well, since all those graph families contain trees. Later, [33, 9] showed an optimal
bound of O(log n) bits for interval graphs, permutation graphs, and their generalizations.

Other results concern approximate distance labeling schemes. For arbitrary graphs, the
best scheme to date is due to Thorup and Zwick [55]. They proposed a (2k−1)-multiplicative
DLS, for each integer k ≥ 1, with labels of O(n1/k log2 n) bits. Moreover, Ω(n1/k) bit labels are
required in the worst-case for every s-multiplicative DLS with s < 2k+1, for k = 1, 2, 3, 5, and
with s < 4k/3+2, for all other values of k. In [30], it is proved that trees (and bounded tree-
width graphs as well) enjoy a (1+1/ log n)-multiplicative DLS with labels of O(log n log log n)
bits, and this is tight in terms of label length and approximation. They also design some O(1)-
additive DLS with O(log2 n) bit labels for several families of graphs, including the graphs
with bounded longest induced cycle, and, more generally, the graphs of bounded tree–length.
Interestingly, it is easy to show that every exact DLS for these families of graphs needs labels
of Ω(n) bits in the worst-case [30]. Recently, the graphs with doubling dimension α have been
considered, i.e., the graphs for which, for every r, each ball of radius 2r can be covered by
at most 2α balls of radius r. It generalizes Euclidian metrics and bounded growth graphs,
and includes many realistic networks. After several successive improvements [39, 41, 46, 50,
52], the best scheme for them to date, due to Slivkins [51], is a (1+ǫ)-multiplicative DLS with
O(ǫ−O(α) log n log log n) bit labels. This is optimal for bounded α, by combining the results
of [46] and the lower bound of [30] for trees. Note also that planar graphs enjoy a (1 + ǫ)-
multiplicative DLS with labels of O(ǫ−1 log3 n) bits (see [40, 53]). This has been generalized
in [2] to graphs excluding a fixed minor with the same stretch and space bounds.

The existence of a O(δ log n)-additive distance labeling scheme with O(log2 n) bit labels
for n-vertex δ-hyperbolic graphs was already indicated in [31]. Its construction uses a distance
labeling scheme for trees and a Gromov’s result that the distances in a δ-hyperbolic space
can be approximated by the weighted tree distances (see Theorem 1). The additive error
incurred by our result is slightly weaker (but of the same order), however the construction
of our distance approximating tree, and therefore of our distance labeling scheme, is simpler
(our tree can be constructed in linear O(|E|) time while the construction in [31] needs
O(|V |2) time). Note also that our distance approximating tree has n vertices while that of
[31] may have about O(n2) vertices. Paper [31] contains also a lower bound result which says
that the label length O(log2 n) is optimal up to some constant for every additive error up to nǫ.
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Routing labeling. For general graphs there is an evident shortest path (i.e., with s = 1 and
r = 0) RLS with labels of O(n log d) bits (so-called, full tables; here d is the maximum degree
of a vertex) and this upper bound on the label size is tight (see [36]). A better routing scheme
is known for trees. In [27, 54], a shortest path RLS for trees of arbitrary degree and diameter
is described that assigns each vertex of an n–vertex tree a (1 + o(1)) log2 n bit label and that
can infer the distance between two vertices from their labels in constant time. A shortest
path routing labeling schemes with O(log2 n) bit labels are known for bounded tree-width
graphs [35, 22] and non-positively curved plane graphs [15].

To obtain routing schemes for general graphs that use o(n) bit label for each vertex, one
has to abandon the requirement that packets are always routed on shortest paths, and settle
instead for the requirement that packets are routed on paths which are close to optimal [17,
26, 54]. A 3-multiplicative RLS that uses labels of size Õ(n2/3) was obtained in [17], and a
5-multiplicative RLS that uses labels of size Õ(n1/2) was obtained in [26].1 Later, authors of
[54] further improved these results. They presented a (4k − 5)-multiplicative RLS with only
Õ(kn1/k) bit labels, for every k ≥ 2. Note that, each routing decision takes constant time
in their scheme, and the label size is optimal, up to a logarithmic factor (see [36, 28]). For
planar graphs, a shortest path RLS which uses 8n + o(n) bits per vertex is developed in [29],
and a (1 + ǫ)-multiplicative RLS for every ǫ > 0 which uses O(ǫ−1 log3 n) bits per vertex is
developed in [53]. This has been generalized in [2] to graphs excluding a fixed minor with
the same stretch and space bounds. Routing in graphs with doubling dimension α has been
considered in [3, 12, 51, 52]. It was shown that any graph with doubling dimension α admits
a (1 + ǫ)-multiplicative routing labeling scheme with labels of size ǫ−O(α) log2 n bits.

Recently, the routing result for trees of Thorup and Zwick was used in designing O(1)-
additive routing labeling schemes with O(logO(1) n) bit labels for several families of graphs,
including chordal graphs, chordal bipartite graphs, circular-arc graphs, AT-free graphs and
their generalizations, the graphs with bounded longest induced cycle, the graphs of bounded
tree–length, the bounded clique-width graphs, etc. (see [19, 22–24] and papers cited therein).

2 Geodesic δ-hyperbolic spaces

Let (X, d) be a metric space. A (closed) ball B(c, r) of radius r centered at c ∈ X consists
of all points x ∈ X at distance at most r to c, i.e., B(c, r) = {x ∈ X : d(c, x) ≤ r}. A
geodesic segment joining two points x and y from X is a map ρ from the segment [a, b] of
length |a − b| = d(x, y) to X such that ρ(a) = x, ρ(b) = y, and d(ρ(s), ρ(t)) = |s − t| for all
s, t ∈ [a, b]. A metric space (X, d) is geodesic if every pair of points in X can be joined by a
geodesic. Every graph G = (V,E) equipped with its standard distance dG can be transformed
into a geodesic (networklike) space (X, d) by replacing every edge e = (u, v) by a segment [u, v]
of length 1; the segments may intersect only at common ends. Then (V, dG) is isometrically
embedded in a natural way in (X, d).

In case of geodesic metric spaces, there exist several equivalent definitions of δ-
hyperbolicity involving different but comparable values of δ [4, 11, 37, 38]. A geodesic tri-
angle ∆(x, y, z) with vertices x, y, z ∈ X is union [x, y] ∪ [x, z] ∪ [y, z] of three geodesic
segments connecting these vertices. Let mx be the point of the geodesic segment [y, z] lo-
cated at distance αy := (d(y, x) + d(y, z)− d(x, z))/2 from y. Then mx is located at distance

1 Here, Õ(f) means O(f polylog n).
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αz := (d(z, y)+ d(z, x)− d(y, x))/2 from z because αy + αz = d(y, z). Analogously, define the
points my ∈ [x, z] and mz ∈ [x, y] both located at distance αx := (d(x, y)+d(x, z)−d(y, z))/2
from x; see Fig. 2 for an illustration. There exists a unique isometry ϕ which maps ∆(x, y, z)
to a star Υ (x′, y′, z′) consisting of three solid segments [x′,m′], [y′,m′], and [z′,m′] of lengths
αx, αy, and αz, respectively. This isometry maps the vertices x, y, z of ∆(x, y, z) to the re-
spective leaves x′, y′, z′ of Υ (x′, y′, z′) and the points mx,my, and mz to the center m of
this tripod. Any other point of Υ (x′, y′, z′) is the image of exactly two points of ∆(x, y, z).
A geodesic triangle ∆(x, y, z) is called δ-thin if for all points u, v ∈ ∆(x, y, z), ϕ(u) = ϕ(v)
implies d(u, v) ≤ δ. A geodesic triangle ∆(x, y, z) is called δ-slim if for any point u on the
side [x, y] the distance from u to [x, z] ∪ [z, y] is at most δ. The notions of geodesic triangles,
δ-slim and δ-thin triangles can also be defined in case of graphs. The single difference is that
for graphs, the center of the tripod is not necessarily the image of any vertex on the geodesic
of ∆(x, y, z). Nevertheless, if a point of the tripod is the image of a vertex of one side of
∆(x, y, z), then it is also the image of another vertex located on another side of ∆(x, y, z).
The following result shows that hyperbolicity of a geodesic space is equivalent to having thin
or slim geodesic triangles (the same result holds for graphs).

Proposition 1. [4, 11, 37, 38] Geodesic triangles of geodesic δ-hyperbolic spaces and δ-
hyperbolic graphs are 4δ-slim and 4δ-thin. Conversely, geodesic spaces and graphs with δ-
thin triangles are 2δ-hyperbolic and geodesic spaces and graphs with δ-slim triangles are 8δ-
hyperbolic.

x

y

zx

y

z

mz

my

m

ϕ

mx

≤ δ

≤ δ ≤ δ

Fig. 2. A geodesic triangle ∆(x, y, z), the points mx, my, mz, and the tripod Υ (x′, y′, z′)

Gromov [37, 38] established that any δ-hyperbolic metric on n points can be approximated
in O(n2) time by a tree-metric with an additive error O(δ log n) :

Theorem 1. For a δ-hyperbolic space (X, d) on n points with a root-point s there exists a
weighted tree T and a mapping ϕ : X 7→ T such that dT (ϕ(s), ϕ(x)) = d(s, x) for any x ∈ X
and d(x, y) − 2δ log2 n ≤ dT (ϕ(x), ϕ(y)) ≤ d(x, y) for any x, y ∈ X.

We conclude this section with a property of δ-hyperbolic graphs formulated and proven in
several texts on Gromov hyperbolic spaces (in particular, in [11]) for all δ-hyperbolic spaces.
This result is used in the proof of the fundamental property of δ-hyperbolic spaces established
in [38] that geodesics in such spaces diverge at exponential rate; for a proof, see also [4, 11].
For a simple path ρ of a graph G, let l(ρ) denote its length.
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Proposition 2. Let G = (V,E) be a graph with δ-thin geodesic triangles and let ρ be a simple
path connecting two vertices p, q of G. If [p, q] is a geodesic segment between p and q, then for
every vertex x ∈ [p, q], the distance from x to a closest vertex y of ρ is at most 1+ δ log2 l(ρ).

Proof. To explain why δ log2 l(ρ) occurs in this result, we sketch its (nice) proof, at the
same time bringing it some computer science flavor (a detailed proof is given on p. 401 of
[11]). Take the cycle constituted by the geodesic [p, q] and the path ρ and “triangulate” it
in the following way. If ρ consists of a single edge, then return this edge. Otherwise, pick
the middle vertex r of the path ρ and include in the triangulation the geodesic triangle ∆
having [p, q] and two geodesic segments [p, r] and [r, q] as sides. Then recursively apply this
algorithm twice to the geodesic segments [p, r] and [r, q] and the subpaths ρ′ and ρ′′ of ρ
comprised between p and r, and r and q, respectively. The resulting triangulation T can be
viewed as a binary tree rooted at ∆ whose nodes are the triangles of T and two triangles are
adjacent iff they share a common geodesic segment. Since the length of the current simple
path is divided by 2 at each iteration, the number of levels h of this binary tree satisfies the
inequality l(ρ)/2h+1 < 1 ≤ l(ρ)/2h.

For a vertex x ∈ [p, q], the distance from x to one of the sides [p, r] or [r, q] of the
geodesic triangle ∆ is at most δ, because ∆ is δ-thin. Suppose that dG(x, x′) ≤ δ for a
vertex x′ ∈ [p, r]. Let ∆′ be the geodesic triangle sharing the side [p, r] with ∆. Repeating
recursively the same operation on x′ and ∆′, we will construct a path from the initial vertex
x to a vertex y of ρ consisting of at most h geodesic segments of length at most δ each. Hence
dG(x, y) ≤ 1 + δ log2 l(ρ). ⊓⊔

3 Layering partitions

In this section, we describe the layering partitions of δ-hyperbolic graphs and establish their
metric properties. These results will be used in the subsequent sections in the construction
of sparse spanners and routing schemes.

Let G = (V,E) be a connected graph with a distinguished vertex s and let r :=
max{dG(s, x) : x ∈ V }. A layering of G with respect to s is the decomposition of V
into the spheres Li = {u ∈ V : d(s, u) = i}, i = 0, 1, 2, . . . , r. A layering partition
LP = {Li

1, . . . , L
i
pi

: i = 0, 1, 2, . . . , r} of G is a partition of each Li into clusters Li
1, . . . , L

i
pi

such that two vertices u, v ∈ Li belong to the same cluster Li
j if and only if they can be

connected by a path outside the ball Bi−1(s) of radius i − 1 centered at s (this partition
has been introduced in [10, 13] and recently have been used also in [8, 21]). We continue by
showing that if G is a graph with n vertices and with δ-thin geodesic triangles, then the
diameters of clusters of a layering partition of G are bounded by a function of δ and log2 n.
Set Λn := 4 + 3δ + 2δ log2 n.

Proposition 3. Let Li
j be a cluster of a layering partition of a graph G with δ-thin geodesic

triangles and n vertices, and let u, v ∈ Li
j . Then dG(u, v) ≤ Λn.

Proof. Suppose, by way of contradiction, that u, v belong to a common cluster Li
j but

dG(u, v) > Λn. Let ρ be a simple path connecting the vertices u, v outside the ball Bi−1(s).
Let [u, v] be a geodesic segment connecting the vertices u and v. Set r := 2 + δ + δ log2 n.
On the sphere Li−r pick two vertices u′, v′ of G such that u′ lies on a geodesic segment
[s, u] between the root s and the vertex u while v′ lies on a geodesic segment [s, v] between
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s and v; see Fig. 3. Since dG(u, v) > 2δ log2 n + 3δ + 4, we conclude that dG(u′, v′) > δ.
Since the geodesic triangle formed by the geodesic segments [s, u], [s, v], [u, v] is δ-thin,
dG(s, u′) = dG(s, v′), and dG(u′, v′) > δ, we conclude that d(u′, x) ≤ δ for some vertex x of G
lying on the geodesic segment [u, v]. By Proposition 2, the path ρ contains a vertex y such that
dG(x, y) ≤ δ log2 l(ρ) + 1 ≤ δ log2 n + 1. Thus dG(s, y) ≤ dG(s, u′) + dG(u′, x) + dG(x, y) ≤
i − r + δ + δ log2 n + 1. On the other hand, since y belongs to the path ρ, we must have
dG(s, y) ≥ i. Thus i ≤ i− r + δ + δ log2 n + 1, hence 2 + δ + δ log2 n = r ≤ 1 + δ + δ log2 n, a
contradiction. ⊓⊔

u′

> δs

u

v

y

x
≤ δ

v′

Fig. 3. To the proof of Proposition 3

Let Γ be a graph whose vertex set is the set of all clusters Li
j in a layering partition LP

of a graph G. Two vertices Li
j and Li′

j′ are adjacent in Γ if and only if there exist u ∈ Li
j and

v ∈ Li′
j′ such that u and v are adjacent in G (see Fig. 4). It is shown in [13] that Γ is a tree,

called the layering tree of G, and that Γ is computable in linear time in the size of G.
Let VT be a shortest path tree spanning G and rooted at s. We call VT a vertical spanning

tree of G. For integers i ∈ {1, 2, . . . , r} and 0 ≤ k ≤ i, and any vertex v ∈ Li, let fk(v) be the
kth ancestor of v in VT , i.e., the vertex on the (v, s)-path of the vertical tree VT located at
distance k from v. Clearly, fk(v) ∈ Li−k if v ∈ Li. For any cluster Li

j of the layering partition

LP of G and any 0 ≤ k ≤ i, let F i
j (k) be the set of kth ancestors of vertices of Li

j in VT .

Proposition 4. Let Li
j be a cluster of a layering partition of an n-vertex graph G with δ-thin

geodesic triangles. Then dG(x, y) ≤ δ for every k such that min{⌈Λn/2⌉, i} ≤ k ≤ i and any
x, y ∈ F i

j (k).

Proof. Consider arbitrary vertices u, v ∈ Li and set λ := dG(u, v)/2. Denote by [s, u] and [s, v]
the geodesic segments connecting in VT vertex s with u and v, respectively. Let also [u, v]
be any geodesic segment connecting u and v in G. Since dVT (s, u) = dVT (s, v) = dG(s, u) =
dG(s, v), for the geodesic triangle of G formed by the geodesic segments [s, u], [s, v] and [u, v],
we have αu = αv = λ = i − αs. All geodesic triangles of G are δ-thin, whence for any two
vertices a ∈ [s, u] and b ∈ [s, v] with dG(a, s) = dG(b, s) ≤ αs, the inequality dG(a, b) ≤ δ
holds. Hence, dG(fk(v), fk(u)) ≤ δ whenever ⌈λ⌉ ≤ k ≤ i. Now, if both u, v belong to the
same cluster Li

j ⊆ Li, then, by Proposition 3, dG(u, v) ≤ Λn. By the proof above, we get

dG(fk(v), fk(u)) ≤ δ whenever ⌈dG(u, v)/2⌉ ≤ k ≤ i. Consequently, dG(fk(v), fk(u)) ≤ δ for
every k with min{⌈Λn/2⌉, i} ≤ k ≤ i. ⊓⊔

Since geodesic triangles of a δ-hyperbolic graph G are 4δ-thin, the following corollary is
immediate.
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Fig. 4. A graph, its layering partition, and the tree Γ associated with that layering partition.

Corollary 1. Let Li
j be a cluster of a layering partition of an n-vertex δ-hyperbolic graph G.

Then dG(x, y) ≤ 4δ for every k such that min{2(Λn − 3), i} ≤ k ≤ i and any x, y ∈ F i
j (k).

4 Distance labeling schemes and additive spanners

In this section, first we present a simple method which constructs for any δ-hyperbolic graph
G = (V,E) with n vertices a distance O(δ log n)-approximating tree in optimal time O(|E|).
Recall that, a tree T = (V, F ) is called a distance κ-approximating tree of a graph G = (V,E) if
|dG(x, y)−dT (x, y)| ≤ κ for each pair of vertices x, y ∈ V [10, 13]. Our result and the definition
of a distance approximating tree are comparable with Theorem 1. The approximation of
distances used in Theorem 1 is stronger because the mapping ϕ is non-expansive. On the
other hand, distance approximating trees have the same set of vertices as G while the trees
occurring in the theorem of Gromov may have Steiner points (in fact our construction can
be easily modified to be non-expansive by accepting edges of length 1/2 and Steiner points).
The error incurred by our result is slightly weaker (but of the same order), however the
construction of our approximating tree T is simpler and can be done in linear O(|E|) time
while the construction in Theorem 1 needs O(|V |2) time. As a byproduct, we obtain also an
easily constructable O(δ log n)-additive distance labeling scheme with O(log2 n) bit labels for
any δ-hyperbolic graph G with n vertices, i.e., we can assign to each vertex of G a label of
size O(log2 n)-bits, such that, given the labels of any two vertices u and v of G, the distance
dG(u, v) between them can be approximated within an additive error O(δ log n) in constant
time by merely inspecting their labels.

Let Γ be the layering tree defined by the layering partition LP of G. To construct the
distance approximating tree T = (V, F ) of G, for each cluster C := Li

j of LP we select a

vertex vC of Li−1 which is adjacent in G with at least one vertex of C and make vC adjacent
in T to all vertices of C. Since Γ is a tree, T is a tree as well. Clearly, T can be constructed
in linear time, too.
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Proposition 5. The tree T = (V, F ) is a distance Λn-approximating tree for an n-vertex
graph G = (V,E) with δ-thin geodesic triangles. In particular, T = (V, F ) is a distance
4(Λn − 3)-approximating tree for a δ-hyperbolic graph G.

Proof. It can be easily seen that the tree T preserves the distances to the root s, i.e.,
dT (x, s) = dG(x, s) for any x ∈ V. From Proposition 3, if x, y belong to a common clus-
ter, then dT (x, y) = 2 and dG(x, y) ≤ Λn. Now, suppose that x and y belong to different
clusters of Γ , say x ∈ C ′ := Li′

j′ and y ∈ C ′′ := Li′′
j′′ . Let C := Li

j be the cluster which is the
nearest common ancestor of C ′ and C ′′ in the tree Γ. By definition of clusters, any path of G
connecting the vertices x and y will traverse the clusters lying on the unique path P (C ′, C ′′)
of the tree Γ between C ′ and C ′′. In particular, any shortest (x, y)-path will intersect the
cluster C. Since dG(x, z) ≥ i′ − i and dG(z, y) ≥ i′′− i for any vertex z ∈ C, we conclude that
dG(x, y) ≥ i′ + i′′ − 2i. On the other hand, any (x, y)-path of G, sharing a single vertex with
each cluster (except C) of the path P (C ′, C ′′) and intersecting the cluster C in a shortest
path, has length at most i′ + i′′ − 2i + Λn, thus i′ + i′′ − 2i ≤ dG(x, y) ≤ i′ + i′′ − 2i + Λn.
Now, notice that dT (x, y) = i′ + i′′ − 2i + 2 or dT (x, y) = i′ + i′′ − 2i if the two clusters
of P (C ′, C ′′) incident to C have the same neighbor in T . In both cases, we conclude that
|dG(x, y) − dT (x, y)| ≤ Λn. Now, since geodesic triangles of a δ-hyperbolic graph G are 4δ-
thin, the second assertion is immediate. ⊓⊔

By using edges of length 1
2 and Steiner points, the tree T can easily be transformed into

a tree T 1

2

which has the same approximating performances and satisfies the non-expansive

property. For this, for each cluster C := Li
j we introduce a Steiner point wC , and add an edge

of length 1
2 between any vertex of C and wC and an edge of length 1

2 between wC and the
vertex vC defined above.

Now, using a known result on distance labeling schemes for trees (see [47, 30]), we obtain
the following result.

Proposition 6. The family of δ-hyperbolic graphs G with n vertices and m edges enjoys
an O(δ log n)-additive distance labeling scheme with O(log2 n) bit labels and constant time
distance decoder. The labeling scheme is constructible in O(m + n log n) time.

Proof. Let T = (V, F ) be a distance 4(Λn − 3)-approximating tree of a δ-hyperbolic graph
G = (V,E) constructed above. We know that tree T can be constructed in linear O(m)
time for G. By [47, 30], there is a function labeling in O(n log n) total time the vertices of
an n-vertex tree T with labels of up to O(log2 n) bits such that given the labels of any two
vertices v, u of T , it is possible to compute in constant time the (exact) distance dT (v, u),
by merely inspecting the labels of u and v. By the proof of Proposition 5, we have −2 ≤
dG(x, y) − dT (x, y) ≤ 4(Λn − 3). Hence, the value d̄G(u, v) := dT (u, v) + 4(Λn − 3) satisfies
0 ≤ d̄G(u, v) − dG(u, v) ≤ 4(Λn − 3) + 2. ⊓⊔

We continue with a simple method which constructs for any δ-hyperbolic graph G = (V,E)
with n vertices an additive O(δ log n)-spanner H with O(δn) edges. The graph H consists of
a vertical spanning tree VT of G rooted at s and a set of horizontal trees, one such tree HT i

j

for each cluster Li
j . From now on, set Λ∗ := 2(Λn − 3). If i > Λ∗, then the horizontal tree

HT i
j is a shortest path tree spanning in G the vertices of the set F i

j (Λ
∗) and rooted at any

vertex of F i
j (Λ

∗). If i ≤ Λ∗, then HT i
j is just one node tree, i.e., HT i

j := {s}. Notice that,

according to Propositions 1 and 4, the diameter of each set F i
j (Λ

∗) is at most 4δ.
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Lemma 1. The graph H is an additive O(δ log n)-spanner of G.

Proof. Let u, v be two vertices of G, and let Li′
j′, L

i′′
j′′ be the clusters of G containing u

and v, respectively. Let Li
j be the cluster which is the nearest common ancestor of Li′

j′ and

Li′′
j′′ in the layering tree Γ . Every path of G from u to v must intersect the cluster Li

j.

Since dG(u, z) ≥ i′ − i and dG(z, v) ≥ i′′ − i for any vertex z ∈ Li
j , we conclude that

dG(u, v) ≥ i′ + i′′ − 2i.

Let u′, v′ ∈ Li
j be the ancestors of u and v in the vertical tree VT . If i ≤ Λ∗, then the

distance in H between u and v is at most dVT (u, s)+dVT (v, s) ≤ i′− i+Λ∗+ i′′− i+Λ∗ = i′+
i′′−2i+4(Λn−3). Hence, dH(u, v)−dG(u, v) ≤ 4(Λn−3), and we are done in this case. Assume
now that i > Λ∗. Consider the vertices u′′ := fΛ∗

(u′) and v′′ := fΛ∗

(v′). We have dH(u, v) ≤
dVT (u, u′′)+d

HT i
j
(u′′, v′′)+dVT (v′′, v) = i′−i+Λ∗+8δ+i′′−i+Λ∗ = i′+i′′−2i+2Λ∗+8δ (by

Proposition 4, both vertices u′′ and v′′ can be connected in HT i
j to the root of HT i

j by a path
of length at most 4δ). Consequently, dH(u, v)−dG(u, v) ≤ 4(Λn−3)+8δ = 4+20δ+8δ log2 n,
and we are done in this case, too. ⊓⊔

Lemma 2. The graph H has at most (4δ + 1)(n − 1) edges.

Proof. The vertical tree VT has n − 1 edges. Every horizontal tree HT i
j has at most |Li

j|

leaves and so at most 4δ|Li
j | edges, except when i ≤ Λ∗. In this latter case, HT i

j contains no

edges. The clusters {Li
j : i = 1, . . . , r, j = 1, . . . , pi} of G are disjoint, so the total number

of edges of H is at most n − 1 + 4δ(n − 1) = (4δ + 1)(n − 1). ⊓⊔

Thus, we proved the following result.

Proposition 7. Every n-vertex δ-hyperbolic graph has an additive O(δ log n)-spanner with
at most O(δn) edges, constructible in polynomial time.

5 Routing labeling scheme

To build a routing labeling scheme for a δ-hyperbolic graph G, we use the layering partition
LP = {Li

1, . . . , L
i
pi

: i = 0, 1, 2, . . . , r} of G, its layering tree Γ , and the vertical tree VT
associated with Γ . We also use Proposition 3, Corollary 1, and a modification of the method
proposed in [19] for routing in graphs with tree-length bounded by λ introduced in [21].
Additive 4λ-spanners with O(λn) edges for such graphs have been constructed in [20]. Note
that any tree-length λ graph is λ-hyperbolic [14] but that the converse is not true.

As usually, we assume that the trees Γ and VT are rooted at L0 = {s} and s. Let again
fk(v) be the kth ancestor of v in VT , i.e., the vertex of the (v, s)-path of VT at distance
k from v. For simplicity, we will use f(v) for f1(v). To get routing labels for vertices of G,
first we construct in O(n) time a routing labeling scheme for the vertical tree VT . As it
was shown in [27, 54], one can assign to each vertex v ∈ V a label label(v) of size at most
O(log n) bits, so that given label(u) and label(v) of two vertices of VT , and nothing else, it
is possible to determine in constant time, by a routing decision function f(label(u), label(v)),
the port number at u of the first edge on the unique path of VT from u to v. Recall that
label(v) contains the port number from v to its father f(v) in VT and this information can
be extracted in constant time from label(v).
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Then, for the layering tree Γ , we build in O(n log n) time a hierarchical tree H as follows.
Find a centroid node M of Γ and let it to be the root of H. (Recall that a centroid node of a
tree T with p nodes is a node such that any subtree of T not containing it has at most p/2
nodes; a centroid node of a tree can be found in linear time). For each subtree of Γ \ {M}
construct a hierarchical tree recursively, and build H by connecting M to the roots of those
trees. Clearly, the height of H is at most log2 |V (Γ )| ≤ log2 n.

In each cluster C of the layering partition LP we pick an arbitrary vertex rC and call it
the center of C. For each vertex v of G, let C(v) denote the unique cluster of LP containing
v. For each vertex v ∈ V and for each cluster X which is an ancestor of C(v) in H, the label
Label(v) of v in G will store a full description of the following shortest path path(v,X) of G:

– If X is also an ancestor of C(v) in Γ , then path(v,X) is a shortest path of G between the
vertices fk(rX) and fk(v′), where v′ is the ancestor in VT of v belonging to the cluster
X and k is the smallest integer such that dG(fk(rX), fk(v′)) ≤ 4δ (by Corollary 1, such
k exists). Let also level(v,X) := dG(s, fk(rX)) = dG(s, fk(v′)).

– Otherwise, path(v,X) is a shortest path of G between the vertices f t(r′X) and f t(v′),
where r′X and v′ are the ancestors in VT of rX and v, respectively, belonging to the cluster
Y := ncaΓ (C(v),X) and t is the smallest integer such that dG(f t(r′X), f t(v′)) ≤ 4δ. Set
also, in this case, level(v,X) := dG(s, f t(r′X)) = dG(s, f t(v′)).

Under the full description of a path P := (x1, . . . , xl) we understand an ordered sequence
of l triples. Each triple consists of the identification id(x) (an integer from {1, . . . , n}) of a
vertex x of P , the port number from x to the next vertex in P and the port number from
x to the previous vertex in P (integers from {1, . . . , degG(x)}). For the end-vertices of the
path, missing entries are nil. We assume that the sequence is ordered with respect to id(·)s.
Clearly, since the height of H is at most log2 n, each label Label(v), v ∈ V , will store the
descriptions of at most log2 n such short, of length ≤ 4δ, paths. The routing label of a vertex
v ∈ V is

Label(v) := (id(v), label(v), depthlabel(v), [help(v, X0 ), help(v,X1), . . . , help(v,Xh)]),

where

help(v,Xj) := [path(v,Xj), level(v,Xj ), label(rXj
)].

Here Xj is the ancestor of C(v) in H at depth j and rXj
is the center of Xj . The label

depthlabel(v) allows to compute in constant time, together with depthlabel(u) of some other
vertex u, the depth in the hierarchical tree H of ncaH(C(v), C(u)). According to [30], the
nodes of H can be assigned labels depthlabel(X) of size O(log n) bits in such a way that
the depth in H of ncaH(X,Y ) can be computed in constant time given depthlabel(X) and
depthlabel(Y ). This part of Label(v) will be useful in identifying an appropriate part of string
[help(v,X0), help(v,X1), . . . , help(v,Xh)] to be used in the routing decision. Summarizing, we
conclude that the label Label(v) of each vertex v of G consists of at most O(δ log2 n) bits.

Assume now that a vertex u wants to send a message to an arbitrary vertex v. First u
creates a header huv of the message. For this, it extracts from Label(u) and Label(v) the
parts depthlabel(u) and depthlabel(v) and uses them to compute in constant time the depth
l in H of ncaH(C(u), C(v)). Then,

huv := [label(v), label(rXl
), rescue1, level1, rescue2, level2],
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where rescue1 := path(u,Xl), level1 := level(u,Xl) and rescue2 := path(v,Xl), level2 :=
level(v,Xl). Clearly, huv consists of at most O(δ log n) bits and is constructible in O(1) time.
The routing path from u to v follows the pattern depicted in Fig. 5: the packet moves on
the vertical tree VT until path rescue1 is reached, then moves on rescue1, then again on VT
until path rescue2 is reached, then moves on rescue2, and then on VT until the destination
vertex v is reached.

Fig. 5. The three possible locations of cluster X on the path of Γ between C(u) and C(v) (with respect to
Y ). The routing path induced by the scheme is indicated in all three cases. The paths rescue1 and rescue2

are shown in red. The black parts are paths from the spanning tree VT of G. Note that, we show rooted trees
growing upward, so the roots are on bottom.

More precisely, let X := ncaH(C(u), C(v)) and Y := ncaΓ (C(u), C(v)). By construction
of H from Γ , we infer that X belongs to the unique path of Γ connecting C(u) with C(v).
There are three possible locations of X on that path: X is between Y and C(u), X is between
Y and C(v), or X = Y (see Fig. 5 for an illustration). The routing algorithm proceeds
as follows. Suppose that a packet with header huv is at a vertex w (initially, w = u). If
id(w) = id(v), then we are done. Otherwise, we check if w is an ancestor of v. This can
be done in O(1) time by using label(w) and label(v). For this, we check if the port number
returned by f(label(v), label(w)) is the port number of the father f(v) of v. If w is an ancestor
of v, then we return f(label(w), label(v)) (we advance in VT ). Assume now that w is not an
ancestor of v. Then, using the binary search, we check in O(log δ) time if id(w) belongs to
the path rescue2. If yes, then we extract the appropriate port number associated with w in
rescue2 (we advance in the path rescue2). If no, then we check if w is an ancestor of rX

using label(w) and label(rX). If w is an ancestor of rX , then we return f(label(w), label(rX )),
if level1 < level2, and return port number between w and its father f(w), otherwise (in
both cases we advance in VT ). If w is not an ancestor of rX (recall also that it is not an
ancestor of v and it is not on the path rescue2), then, using binary search we check in
O(log δ) time if id(w) belongs to the path rescue1. If yes, then we extract the appropriate
port number associated with w in rescue1 (we advance in the path rescue1). Otherwise (w
is an ancestor of u), we return the port number between w and its parent f(w) (we advance

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

in VT ). For each vertex w on the routing path, the decision where to go from w towards v
takes O(log δ) time in the worst case (i.e., if the binary search in rescue2 or/and in rescue1

is involved; otherwise, it would take only O(1) time). Similarly to the proof of Lemma 1,
we can show that the length of the path traveled by any packet from u to v is at most
dG(u, v) + 4(∆n − 3) + 8δ = dG(u, v) + 4 + 20δ + 8δ log2 n.

Summarizing, we can formulate the main result of this section.

Proposition 8. The family of δ-hyperbolic graphs with n vertices enjoys an O(δ log n)-
additive routing labeling scheme with O(δ log2 n) bit labels. Once computed by the sender in
O(1) time, headers of size O(δ log n) bits never change. Moreover, the scheme is constructible
in polynomial time and the routing decision takes O(log δ) time per vertex.
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