
J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 1 — #1

Network Flow Spanners*

Feodor F. Dragan, Chenyu Yan
Department of Computer Science, Kent State University, Kent, Ohio 44242

In this article, motivated by applications of ordinary
(distance) spanners in communication networks and to
address such issues as bandwidth constraints on net-
work links, link failures, network survivability, etc., we
introduce a new notion of flow spanner, where one seeks
a spanning subgraph H = (V , E ′) of a graph G = (V , E)
which provides a “good” approximation of the source-
sink flows in G. We formulate several variants of this
problem and investigate their complexities. Special atten-
tion is given to the version where H is required to be
a tree. © 2009 Wiley Periodicals, Inc. NETWORKS, Vol. 00(00),
000–000 2009

Keywords: network design; maximum flow preservation; span-
ners; spanning trees; approximation algorithms; NP-completeness

1. INTRODUCTION

Given a graph G = (V , E), a spanning subgraph H =
(V , E′) of G is called a spanner if H provides a “good” approx-
imation of the distances in G. More formally, for t ≥ 1, H is
called a t–spanner of G [9, 29, 30] if dH(u, v) ≤ t · dG(u, v)
for all u, v ∈ V , where dG(u, v) is the distance in G between
u and v. Sparse spanners (where |E′| = O(|V |)) have appli-
cations in various areas; especially, in distributed systems
and communication networks. In [30], close relationships
were established between the quality of spanners (in terms
of stretch factor t and the number of spanner edges |E′|), and
the time and communication complexities of any synchro-
nizer for the network based on this spanner. Sparse spanners
are also very useful in message routing in communication
networks; to maintain succinct routing tables, efficient rout-
ing schemes can use only the edges of a sparse spanner [31].
It is known that the problem of determining, for a given graph
G and two integers t, m ≥ 1, whether G has a t-spanner with
m or fewer edges, is NP-complete (see [29]).

The sparsest spanners are tree spanners. Tree spanners
occur in biology [2], and as it was shown in [28], they can
be used as models for broadcast operations. Tree t-spanners

Received October 2006; accepted July 2009
Correspondence to: F.F. Dragan; e-mail: dragan@cs.kent.edu
*Results of this article were presented at the LATIN’06 conference [10].
DOI 10.1002/net.20357
Published online in Wiley InterScience (www.interscience.wiley.com).
© 2009 Wiley Periodicals, Inc.

were considered in [6]. It was shown that, for a given graph G,
the problem to decide whether G has a spanning tree T such
that dT (u, v) ≤ t · dG(u, v) for all u, v ∈ V is NP–complete
for any fixed t ≥ 4 and is linearly solvable for t = 1, 2. For
more information on spanners consult [1, 3–7, 9, 12, 13, 15,
26, 28–31, 33, 34].

In this article, motivated by applications of spanners in
communication networks and to address such issues as band-
width constraints on network links, link failures, network
survivability, etc., we introduce a new notion of flow span-
ner, where one seeks a spanning subgraph H = (V , E′) of
a graph G which provides a “good” approximation of the
source-sink flows in G. We formulate several variants of this
problem and investigate their complexities. In this prelimi-
nary investigation, special attention is given to the version
where H is required to be a tree.

2. PROBLEM FORMULATIONS AND RESULTS

A network is a 4-tuple N = (V , E, c, p) where G = (V , E)

is a connected, finite, and simple graph, c(e) are nonnegative
edge capacities, and p(e) are nonnegative edge prices. We
assume that graph G is undirected in this article, although
similar notions can be defined for directed graphs as well. In
this case, c(e) indicates the maximum amount of flow edge
e = (v, u) can carry (in either v to u direction or in u to v
direction), p(e) is the cost that the edge will incur if it car-
ries a non-zero flow. Given a source s and a sink t in G, an
(s, t)-flow is a function f defined over the edges that satisfies
capacity constraints, for every edge, and conservation con-
straints, for every vertex, except the source and the sink. The
net flow that enters the sink t is called the (s, t)-flow. Denote
by FG(s, t) the maximum (s, t)-flow in G. Note that, since G
is undirected, f (v, u) = −f (u, v) for any edge e = (v, u) ∈ E
and FG(x, y) = FG(y, x) for any two vertices (source and
sink) x and y (by reversing the flow on each edge).

Let H = (V , E′) be a subgraph of G, where E′ ⊆ E. For
any two vertices u, v ∈ V(G), define flow–stretch(u, v) =
FG(u,v)
FH (u,v) to be the flow–stretch factor between u and v. Define
the flow–stretch factor of H as

fsH = max{flow−stretch(u, v)|∀u, v ∈ V(G)}.

When the context is clear, the subscript H will be omitted.

NETWORKS—2009—DOI 10.1002/net

ID: Gajendran Date: 14/9/2009 Time: 16:45 Path: N:/Wiley/TeX/NETT/Vol00000/090065/APPFile/c2nett090065.tex

J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 2 — #2

Similarly, define the average flow–stretch factor of the
subgraph H as follows

afsH = 2

n(n − 1)

∑

u,v∈V

FG(u, v)

FH(u, v)
.

The general problem, we are interested in, is to find a light
flow–spanner H of G, that is a spanning subgraph H such that
fsH (or afsH) is as small as possible and at the same time the
total cost of the spanner, namely

P(H) =
∑

e∈E′
p(e),

is as low as possible. The following is the decision version
of this problem.

Problem: Light Flow–Spanner

Instance: An undirected graph G = (V , E), nonnegative
edge capacities c(e), non-negative edge costs p(e), e ∈
E(G), and two positive numbers t and B.

Output: A light flow–spanner H = (V , E′) of G with flow–
stretch factor fsH ≤ t and total cost P(H) ≤ B, or “there
is no such spanner.”

We distinguish also few special variants of this problem.

Problem: Sparse Flow–Spanner

Instance: An undirected graph G = (V , E), non-negative
edge capacities c(e), unit edge costs p(e) = 1, e ∈ E(G),
and two positive numbers t and B.

Output: A sparse flow–spanner H = (V , E′) of G with
flow–stretch factor fsH ≤ t and P(H) = |E′| ≤ B, or
“there is no such spanner.”

Problem: Sparse Edge-Connectivity–Spanner

Instance: An undirected graph G = (V , E), unit edge
capacities c(e) = 1, unit edge costs p(e) = 1, e ∈ E(G),
and two positive numbers t and B.

Output: A sparse flow–spanner H = (V , E′) of G with
flow–stretch factor fsH ≤ t and P(H) = |E′| ≤ B, or
“there is no such spanner.”

Note that here, the maximum (s, t)-flow in H is actually
the maximum number of edge-disjoint (s, t)-paths in H, i.e.,
the edge-connectivity of s and t in H. Thus, this problem
is named the Sparse Edge-Connectivity–Spanner problem.
Spanning subgraph H provides a “good” approximation of
the vertex-to-vertex edge-connectivities in G. The following
is the version of this Edge-Connectivity Spanner problem
with arbitrary costs on edges.

Problem: Light Edge-Connectivity–Spanner

Instance: An undirected graph G = (V , E), unit edge
capacities c(e) = 1, arbitrary non-negative edge costs
p(e), e ∈ E(G), and two positive numbers t and B.

Output: A light flow–spanner H = (V , E′) of G with flow–
stretch factor fsH ≤ t and total cost P(H) ≤ B, or “there
is no such spanner.”

In Section 4, using a reduction from the 3-dimensional
matching problem, we show that the Sparse Edge-
Connectivity–Spanner problem is NP-complete, implying
that all other three problems, defined above, are NP-complete
as well.

Replacing in all four formulations “fsH ≤ t“ with “afsH ≤
t“, we obtain four more variations of the problem: Light Aver-
age Flow–Spanner, Sparse Average Flow–Spanner, Sparse
Average Edge-Connectivity–Spanner, and Light Average
Edge-Connectivity–Spanner, respectively. These four prob-
lems are topics of our current investigations.

In Section 5, we investigate two simpler variants of the
problem: Tree Flow–Spanner and Light Tree Flow–Spanner
problems.

Problem: Tree Flow–Spanner

Instance: An undirected graph G = (V , E), non-negative
edge capacities c(e), e ∈ E(G), and a positive number t.

Output: A tree t-flow–spanner T = (V , E′) of G, that is a
spanning tree T of G with flow–stretch factor fsT ≤ t, or
“there is no such tree spanner”.

Problem: Light Tree Flow–Spanner

Instance: An undirected graph G = (V , E), non-negative
edge capacities c(e), non-negative edge costs p(e), e ∈
E(G), and two positive numbers t and B.

Output: A light tree t-flow–spanner T = (V , E′) of G, that
is a spanning tree T of G with flow–stretch factor fsT ≤ t
and total cost P(T) ≤ B, or “there is no such tree spanner.”

In a similar way one can define also the Tree Average
Flow–Spanner and Light Tree Average Flow–Spanner prob-
lems. Notice that our tree t-flow-spanners are different from
the well-known Gomory-Hu trees [21]. A Gomory-Hu tree
gives a nice structure for representing in a compact way
all s-t maximum flows of an undirected graph, but it is not
necessarily a spanning tree of the graph.

We show that the Tree Flow–Spanner problem has easy
polynomial time solution while the Light Tree Flow–Spanner
problem is NP-complete. In Section 6, we propose some
approximation algorithms for the Light Tree Flow–Spanner
problem.

3. RELATED WORK

In [18], a network design problem, called smallest k-edge
connected spanning subgraph problem (smallest k-ECSS
problem) is considered, which is close to our Sparse Edge-
Connectivity–Spanner problem. In that problem, given a
graph G along with an integer k, one seeks a spanning sub-
graph H of G that is k-edge-connected and contains the fewest

2 NETWORKS—2009—DOI 10.1002/net

J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 3 — #3

possible number of edges. The problem is known to be MAX
SNP-hard [16], and the authors of [18] give a polynomial time
algorithm with approximation ratio 1 + 2/k (see also [8] for
an earlier approximation result). It is interesting to note that
a sparse k-edge-connected spanning subgraph (with O(k|V |)
edges) of a k-edge-connected graph can be found in linear
time [27]. In our Sparse Edge-Connectivity–Spanner prob-
lem, instead of trying to guarantee the k-edge-connectedness
in H for all vertex pairs, we try to closely approximate by H
the original (in G) levels of edge-connectivities.

Paper [20] deals with the survivable network design prob-
lem (SNDP) which can be considered as a generalization of
our Light Edge-Connectivity–Spanner problem. In SNDP, we
are given an undirected graph G = (V , E), a non-negative
cost p(e) for every edge e ∈ E and a non-negative connectiv-
ity requirement rij for every (unordered) pair of vertices i, j.
One needs to find a minimum-cost subgraph in which each
pair of vertices i, j is joined by at least rij edge-disjoint paths.
The problem is NP-complete since the Steiner Tree Problem
is a special case, and [17, 19, 20, 23, 24, 35] give different
approximate solutions to the problem. The best approxima-
tion algorithm known is a 2-approximation algorithm due
to Jain [23]. This algorithm improved upon a primal-dual
2H(k)-approximation algorithm for SNDP of Goemans et al.
[19], where k = maxi,j rij and H(k) = 1 + 1

2 + 1
3 + · · · + 1

k .
By setting rij := �FG(i, j)/t	 for each pair of vertices i, j,
our Light Edge-Connectivity–Spanner problem (with given
flow–stretch factor t) can be reduced to SNDP.

Another related problem, which deals with the max-
imum flow, is investigated in [14, 25]. In that problem,
called MaxFlowFixedCost, given a graph G = (V , E) with
nonnegative capacities c(e) and nonnegative costs p(e) for
each edge e ∈ E, a source s and a sink t, and a posi-
tive number B, one must find an edge subset E′ ⊆ E of
total cost

∑
e∈E′ p(e) ≤ B, such that in spanning graph

H = (V , E′) of G the flow from s to t is maximized. Paper
[14] shows that this problem, even with uniform edge-prices,
does not admit a 2log1−εn-ratio approximation for any constant
ε > 0 unless NP ⊆ DTIME(npolylog n). In [25], a poly-
nomial time F∗-approximation algorithm for the problem
is presented, where F∗ denotes the maximum total flow. In
our Sparse Flow–Spanner problem we require from spanning
subgraph H to approximate maximum flows for all vertex
pairs simultaneously.

To the best of our knowledge our spanner-like all-pairs
problem formulations are new.

4. HARDNESS OF THE FLOW–SPANNER
PROBLEMS

This section is devoted to the proof of the NP-
completeness of the Sparse Edge-Connectivity–Spanner
problem and other Flow–Spanner problems.

Theorem 1. Sparse Edge-Connectivity–Spanner problem
is NP-complete.

FIG. 1. Graph created according to 3DM instance: M =
{(w1, x1, y1), (w2, x2, y2), (w1, x2, y2)}, W = (w1, w2), X = (x1, x2)

and Y = (y1, y2). The edges from Ed are shown in bold.

Proof. It is obvious that the problem is in NP. To prove
its NP-hardness, we will reduce the 3-dimensional matching
(3DM) problem to this one, by extending a reduction idea
from [17].

Let M ⊆ W ×X ×Y be an instance of 3DM, with |M| = p
and W = {wi|i = 1, 2, . . . , q}, X = {xi|i = 1, . . . , q} and
Y = {yi|i = 1, . . . , q} (note that the sets W , X , Y are pairwise
disjoint). One needs to check if M contains a matching, that
is, a subset M ′ ⊆ M such that |M ′| = q and no two triples of
M ′ share a common element from W ∪ X ∪ Y .

Define Deg(a) to be the number of triples in M that contain
a, a ∈ W ∪X∪Y . We construct a graph G = (V , E) as follows
(see Fig. 1). For each triple (wi, xj, yk) ∈ M, there are four F1

corresponding vertices aijk , aijk , dijk and dijk in V . dijk and dijk

are called dummy vertices. Denote

D := {dijk|(wi, xj, yk) ∈ M}, D := {dijk|(wi, xj, yk) ∈ M},
A := {aijk|(wi, xj, yk) ∈ M}, A := {aijk|(wi, xj, yk) ∈ M}.

Additionally, for each a ∈ X ∪ Y , we define a vertex a and
2Deg(a) − 1 dummy vertices d1(a), · · · , d2Deg(a)−1(a) of a.
For each wi ∈ W , we define a vertex wi and 4Deg(wi) − 3
dummy vertices d1(wi), · · · , d4Deg(wi)−3(wi) of wi. There is
an extra vertex v in V . Let Nd be the dummy vertices (note
that D, D ⊂ Nd). The vertex set V of G is

V = {v} ∪ W ∪ X ∪ Y ∪ A ∪ A ∪ Nd .

For each dummy vertex di(a) ∈ Nd (a ∈ W ∪
X ∪ Y) put (a, di(a)), (v, di(a)) into Ed . Also put
(wi, dijk), (dijk , aijk), (wi, dijk), (dijk , aijk) into Ed . Now, the
edge set E of G is

E = Ed ∪ {(aijk , aijk), (aijk , xj), (aijk , yk)|(wi, xj, yk) ∈ M}.

NETWORKS—2009—DOI 10.1002/net 3

J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 4 — #4

This completes the description of G = (V , E). Clearly, each
dummy vertex has exactly two neighbors in G, and each ver-
tex of A ∪ A has exactly 3 neighbors in G. Also, each vertex
wi has 4Deg(wi) − 3 + 2Deg(wi) = 6Deg(wi) − 3 neighbors
in G, each vertex a ∈ X ∪ Y has 2Deg(a) − 1 + Deg(a) =
3Deg(a) − 1 neighbors in G.

Set t = 3/2 and B = |Ed | + p + q. We claim that M
contains a matching M ′ if and only if G has a flow–spanner
H = (V , E′) with flow–stretch factor ≤ t and B edges.

Suppose M contains a matching M ′. Add Ed to E′. For
each triple (wi, xj, yk) ∈ M ′, put (aijk , xj), (aijk , yk) into E′.
Because |M ′| = q, the number of edges added to E′ is 2q.
For each triple (wi, xj, yk) ∈ M \ M ′, put (aijk , aijk) into E′.
This will add p − q edges into E′. Therefore E′ contains
|Ed | + 2q + (p − q) = |Ed | + p + q edges. It is easy also to
show that fsH ≤ 3/2, i.e., for any two vertices s, t ∈ V(G),
flow−stretch(s, t) is at most 3/2 (the technical details can be
found in the extended version of this paper [11]).

Assume now that G has a flow–spanner H = (V , E′)
with flow–stretch factor ≤ 3/2 and with B = |Ed | + p + q
edges. First notice that Ed must be a subset of E′ (otherwise,
the flow–stretch factor of H is at least 2, contradicting our
assumption). It is rather straightforward also to show that,
for any vertex u ∈ V ′ := X ∪ Y ∪ A ∪ A, at least one edge
e ∈ E′ \ Ed must be incident on u (the technical details can
be found in the extended version of this paper [11]). Now,
since |V ′| = 2p + 2q and there are p + q edges in E′ \ Ed , we
conclude that, for each vertex u ∈ V ′, exactly one edge from
E′ \ Ed incident on it. Consequently, each xj will have one
edge (xj, aijk) from E′ \ Ed incident on it. Hence, (aijk , aijk)

is not in E′, and thus (aijk , yk) must be in E′. No other edge
in E′ \ Ed will be incident on yk . Therefore, for each xj, the
corresponding triple (wi, xj, yk) can be put in matching M ′.
The remaining p − q edges in E′ \ Ed will be of the form
(aijk , aijk), and thus contribute nothing to the matching. This
shows that M contains a matching M ′, completing the proof
of the theorem. ■

This theorem immediately implies the following corollary.

Corollary 1. The Light Flow–Spanner, the Sparse Flow–
Spanner and the Light Edge-Connectivity–Spanner problems
are NP-complete.

5. TREE FLOW–SPANNERS

In this section, we show that the Light Tree Flow–Spanner
problem is NP-complete, whereas the Tree Flow–Spanner
problem can be solved efficiently by any Maximum Spanning
Tree algorithm.

Theorem 2. The Light Tree Flow–Spanner problem is NP-
complete.

Proof. The problem is obviously in NP. One can nonde-
termenistically choose a spanning tree and test in polynomial
time whether it satisfies the cost and the flow–stretch bounds.

FIG. 2. Graph created from expression (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4).

To prove its NP-hardness, we will reduce the 3SAT problem
to this one.

Let xi be a variable in the 3SAT instance. Without loss
of generality, assume that the 3SAT instance does not have
clause of type (xi ∨ xi ∨ xj) (note j may be equal to i). Since
such a clause is always true, no matter what value xi gets, it
can be eliminated without affecting the satisfiability.

From a 3SAT instance one can construct a graph G =
(V , E) as follows. Let x1, x2, · · · , xn be the variables and
C1, · · · , Cq be the clauses of 3SAT. Let ki be the number
of clauses containing either literal xi or literal xi. Create a
ladder in G on 2ki vertices for each variable xi in the fol-
lowing way. Create vertices V(xi) = {x1

i , x2
i , · · · , xki

i } and

V(xi) = {x1
i , · · · , xki

i }. All these vertices are called variable
vertices. Put an edge (xl

i , xl
i) into E(G), for 1 ≤ l ≤ ki. Set

p(xl
i , xl

i) = c(xl
i , xl

i) = 1. For each integer l, where 1 ≤ l < ki,
put (xl

i , xl+1
i) and (xl

i, xl+1
i) into E(G) and set their prices and

capacities to 2.
For each clause Cj, create a clause vertex Cj in G. At

the beginning, mark all variable vertices as “free.” Do the
following for j = 1, 2, . . . , q (in this order). If xi (or xi) is in
Cj, then find the smallest integer l such that xl

i (or xl
i) is “free”

and put (Cj, xl
i) ((Cj, xl

i), respectively) into E(G). Mark xl
i

and xl
i as “busy”. Set c(Cj, xl

i) = p(Cj, xl
i) = 3 (respectively,

c(Cj, xl
i) = p(Cj, xl

i) = 3).
Graph G has also one extra vertex v. For each variable xi,

put edges (v, x1
i) and (v, x1

i) into E(G). Set their prices and
capacities to 2. This completes the description of G. Obvi-
ously, the transformation can be done in polynomial time
(Fig. 2). F2

4 NETWORKS—2009—DOI 10.1002/net

J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 5 — #5

It will be convenient to use the following notions. For each
variable xi, let Hi be the subgraph of G induced by vertices
{v, x1

i , · · · , xki

i , x1
i , · · · , xki

i }. Name all the edges with capacity
2 assignment edges, the edges with capacity 1 connection
edges and the edges with capacity 3 consistent edges. The
path (v, x1

i , x2
i , · · · , xki

i) is called positive path of Hi and the

path (v, x1
i , · · · , xki

i) is called negative path of Hi.
Let N = k1 +k2 +· · ·+kn. Set B = 3N +3q and fsT = 8.

We will show that the 3SAT is satisfiable if and only if the
graph G has a tree flow–spanner with total cost less than or
equal to B and flow–stretch factor at most 8.

Assume 3SAT is satisfiable. A tree flow–spanner T can
be formed as follows. Put all the connection edges into T .
For each variable xi, if it is true, put all the edges in the
positive path of Hi into E(T), otherwise, put the edges in
the negative path of Hi into E(T). For each clause vertex Cj,
identify one of its literals xi (xi) which is true and put (Cj, xl

i)

((Cj, xl
i)) into E(T). Clearly, the number of connection edges

put into E(T) is k1 + k2 + · · · + kn = N . For each Hi, the
number of assignment edges added into E(T) is ki. Hence,
the total number of assignment edges added into E(T) is
k1+· · ·+kn = N . The number of consistent edges added into
E(T) is q. From the above, one concludes that the total cost of
T is 1×N +2×N +3×q = 3N +3q = B. Now, we need to
show that for any two vertices s, t ∈ V(G), flow_ stretch(s, t)
is at most 8. We distinguish between 3 cases.

Case 1. At least one of {s, t} is a variable vertex.

Assume, without loss of generality, that s is a variable ver-
tex. Let s = xl

i . By construction of G, xl
i is incident to one

connection edge, one or two assignment edges and at most
one consistent edge. Hence, FG(s, t) ≤ 1 + 2 × 2 + 3 = 8
must hold. Since T is a spanning tree of G and every edge
of G has capacity at least 1, FT (s, t) is at least 1. Therefore,
flow_ stretch(s, t) is at most 8.

Case 2. s is a clause vertex and t is v.

Because s has exactly three consistent edges incident on it in
G, FG(s, t) ≤ 9. By construction of T , if a variable xi is true
(false), then the path between any vertex in V(xi) (in V(xi),
respectively) and v consists only of edges with capacity 2.
Because s is attached to a vertex corresponding to a “true”
literal by an edge with capacity 3, FT (s, t) is at least 2. This
gives

flow−stretch(s, t) ≤ 9

2
= 4.5 < 8.

Case 3. Both s and t are clause vertices.

Let s = Ci and t = Cj. We know that FG(s, t) ≤ 9. Let
PT (s, v), PT (t, v) be the paths of T connecting v with s and
t, respectively. Let PT (s, t) be the path between s and t in T .
Clearly, E(PT (s, t)) ⊆ E(PT (s, v)) ∪ E(PT (t, v)). From the
proof of Case 2, we have that any edge e ∈ E(PT (s, v)) ∪

E(PT (t, v)) has capacity at least 2. Therefore, FT (s, t) ≥ 2
holds and flow_ stretch(s, t) ≤ 9/2 = 4.5 < 8 follows.

Thus, if 3SAT is satisfiable, then G has a tree flow–spanner
with total cost B and flow–stretch factor 8. In what follows,
we prove the “only if” direction.

Let T be a tree flow–spanner of G such that fsT ≤ 8 and∑
e∈E(T) p(e) ≤ B. Obviously, T must have at least q consis-

tent edges. Assume T has r assignment edges, s connection
edges and t + q consistent edges. Clearly, r, s, t ≥ 0 and,
because T has 2N + q edges (because G has 2N + q + 1
vertices), r + s + t = 2N . From

∑
e∈E(T) p(e) ≤ B =

3N + 3q we conclude also that 2r + s + 3t ≤ 3N . Hence,
2r + s + 3t − 2(r + s + t) ≤ −N , i.e., t ≤ s − N . If s < N ,
then t < 0, which is impossible. Therefore, T must include
all N connection edges of G, implying s = N and r + t = N ,
2r + 3t ≤ 2N . From 2r + 3t − 2(r + t) ≤ 0 we conclude that
t ≤ 0. So, t must be 0, and therefore, T contains exactly q
consistent edges, exactly N assignment edges and all N con-
nection edges. This implies that, for every variable xi, exactly
one edge from {(x1

i , v), (x1
i , v)} is in E(T). Because in T each

clause vertex must be adjacent to at least one variable vertex
and there are q consistent edges in T , each clause vertex is a
pendant vertex of T (is adjacent in T to exactly one variable
vertex). By construction of G, for each variable vertex xl

i , any
path between xl

i and v in G either totally lies in Hi or has to
use at least one clause vertex. Because all clause vertices are
pendant in T , the path between xl

i and v in T must totally lie
in Hi. Similarly, the path between xl

i and v in T must totally
lie in Hi.

We show now how to assign true/false to the variables of
the 3SAT instance to satisfy all its clauses. For each variable
xi, if (x1

i , v) ∈ E(T) then assign true to xi, otherwise assign
false to xi. We claim that, if a clause vertex Cj is adjacent
to a variable vertex xl

i (or to a variable vertex xl
i) in T , then

xi is assigned true (false, respectively). The claim can be
proved by contradiction. Assume xi is assigned false, i.e.,
(x1

i , v) ∈ E(T) and (x1
i , v) /∈ E(T), but Cj is adjacent to a

variable vertex xl
i in T . As it was mentioned in the previous

paragraph, the path PT (xl
i , v) between xl

i and v in T must
totally lie in Hi. Because (x1

i , v) /∈ E(T), edge (x1
i , v) cannot

be in PT (xl
i , v). By construction of Hi, any path in Hi from xl

i to
v not using edge (x1

i , v) must contain at least one connection
edge. This means that the path PT (Cj, v) contains at least
one connection edge, too. Because all connection edges have
capacity 1, FT (Cj, v) = 1. On the other hand, FG(Cj, v) = 9.
Hence, flow-stretch(Cj, v) = 9 > 8, contradicting with fsT ≤
8. This contradiction proofs the claim. Now, because every
clause contains at least one true literal (note (xl

i , Cj) ∈ E(G)

implies clause Cj contains xi), the 3SAT instance is satisfiable.
This completes the proof of the theorem. ■

Let G = (V , E) be graph of an instance of the Light Tree
Flow–Spanner problem. Let c∗ be the maximum edge capac-
ity of G and c∗ be the minimum edge capacity of G. Note
that, if c∗

c∗
= 1, then the Light Tree Flow–Spanner prob-

lem can be solved in polynomial time by simply finding a

NETWORKS—2009—DOI 10.1002/net 5

J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 6 — #6

minimum spanning tree Tp of G, where the weight of an edge
e ∈ E(G) is p(e). From the proof of Theorem 2, one concludes
that when c∗

c∗
≥ 3, the Light Tree Flow–Spanner problem is

NP-complete.
We turn now to the Tree Flow-Spanner problem on a graph

G = (V , E) (recall that in this problem p(e) = 1 for any
e ∈ E). Let Tc be a maximum spanning tree of G, where the
weight of an edge e ∈ E(G) is c(e). In what follows we show
that the tree Tc is an optimal tree flow–spanner of G.

Lemma 1. Let Tc be a maximum spanning tree of a graph G
(with edge weights c(·)) and T be an arbitrary spanning tree
of G. Then, for any two vertices u, v ∈ V(G), the following
inequality holds,

FTc(u, v) ≥ FT (u, v).

Proof. Let u, v ∈ V(G) be two arbitrary vertices of G.
Let PTc(u, v) be the path connecting u and v in Tc and PT (u, v)
be the path connecting u and v in tree T . Let eu,v ∈ PTc(u, v)
and e′

u,v ∈ PT (u, v) be edges with minimum capacities in
corresponding paths. To prove the lemma, one needs to show
that c(eu,v) ≥ c(e′

u,v). If PTc(u, v) = PT (u, v), then the lemma
trivially holds. Hence, we may assume that those paths do not
coincide. We distinguish between two cases.

Case 1. PTc(u, v) and PT (u, v) are vertex-disjoint paths of
G, i.e., they share only vertices u and v.

Assume c(eu,v) < c(e′
u,v). Let T1, T2 be two subtrees of Tc

obtained from Tc by removing the edge eu,v. Because u ∈ T1

and v ∈ T2, there must exist an edge e′ = (a, b) ∈ PT (u, v)
such that a ∈ V(T1) and b ∈ V(T2). By the choice of e′

u,v,
the inequality c(e′) ≥ c(e′

u,v) > c(eu,v) holds. Let T ′ be a
spanning tree of G obtained from Tc by replacing the edge
eu,v with edge e′. We get

∑

e∈E(T ′)

c(e) −
∑

e∈E(Tc)

c(e) = c(e′) − c(eu,v) > 0,

and therefore the total weight of T ′ is greater than the
total weight of Tc, contradicting with Tc being a maximum
spanning tree of G. Thus, c(eu,v) ≥ c(e′

u,v) must hold.

Case 2. PTc(u, v) and PT (u, v) have some vertices in
common different from u and v.

We can decompose paths PTc(u, v) and PT (u, v) into subpaths
P1, P2, · · · , P2k+1 and P′

1, P′
2, · · · , P′

2k+1 such that {Pi : i =
1, . . . , 2k +1} are subpaths of PTc(u, v), {P′

i : i = 1, . . . , 2k +
1} are subpaths of PT (u, v), Pi coincides with P′

i for all odd
is, and subpaths Pi and P′

i are vertex-disjoint for all even is.
Notice that some Pis (P′

is) can consist only of one vertex.
Let ei ∈ Pi and e′

i ∈ P′
i be edges such that c(ei), c(e′

i) are
minimum among all the edges on Pi and P′

i, respectively. By
the definition of eu,v and e′

u,v, we know eu,v ∈ {e1, · · · , e2k+1}
and e′

u,v ∈ {e′
1, · · · , e′

2k+1}. Assume eu,v ∈ Pi and e′
u,v ∈

P′
j. From the discussion above we conclude that c(eu,v) =

c(ei) ≥ c(e′
i). Since c(e′

u,v) is the minimum capacity of edges
on PT (u, v), we deduce c(e′

u,v) ≤ c(e′
i). Combining the two

above inequalities, we obtain c(e′
u,v) ≤ c(eu,v).

This concludes our proof. ■

Lemma 1 implies that a maximum spanning tree Tc of a
graph G, where the edge capacities are interpreted as edge
weights, is an optimal tree flow–spanner of G. Hence, the
following theorem holds.

Theorem 3. Given an undirected graph G = (V , E), with
nonnegative capacities on edges, and a number t > 0,
whether G admits a tree flow–spanner with flow–stretch fac-
tor at most t can be determined in polynomial time (by any
maximum spanning tree algorithm).

6. APPROXIMATION ALGORITHMS FOR THE
LIGHT TREE FLOW–SPANNER PROBLEM

In this section, we present some approximation algorithms
for the Light Tree Flow–Spanner problem. Let G = (V , E)

be an undirected graph with nonnegative edge capacities c(e)
and nonnegative edge costs p(e), e ∈ E(G). For given two
positive numbers t and B we want to check if a spanning
tree T∗ of G with flow–stretch factor fsT ∗ ≤ t and total cost
P(T∗) ≤ B exists or not. If such a tree exists then we say that
the Light Tree Flow–Spanner problem on G has a solution.
We will say that a spanning tree T of a graph G gives an
(α, β)-approximate solution to the Light Tree Flow–Spanner
problem on G if the inequalities fsT ≤ αt and P(T) ≤ βB
hold for T . A polynomial time algorithm producing an (α, β)-
approximate solution to any instance of the Light Tree Flow–
Spanner problem admitting a solution is called an (α, β)-
approximation algorithm for the Light Tree Flow–Spanner
problem.

One can easily see that the following lemma holds.

Lemma 2. If c∗
c∗

≤ k, where c∗ := max{c(e) : e ∈ E} and
c∗ := min{c(e) : e ∈ E}, then there is a (k, 1)-approximation
algorithm for the Light Tree Flow–Spanner problem.

Proof. Let G = (V , E) be graph of an instance of the
Light Tree Flow–Spanner problem. Interpret costs p(e) as
edge weights and construct a minimum weight spanning
tree Tp of G. We claim that if the Light Tree Flow–
Spanner problem on G has a solution, then Tp gives a
(k, 1)-approximate solution to the problem. Indeed, let T∗ be
a solution to the Light Tree Flow–Spanner problem. Clearly,
P(Tp) ≤ P(T∗). Consider two arbitrary vertices u, v ∈
V(G). Because FT ∗(u, v) ≤ c∗ and FTp(u, v) ≥ c∗, from
FG(u, v)/FT ∗(u, v) ≤ t we have FG(u, v) ≤ tFT ∗(u, v) ≤
tc∗c∗/c∗ ≤ ktc∗ ≤ ktFTp(u, v). ■

This result will be used in our main approximation
algorithm. Let G = (V , E) be an undirected graph with non-
negative edge capacities c(e) and non-negative edge costs

6 NETWORKS—2009—DOI 10.1002/net

J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 7 — #7

p(e), e ∈ E(G). Assume that G has a spanning tree T∗ with
fsT ∗ ≤ t and P(T∗) ≤ B. In what follows, we describe a
polynomial time algorithm which, given a parameter (any
real number) r larger than 1 and smaller than t, produces a
spanning tree T of G such that fsT ≤ r(t − 1)t and P(T) ≤
1.55 logr(r(t − 1))B (note that the constant 1.55 comes from
the approximation ratio for the Steiner Tree problem [32]).
Thus, it is an (r(t − 1), 1.55 logr(r(t − 1)))-approximation
algorithm for the Light Tree Flow–Spanner problem. The
parameter r of the algorithm can be chosen from the real
interval (1, t) by the user. If r is chosen to be equal to 2 then
we have an (2(t−1), 1.55 log2(2(t−1)))-approximation algo-
rithm for the Light Tree Flow–Spanner problem. If r = t −1,
then we get ((t − 1)2, 3.1)-approximation algorithm.

Assume that the edges of G are ordered in a nonde-
creasing order of their capacities, i.e., we have an ordering
e1, e2, · · · , em of the edges of G such that c(e1) ≤ c(e2) · · · ≤
c(em). Let 1 < r ≤ t − 1. If c(em)/c(e1) ≤ r(t − 1), then
Lemma 2 suggests to construct a minimum spanning tree of
G using p(e)s as the edge weights. This tree is an (r(t−1), 1)-
approximate solution, and hence we are done. Assume now
that c(em)/c(e1) > r(t−1). We cluster all the edges of G into
groups as follows. First group consists of all the edges whose
capacities are in the range [l1 = c(em)/r, h1 = c(em)]. Then,
we find the largest capacity c(ei) such that c(ei) < c(em)/r
and form the second group of edges. It consists of all edges
whose capacities are in the range [l2 = c(ei)/r, h2 = c(ei)].
We continue this process until a group of edges whose
capacities are in the range [lk , hk] with c(e1) ≥ lk is formed.

Let Gi = (V , Ei) be a subgraph of G formed by Ei =
{e ∈ E(G) : li ≤ c(e) ≤ h1}. Let Gi

1, Gi
2, · · · , Gi

pi
be

those connected components of Gi which contain at least
two vertices. Consider another subgraph G′

i = (V , E′
i) of G

formed by E′
i = {e ∈ E(G) : hi/(r(t − 1)) ≤ c(e) ≤ h1}.

G′i
1 , G′i

2 , · · · , G′i
qi

are used to denote those connected com-
ponents of G′

i which contain at least two vertices. Clearly,
Ei ⊆ Ei+1 for any i.

Let u, v ∈ V(G) be two arbitrary vertices. Choose the
minimum i such that u and v are connected in Gi and let Gi

j
be the connected component of Gi which contains u and v.
Let G′i

j′ be the connected component of G′
i such that Gi

j ⊆ G′i
j′

(clearly, such a connected component exists). The following
lemma holds.

Lemma3. If G has a tree flow–spanner T∗ with flow–stretch
factor ≤ t, then the path PT ∗(u, v) connecting u and v in T∗
must totally lie in G′i

j′ .

Proof. Proof is by contradiction. Assume the lemma is
not true. Then we can find an edge e in PT ∗(u, v) such that
c(e) < hi/(r(t − 1)) = li/(t − 1). Because u and v are from
Gi

j, there must exist two vertices u′, v′ ∈ V(Gi
j)∩V(PT ∗(u, v))

such that the subpath PT ∗(u′, v′) of PT ∗(u, v) between u′ and
v′ shares with Gi

j only u′ and v′ and e is an edge of PT ∗(u′, v′).
Because u′, v′ ∈ Gi

j, we get FG(u′, v′) ≥ li + c(e). But then

FG(u′, v′)
FT ∗(u′, v′)

≥ li + c(e)

c(e)
= li

c(e)
+ 1 >

li
li/(t − 1)

+ 1 = t.

This is in a contradiction with T∗ being a tree t-flow–spanner
of G. ■

From Lemma 3, our approximation algorithm for the Light
Tree Flow–Spanner problem is obvious.

Procedure 1. Construct a light tree flow–spanner for a
graph G.

Input An undirected graph G with non-negative edge
capacities c(e) and non-negative edge costs p(e), e ∈
E(G); positive real numbers t and 1 < r ≤ t − 1.

Output A spanning tree T of G.

Method
set Gf := (V , Ef), where Ef = {e ∈ E(G) : p(e) = 0};
for i = 1 to k do

let Gi := (V , Ei) be a subgraph of G formed by
Ei := {e ∈ E(G) : li ≤ c(e) ≤ h1};

let Gi
1, Gi

2, · · · , Gi
pi

be those connected components of
Gi which contain at least two vertices;

let G′
i := (V , E′

i) be a subgraph of G formed by E′
i :=

{e ∈ E(G) : hi/(r(t − 1)) ≤ c(e) ≤ h1};
let G′i

1 , G′i
2 , · · · , G′i

qi
be those connected components of

G′
i which contain at least two vertices;

set Vt := ⋃
1≤j≤pi

V(Gi
j);

in each connected component G′i
j (1 ≤ j ≤ qi),

construct an approximate minimum weight
Steiner tree T ′i

j where terminals are V(G′i
j) ∩ Vt and

p(e)s are the edge weights;
set Ef := Ef

⋃{⋃1≤j≤qi
{e ∈ E(T ′i

j) : p(e) > 0}};
for each edge e ∈ ⋃

1≤j≤pi
E(Gi

j), set p(e) := 0;
construct a maximum spanning tree T of Gf using the

capacities as the edge weights;
return T .

Below, the quality of the tree flow–spanner T constructed
by above procedure is analyzed.

Lemma 4. If G admits a tree t-flow–spanner, then fsT ≤
r(t − 1)t.

Proof. Let u, v ∈ V(G) be two arbitrary vertices and T∗
be a tree t-flow–spanner of G. Choose the smallest integer
i such that u and v are connected in Gi. Let PG(u, v) be an
arbitrary path between u and v in G and e ∈ PG(u, v) be an
edge on the path with smallest capacity. By the choice of i,
we have c(e) ≤ hi.

Without loss of generality, assume u, v ∈ Gi
j. According

to Procedure 1, u and v will be connected by a path PT ′i
j
(u, v)

in T ′i
j . Let e′ ∈ PT ′i

j
(u, v) be an edge with minimum capacity

in PT ′i
j
(u, v). It is easy to see that c(e′) ≥ hi/(r(t − 1)).

We claim that after iteration i, there is a path PGf (u, v)
between u and v in Gf such that for any edge e ∈ PGf (u, v), the

NETWORKS—2009—DOI 10.1002/net 7

J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 8 — #8

inequality c(e) ≥ hi/(r(t −1)) holds. We prove this claim by
induction on i. All edges of PT ′i

j
(u, v) with current p(e) greater

than 0 are added to Ef . Ef contains also each edge for which
original p(e) was 0. Therefore, if Gf does not contain an edge
e = (a, b) ∈ E(PT ′i

j
(u, v)), then current p(e) of e was 0, and

this implies c(e) > hi. According to Procedure 1, a and b must
be in a connected component of Gl where 1 ≤ l < i. Hence,
by induction, at lth iteration, a and b must be connected by
a path PGf (a, b) such that, for each edge e ∈ PGf (a, b), the
inequality c(e) ≥ hl/(r(t − 1)) > hi/(r(t − 1)) holds. By
concatenating such paths and the edges put into Gf during ith
iteration, one can find a path between u and v which satisfies
the claim.

Because T is a maximum spanning tree of Gf (where the
edge weights are their capacities), similarly to the proof of
Lemma 1, one can show that for any edge e ∈ PT (u, v),
c(e) ≥ hi/(r(t − 1)) holds. This implies FT ∗(u, v) ≤ hi ≤
r(t − 1)FT (u, v). Because T∗ has flow–stretch factor ≤ t, we
have FG(u, v) ≤ tFT ∗(u, v), and therefore

FG(u, v)

FT (u, v)
≤ r(t − 1)t.

This concludes our proof. ■

The following lemma bounds the total cost of the tree
flow–spanner T .

Lemma 5. If G has a tree t-flow–spanner T∗ with cost
P(T∗), then P(T) ≤ 1.55 logr(r(t − 1))P(T∗).

Proof. By Lemma 3, one knows that for any two vertices
u, v of Gi

j, PT ∗(u, v) totally lies in G′i
j′ where Gi

j ⊆ G′i
j′ . Hence,

the smallest subtree of T∗ spanning all vertices of Vt ∩ G′i
j′ is

totally contained in G′i
j′ . We can use in Procedure 1 an 1.55-

approximation algorithm of Robins and Zelikovsky [32] to
construct an approximation to a minimum weight Steiner tree
in G′i

j′ spanning terminals Vt ∩ V(G′i
j′). It is easy to see that

Pi(Gf) ≤ 1.55Pi(T∗), where Pi(Gf) is the total cost of the
Steiner trees constructed by Procedure 1 on ith iteration and
Pi(T∗) is the total cost of the edges from T∗ which have
capacities in the range [hi/(r(t − 1)), hi] and are used to
connect vertices in Vt . Therefore, the following inequality
holds:

P(Gf) ≤
∑

1≤i≤k

Pi(Gf) ≤ 1.55
∑

1≤i≤k

Pi(T
∗).

We will prove that
∑

1≤i≤k

Pi(T
∗) ≤ logr(r(t − 1))P(T∗).

To see this, we show that each edge of T∗ appears at most l
times in

∑
1≤i≤k Pi(T∗), where

1

rl
≥ 1

r(t − 1)
.

Then l ≤ logr(r(t − 1)) will follow.

Consider an edge e ∈ G′
i with p(e) �= 0. We have hi/(r(t−

1)) ≤ c(e) ≤ hi. According to Procedure 1, after ith iteration,
all the edges with capacity in [hi/r, hi] have 0 cost. After (i+
1)th iteration, all the edges with capacity in [hi/r2, hi] have 0
cost. After (i + l − 1)th iteration, all the edges with capacity
in [hi/rl, hi] have 0 cost. To have p(e) > 0, the inequality
hi/rl ≥ hi/(r(t − 1)) must hold. So, l ≤ logr(r(t − 1)) and
therefore

P(Gf) ≤ 1.55 logr(r(t − 1))P(T∗).

Because T is a spanning tree of Gf , the lemma clearly follows.
■

Theorem 4. There exists an (r(t − 1), 1.55 logr(r(t − 1)))-
approximation algorithm for the Light Tree Flow–Spanner
problem, where r (1 < r < t) is a parameter of the algorithm
that can be chosen between 1 and t. If r is chosen to be
equal to 2 then we have an (2(t − 1), 1.55 log2(2(t − 1)))-
approximation algorithm. If r = t − 1, then we get ((t −
1)2, 3.1)-approximation algorithm.

In the remaining part, we describe how to get a tree flow–
spanner T of G with flow–stretch factor ≤ t and total cost
at most (n − 1)P(T∗), provided G has a tree t-flow–spanner
T∗. The algorithm is as follows.

Procedure 2. Construct a light tree t-flow–spanner for
a graph G.

Input: An undirected graph G with non-negative edge
capacities c(e) and non-negative edge costs p(e), e ∈
E(G); a positive real number t.

Output: A tree t-flow–spanner T of G.

Method:
set Gf := (Vf , Ef), where Vf = V , Ef = ∅;
construct a complete graph G′ = (V , E′), where

E′ = {(u, v) : u, v ∈ V(G) and u �= v};
for each (u, v) ∈ E′, let w(u, v) := FG(u, v) be the

weight of the edge;
construct a maximum spanning tree T ′ of the weighted

graph G′;
for each edge (u, v) ∈ E(T ′) do

let Gw(u,v) be a subgraph of G obtained from G by
eliminating all the edges e such that

c(e) < w(u, v)/t;
find a connected component Gu,v of Gw(u,v) such

that u, v ∈ V(Gu,v);
if we cannot find such a connected component, then
return “G does not have any flow tree t-spanner;”

find a shortest (with respect to the costs of the
edges) path PGu,v(u, v) between u and v;

set Ef := Ef ∪ E(PGu,v(u, v));
construct a maximum spanning tree T of Gf using the

edge capacities as their weights;
return T .

8 NETWORKS—2009—DOI 10.1002/net

J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 9 — #9

The following lemmata are true.

Lemma 6. The inequality P(T) ≤ (n − 1)P(T∗) holds.

Proof. If T∗ is a tree t-flow–spanner of G, then for any
two vertices u, v of G, the path PT ∗(u, v) which connects u
and v in T∗ must use only edges of G with c(e) ≥ w(u, v)/t.

Since for each edge (u, v) ∈ E(T ′), Procedure 2 finds a
shortest (with respect to the costs of the edges) path between
u and v in Gu,v, the cost of this path is no more than P(T∗).
T ′ has n − 1 edges, so P(Gf) ≤ (n − 1)P(T∗). Since T is
a spanning tree of Gf , its cost is at most P(Gf). This gives
P(T) ≤ (n − 1)P(T∗). ■

Lemma 7. T has flow–stretch factor ≤ t.

Proof. To prove the lemma, one needs to show that
for every edge (u, v) ∈ E(G′), the inequality FG(u, v) ≤
tFT (u, v) holds.

If (u, v) ∈ E(T ′), then the inequality clearly holds.
Assume (u, v) /∈ E(T ′). Let PT ′(u, v) be the path between
u and v in T ′. Let (x, y) be an edge of PT ′(u, v) such that
w(x, y) is minimum among all the edges on PT ′(u, v). We
claim w(x, y) ≥ w(u, v). Assume not. Then the tree T ′′ =
(T ′ \ {(x, y)}) ∪ {(u, v)} will have larger weight than T ′, con-
tradicting with T ′ being a maximum spanning tree of G′.
Since for every edge (u, v) ∈ E(G′), w(u, v) = FG(u, v), we
conclude FG(x, y) ≥ FG(u, v).

The above shows that for every edge (x, y) ∈ E(PT ′(u, v)),
FG(x, y) ≥ FG(u, v) holds. Combining this with the fact
that FG(x, y) ≤ tFT (x, y) for every edge (x, y) ∈ E(T ′),
we can easily show that for every edge (u, v) /∈ E(T ′),
the inequality FG(u, v) ≤ tFT (u, v) still holds. Indeed,
FG(u, v) ≤ FG(x, y) ≤ tFT (x, y) for every (x, y) ∈
E(PT ′(u, v)) and, therefore, FG(u, v) ≤ t min{FT (x, y) :
(x, y) ∈ E(PT ′(u, v))} = tFT (u, v). ■

Theorem 5. There exists an (1, n − 1)-approximation
algorithm for the Light Tree Flow–Spanner problem.

REFERENCES

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On
sparse spanners of weighted graphs, Discrete Comput Geom
9 (1993), 81–100.

[2] H.-J. Bandelt and A. Dress, Reconstructing the shape of a tree
from observed dissimilarity data, Adv Appl Math 7 (1986),
309–343.

[3] S. Baswana and S. Sen, A simple linear time algorithm for
computing a (2k − 1)-spanner of o(n1+1/k) size in weighted
graphs, 30th International Colloquium on Automata, Lan-
guages and Programming (ICALP), Lecture Notes in Com-
puter Science 2719, 2003, pp. 384–396.

[4] A. Brandstädt, F.F. Dragan, H.-O. Le, and V.B. Le, Tree
spanners on chordal graphs: complexity and algorithms,
Theoretical Comput Sci 310 (2004), 329–354.

[5] U. Brandes and D. Handke, NP–Completeness results for
minimum planar spanners, Discrete Math Theoretical Com-
put Sci 3 (1998), 1–10.

[6] L. Cai and D.G. Corneil, Tree-spanners, SIAM J Discrete
Math 8 (1995), 359–387.

[7] V.D. Chepoi, F.F. Dragan, and C. Yan, Additive spanners for
k-chordal graphs, 5th Italian Conference on Algorithms and
Complexity (CIAC), Vol. 2653, Lecture Notes in Computer
Science, 2003, pp. 96–107.

[8] J. Cheriyan and R. Thurimella, Approximating minimum-
size k-connected spanning subgraphs via matching, SIAM J
Comput 30 (2000), 528–560.

[9] L.P. Chew, There are planar graphs almost as good as the
complete graph, J Comput Sys Sci 39 (1989), 205–219.

[10] F.F. Dragan and C. Yan, Network flow spanners, Proc of the
7th Latin American Symposium LATIN 2006: Theoretical
Informatics, Valdivia, Chile, March 20–24, Lecture Notes in
Computer Science 3887, Springer, pp. 410–422.

[11] F.F. Dragan and C. Yan, Network flow spanners, Available
at: http://www.cs.kent.edu/∼dragan/FlowSp-Full.pdf.

[12] M. Elkin and D. Peleg, (1 + ε, β)-spanner constructions for
general graphs, 33rd Annual ACM Symposium on Theory of
Computing (STOC) (2001), pp. 173–182.

[13] Y. Emek and D. Peleg, Approximating minimum max-stretch
spanning trees on unweighted graphs, Proc of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2004), New Orleans, Louisiana, January 11–14,
2004, pp. 261–270.

[14] G. Even, G. Kortsarz, and W. Slany, On network design prob-
lems: fixed cost flows and the Covering Steiner Problem,
ACM Transactions on Algorithms 1 (2005), 74–101.

[15] S.P. Fekete and J. Kremer, Tree spanners in planar graphs,
Discrete Appl Math 108 (2001), 85–103.

[16] C.G. Fernandes, A better approximation ratio for the mini-
mum size k-edge-connected spanning subgraph problem, J
Algorithms 28 (1998), 105–124.

[17] G.N. Frederickson and J. JáJá, Approximation algorithms
for several graph augmentation problems, SIAM J Comput
10 (1981), 270–283.

[18] H.N. Gabow, M.X. Goemans, E. Tardos, and D.P.
Williamson, Approximating the smallest k-edge connected
spanning subgraph by LP-rounding, Proc of the 16th Sym-
posium on Discrete Algorithms (SODA 2005), 562–571.

[19] M.X. Goemans, A.V. Goldberg, S.A. Plotkin, D.B. Shmoys,
É. Tardos, and D.P. Williamson, Improved approximation
algorithms for network design problems, Proc of the 5th
Symposium on Discrete Algorithms (SODA 1994), 223–232.

[20] H.N. Gabow, M.X. Goemans, and D.P. Williamson, An effi-
cient approximation algorithm for the survivable network
design problem, Math Program 82 (1998), 13–40.

[21] R.E. Gomory and T.C. Hu, Multi-terminal network flows, J
SIAM 9 (1961), 551–570.

[22] R. Hassin and A. Levin, Minimum restricted diameter
spanning trees, Proc 5th Int Workshop on Approxima-
tion Algorithms for Combinatorial Optimization, Lecture
Notes in Computer Science 2462, Springer-Verlag, 2002,
pp. 175–184.

AQ1

[23] K. Jain, A factor 2-approximation algorithm for the gener-
alized Steiner network problem, Combinatorica 21 (2001),
39–60.

NETWORKS—2009—DOI 10.1002/net 9

J_ID: z8u Customer A_ID: 1471 Cadmus Art: NET20357 KGL ID: c2nett090065 — 2009/9/14 — page 10 — #10

[24] S. Khuller and U. Vishkin, Biconnectivity approxima-
tions and graph carvings, 24th Annual ACM Sympo-
sium on Theory of Computing (STOC) (1992), pp. 759–
770.

[25] S.O. Krumke, H. Noltemeier, S. Schwarz, H.-C. Wirth, and
R. Ravi, Flow improvement and network flows with fixed
costs, Proc of the International Conference on Operations
Research (OR’98), Springer, 1998 Available at: http://www.
mathematik.uni-kl.de/pub/scripts/krumke/or98-flow.pdf.

[26] A.L. Liestman and T. Shermer, Additive graph spanners,
Networks 23 (1993), 343–364.

[27] H. Nagamochi and T. Ibaraki, A linear-time algorithm
for finding a sparse k-connected spanning subgraph of a
k-connected graph, Algorithmica 7 (1992), 583–596.

[28] D. Peleg, Distributed computing: a locality-sensitive
approach, SIAM Monographs Discrete Math Appl, SIAM,
Philadelphia, 2000.

[29] D. Peleg and A.A. Schäffer, Graph spanners, J Graph Theory
13 (1989), 99–116.

[30] D. Peleg and J.D. Ullman, An optimal synchronizer for
the hypercube, Proc 6th ACM Symposium on Principles of
Distributed Computing, Vancouver, 1987, pp. 77–85.

[31] D. Peleg and E. Upfal, A tradeoff between space and effi-
ciency for routing tables, 20th ACM Symposium on the
Theory of Computing, Chicago, 1988, pp. 43–52.

[32] G. Robins and A. Zelikovsky, Improved steiner tree approxi-
mation in graphs, Proc 11th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2000), 770–779.

[33] J. Soares, Graph spanners: a survey, Congressus Numer 89
(1992), 225–238.

[34] G. Venkatesan, U. Rotics, M.S. Madanlal, J.A. Makowsky,
and C. Pandu Ragan, Restrictions of minimum spanner
problems, Informat Comput 136 (1997), 143–164.

[35] D.P. Williamson, M.X. Goemans, M. Mihail, and V.V. Vazi-
rani, A primal-dual approximation algorithm for generalized
Steiner network problems, Proc of the 25th Annual ACM
Symposium on Theory of Computing (STOC 1993) (1993),
pp. 708–717.

10 NETWORKS—2009—DOI 10.1002/net

