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Abstract Transactional data are ubiquitous. Several methods,dimgufrequent itemsets
mining and co-clustering, have been proposed to analyrsdcdional databases. In this
work, we propose a new research problem to succinctly summenransactional databases.
Solving this problem requires linking the high level sturet of the database to a potentially
huge number of frequent itemsets. We formulate this prolaem set covering problem us-
ing overlapped hyperrectangles; we then prove that thislpnoand its several variations are
NP-hard, and we further reveal its relationship with theclied bipartite graph compression.
We develop an approximation algorithiy” P £ R which can achieve a logarithmic approx-
imation ratio in polynomial time. We propose a pruning giggtthat can significantly speed
up the processing of our algorithm, and we also propose atiegffialgorithm to further
summarize the set of hyperrectangles by allowing falsetipestonditions. Additionally,
we show that hyperrectangles generated by our algorithmsegroperly visualized. A
detailed study using both real and synthetic datasets stimasffectiveness and efficiency
of our approaches in summarizing transactional databases.

Keywords hyperrectangle, set cover, summarization, transactuatabases

1 Introduction

Transactional data are ubiquitous. In the business dorfrain,the world’s largest retailers
to the multitude of online stores, transactional databaaey the most fundamental busi-
ness information: customer shopping transactions. In biical research, high-throughput
experimental data, like microarray, can be recorded asacional data, where each trans-
action records the conditions under which a gene or a pragegpressed [16] (or alter-
natively, repressed). In document indexing and searchergpplications, a transactional

A preliminary version of this paper was published in the peattegs of KDD08 conference [25]

Yang Xiang, Ruoming Jin, David Fuhry, Feodor F. Dragan
Department of Computer Science, Kent State University
Kent, OH, 44242, USA

E-mail: {yxiang,jin,dfuhry,dragap@cs.kent.edu

Click here to view linked References


http://www.editorialmanager.com/dami/download.aspx?id=21844&guid=71135fa0-724c-4aea-ab3a-9d886fc1b946&scheme=1
http://www.editorialmanager.com/dami/viewRCResults.aspx?pdf=1&docID=1222&rev=0&fileID=21844&msid={E3C61ED5-ED00-4B8D-8378-BAF931AFEA8E}

O©CO~NOOOTA~AWNPE

model can be applied to represent the document-term re$dtip. Transactional data also
appear in several different equivalent formats, such aarpimatrix and bipartite graph,
among others.

Driven by the real-world applications, ranging from busisiéntelligence to bioinfor-
matics, mining transactional data has been one of the mapaes in data mining research.
Several methods have been proposed to analyze transactaitaaAmong them, frequent
itemset mining [2] is perhaps the most popular and well-kmolvtries to discover sets of
items which appear in at least a certain number of transatlRecently, co-clustering [15],
has gained much attention. It tries to simultaneously elusansactions (rows) and items
(columns) into different respective groups. Using binagtmix representation, co-clustering
can be formulated as a matrix-factorization problem.

In general, we may classify transactional data mining naland their respective tools
into two categories (borrowing terms from economigs)cro-pattern miningand macro-
pattern mining The first type focuses on providing local knowledge of tfengactional
database, exemplified by frequent itemset mining. The sktge works to offer a global
view of the entire database; co-clustering is one such ndetdowever, both types are fac-
ing some major challenges which significantly limit theipagability. On the micro-pattern
mining side, the number of patterns being generated frontrtresaction data is gener-
ally very large, containing many patterns which differ oslightly from one another. Even
though many methods have been proposed to tackle this isserains a major open prob-
lem in the data mining research community. On the macreepathining side, as argued by
Faloutsos and Megalooikonomou [8], data mining is essigntfee art of trying to develop
concise descriptions of a complex dataset, and the coregsenf the description can be
measured by Kolmogorov complexity. So far, limited effdres’e been undertaken towards
this goal of concise descriptions of transactional datakas

Above all, little work has been done to understand the @batiip between the macro-
patterns and micro-patterns. Can a small number of madterpar high-level structures be
used to infer or explain the large number of micro-pattenrsstransactional database? How
can the micro-patterns, like frequent itemsets, be augedetat form the macro-patterns?
Even though this paper will not provide all the answers fbitedse questions, we believe the
research problem formulated and addressed in this worls @kelid step in this direction,
and particularly sheds light on a list of important issudatesl to mining transactional
databases.

Specifically, we seek a succinct representation of a trdioset database based on the
hyperrectangl@otion. A hyperrectangle is a Cartesian product of a seaof@ctions (rows)
and a set of items (columns). A database is covered by a sgpefiectangles if any element
in the database, i.e., the transaction-item pair, is coathin at least one of the hyperrectan-
gles in the set. Each hyperrectangle is associated withrageptation cost, which is the sum
of the representation costs (commonly the cardinalityX®tet of transactions and set of
items. The most succinct representation for a transadttaiabase is the one which covers
the entire database with the least total cost.

Here, the succinct representation can provide a high-Eweatture of the database and
thus, mining succinct representation corresponds to aov@zattern mining problem. In ad-
dition, the number of hyperrectangles in the set may sergenasasurement of the intrinsic
complexity of the transactional database. In the meantsiee will show later, the rows of
the hyperrectangle generally correspond to the frequemtsiets, and the columns are those
transactions in which they appear. Given this, the itemseitsg used in the representation
can be chosen as representative itemsets for the largetomli®f frequent itemsets, as they
are more informative for revealing the underlying struetuof the transactional database.
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Thus, the hyperrectangle notion and the succinct coverniaglem build a bridge between
the macro-structures and the micro-structures of a traéiosat database.

1.1 Problem Formulation

Let the transaction databageB be represented as a binary matrix such that a@gll

is 1 if a transaction contains itemj, otherwise0. For convenience, we also denote the

databaseD B as the set of all cells which arg i.e., DB = {(i,j) : DBJi,j] = 1}. Let

the hyperrectanglél be the Cartesian product of a transaction®eind an item sef, i.e.

H=TxI={(4,7):t € Tandj € I}. LetCDB = {H;,Hs,---,Hp} be a set of

hyperrectangles, and let the set of cells being covered’'by3 be denoted a8’ DB® =
f=1 H;.

If databaseD B is contained inCDB¢, DB C CDB¢, then, we refer t&@ DB as the
covering databaser the summarizatiorof DB. If there is no false positive coverage in
CDB, we haveDB = CDB°. If there is false positive coverage, we will ha\@D B \
DBJ| > 0.

For a hyperrectangl® = T x I, we define its cost to be the sum of the cardinalities of
its transaction set and item setst(H) = |T'| + |I|. Given this, the cost df DB is

p p
cost(CDB) =Y cost(H;) = Y |T;| + |I]
i=1 i=1

Typically, we store the transactional database in eithézbntal or vertical representation.
The horizontal representation can be represent€tfaBy = {{t;} x I, }, wherely, is all

the set of items transactian contains. The vertical representation is@B By = {T; x
{7}}, whereT;} is the transactions which contain iteinLet 7 be the set of all transactions
in DB andZ be the set of all items i B. Then, the cost of these two representations are:

|7
cost(CDBy) =|T|+ > |It;| = |T| + |DB|,
i=1

IZ|
cost(CDBy) = |Z| + Y |Tj| = |Z| + |DB|
j=1

In this work, we are interested in the following main proble@iven a transactional
databaseD B and with no false positives allowed, how can we find the coxgdatabase
C' DB with minimal cost (or simply theninimal covering databasefficiently?

min _ cost(CDB)
DB=CDB¢

In addition, we are also interested in how we can further cedhe cost of the covering
database if false positives are allowed.
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1.2 Our Contributions

Our contributions are as follows.

1. We propose a new research problem to succinctly summaaaséctional databases, and
formally formulate it as a variant of a weighted set coverqingblem based on a hyperrect-
angle notion.

2. We provide a detailed discussion on how this new problemlaseae to a list of important
data mining problems (Section 2).

3. We study the complexity of this problem and prove this probénd its several variations
are NP-hard, and we show that our problem is closely relateshother hard problem, the
directed bipartite graph compression problem (Section 3).

4. We develop an approximation algorithiy P £ R which can achieve & (n) + 1 approx-
imation ratio in polynomial time. We also propose a prunitrgtegy that can significantly
speed up the processing of our algorithm (Section 4).

5. We propose an efficient algorithm to further summarize theoSdyperrectangles by
allowing false positive conditions. (Section 5).

6. We show that hyperrectangles generated by our algorithm$egroperly visualized.
(Section 6).

7. We provide a detailed study using both real and synthetiasgds. Our research shows
that our method can provide a succinct summarization oktretional data (Section 7).

2 Related Research Problems and Work

In this section, we discuss how the summarization problerdiatl in this work is related
to a list of other important data mining problems, and howisgi this problem can help to
tackle those related problems.

Data Descriptive Mining and Rectangle Covering: This problem is generally in the line
of descriptive data mining. More specifically, it is closeffated to the efforts in applying
rectangles to summarize underlying datasets. In [4], Agtaast al. define and develop
a heuristic algorithm to represent a dense cluster in grid daing a set of rectangles.
Further, Lakshmanan et al. [14] consider the situation wlefalse positive is allowed.
Recently, Gao et al. [9] extend descriptive data mining frorwlustering description to a
discriminative setting using a rectangle notion. Our peafbls different from these problems
from several perspectives. First, they focus on multi-digienal spatial data where the
rectangle area forms a continuous space. Clearly, the rggiangle is more difficult to
handle because transactional data are discrete, so anyraiiob of items or transactions
can be selected to form a rectangle. Further, their costifumecare based on the minimal
number of rectangles, whereas our cost is based on the ahtigs of sets of transactions
and items. This is potentially much harder to handle.

Summarization for categorical databases: Data summarization has been studied by some
researchers in recent years. Wang and Karypis proposeditmarize categorical databases
by mining summary set [24]. Each summary set contains a sstimimary itemsets. A
summary itemset is the longest frequent itemsets suppbytedransaction. This approach
can be regarded as a special case of our summarization by fixperrectangle width (i.e.
the transaction dimension) to be one. Chandola and Kumapiess datasets of transactions
with categorical attributes into informative represeiotas by summarizing transactions [6].
They showed their methods are effective in summarizing oektwraffic. Their approach
is similar to ours but different in the problem definition aredearch focus. Their goal is to
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effectively cover all transactions with more compactiomgand less information loss, while
our goal is to effectively cover all cells (i.e. transactitem pair), which are finer granules
of a database. In addition, our methods are shown to be ieffendt only by experimental
results but also by the theoretical approximation bound.

Data Categorization and Comparison: Our work is closely related to the effort by Siebes
et al. [20] [22] [23]. In [20] [22], they propose to recognize sifjoant itemsets by their
ability to compress a database based on the MDL principlles.cbmpression strategy can
be explained as covering the entire database using thevestapped hyperrectangles with
no false positives allowed. The set of itemsets being usétkimectangles is referred to as
the code table, and each transaction is rewritten using¢hesets in the code table. They
try to optimize the description length of both the code tabid the rewritten database. In
addition, they propose to compare databases by the codé heitg regard to the same code
table [23]. A major difference between our work and this wisrkhat we applyoverlapped
hyperrectangles to cover the entire database. Furtherithaeptimization function is also
different. Our cost is determined by the cardinalities &f $ets forming the rectangles, and
their cost is based on the MDL principle. In addition, we atady how the hyperrectangle
can be further summarized by allowing false positive dakeusT our methods can provide a
much more succinct summarization of the transactionabdase Finally, their approach is
purely heuristic with no analytical results on the diffigudif their compression problem. As
we will discuss in Section 3, we provide rigorous analysid proof on the hardness of our
summarization problem. We also develop an algorithm wittven approximation bound
under certain constraints.

Co-clustering: As mentioned before, co-clustering attempts simultanetussering of both
row and column sets in different groups in a binary matrixsEpproach can be formulated
as a matrix factorization problem [15]. The goal of co-otustg is to reveal the homoge-
neous block structures being dominated by eitteor 0s in the matrix. From the sum-
marization viewpoint, co-clustering essentially proda@eso-calleatheckerboard structure
summarization with false positive data allowed. Cleatg problem addressed in this work
is much more general in terms of the summarization struetndethe false positive assump-
tion (we consider both).

Approximate Frequent Itemset Mining: Mining error-tolerant frequent itemsets has at-
tracted a lot of research attention over the last severaby®¢e can look at error-tolerant
frequent itemsets from two perspectives. On one sideg# to recognize the frequent item-
sets considering if some noise is added into the data. I @tbels, the frequent itemsets
are disguised in the data. On another side, it provides a wagduce the number of fre-
guent itemsets since many of the frequent itemsets can bgnized as the variants of a
true frequent itemset. This in general is referred to aepatummarization [1][18]. Most
of the efforts in error-tolerant frequent itemsets can lesveid as finding dense hyperrectan-
gles with certain constraints. The support envelope ngifoposed by Steinbach et al. [21]
also fits into this framework. Generally speaking, our wooksinot directly address how to
discover individual error-tolerant itemsets. Our goalaglerive a global summarization of
the entire transactional database. However, we can uéfize-tolerant frequent itemsets to
form a succinct summarization if false positives are alldwe

Data Compression: How to effectively compress large boolean matrices or aatisnal
databases is becoming an increasingly important reseapdh ds the size of databases is
growing at a very fast pace. For instance, in [12], Johret@i. tries to reorder the rows and
columns so that the consecutivis and(0’s can be compressed together. Our work differs
because compression is concerned only with reducing dptasentation size; our goal is
summarization, with aims to emphasize the important cheriatics of the data.
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Set Covering: From the theoretical computer science viewpoint, our gbtan be gener-
alized as a variation of theet coveringoroblem. Similar to the problem studied in [10], our
covering problem does not directly have a list of candidate as in traditional set covering,
because our total set of candidate sets is too large to beiaiiaed. The problem and so-
lution studied in [10] cannot be applied in our problem asié@st to find a minimal number
of sets for covering. The strategy proposed in this work todfethis variation of the set
covering problem is also very different from [10]. In [LOjgt strategy is to transform the set
cover problem into an independent vertex set problem. Taptgin the new problem space
contains all the elements in the universal (or groundingywéch needs to be covered. Any
two elements in the grounding set can potentially be putami® candidate set for covering
if connected with an edge. Then, finding a minimal set covdinied to finding an inde-
pendent vertex set, and a heuristic algorithm progressn@lapses the graph to identify
the set cover. Considering the number of elements in thedion database, this strategy
is too expensive and the solution is not scalable. Here, weqgse to identify a large family
of candidate sets which is significantly smaller than the lemof all candidate sets but
is deemed sulfficient for set covering. Then, we investigate to efficiently process these
candidate sets to find an optimal set cover.

3 Hardness Results

In the following, we prove the complexity of the succinct suarization problem and sev-
eral of its variants. We begin the problem with no false pesit and extend it to false
positive cases in corollary 1 and theorem 4. Even thoughetpesblems can quickly be
identified as variants of the set-covering problem, proviregg to be NP-hard is non-trivial
as we need to show that at least one of the NP-hard problentsecaaduced to these prob-
lems.

Theorem 1 GivenD B, itis an NP-hard problem to construct@pD B of minimal cost which
coversDB.

Proof: To prove this theorem, we reduce the minimum set cover pnopbiehich is NP-
hard, to this problem.

The minimum set cover problem can be formulated as: Giverlection C' of subsets
of afinite setD, what is the minimunC’| such that?’ C C and every element ib belongs
to at least one member 6f'.

The reduction utilizes the databald3, whose entire set of items i3, i.e., each element
in D corresponds to a unique item inB. All items in a setc € C is recorded inl0|c|
transactions irD B, denoted collectively as a sé&t. In addition, a special transactianin
DB contains all items irD. Clearly, this reduction takes polynomial time with redped”
and D. Note that we will assume that there is only anén DB containing all items inD.

If there were another one, it would mean there is a:$etC which covers the entir®; the
covering problem could be trivially solved in that case. W# also assume each sets
unique inC'.

Below we show that if we can construc€aD B with minimum cost, then we can find the
optimal solution for the minimum set cover problem. This taninferred by the following
two key observations, which we state as lemmas 1 and 2.

Lemmal LetCDB be the minimal covering abB. Then, all theT,. transactions inD B
which record the same itemset C will be covered by a single hyperrectangle x I; €
CDB,i.e.T. CT; andc = I;.
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Lemma2 LetCDB be the minimal covering ab B. Let transactionv which contains all
the items inD be covered by: hyperrectangles i@ DB, Ty x Iy, - -+, T}, x I. Then each
of the hyperrectangles is in the formatBfu {w} x ¢, ¢ € C. Further, thek itemsets in the
hyperrectanglesiy, - - -, I, correspond to the minimum set cover/af

Putting these two lemmas together, we can immediately sethle minimalC DB
problem can be used to solve the minimum set cover problemof$of the two lemmas are
given belowO

In the following, we prove Lemma 1 and 2.

Proof of Lemma 1. We prove it in three steps. First, we observe that all traiwes

in T. will be covered by the same number of hyperrectangle§'inB. Specifically, let
CDB(t;),t; € T. be the subset of’ DB, which includes only the hyperrectangles cov-
ering transactiont;, i.e., CDB(t;) = {T; x I; : t; € T;}. Then, we observe that for
any two transactions; andt;, in T, |CDB(t;)| = |CDB(ty)|. This is true because if
|CDB(t;)| > |CDB(ty)|, we can simply covet; by CDB(t;,) with less cost. This contra-
dicts thatC' D B is the minimal covering database.

Given this, we will prove that every transactionih will be covered by one hyperrect-
angle, i.e|CDB(t;)| = 1,t; € T.. By way of contradiction, we assume every transaction
in T, is covered byt hyperrectanglest > 1). LetCDB = {1y x I,---,Ts x Is}. Then,
we can modify it as follows:

CDB' = {(Ty\Te) x I, -, (Ts \ Te) x Is} U{T. x ¢}

Clearly,CDB’ coversDB and with less cost.

S
cost(CDB') = Z |T5 \ Te| + | Ii]| + |Te| + ||
i=1

= SOIBI + 1Ll = k X [Tel + [Te] + |l (ICDB(t;)| = kyt; € To)

=1

S
= > ITi| + 1] = (k= 1) x 10]¢| + |¢| (ITe| = 10]c])
i=1

<> |Ti| +|Ii| = cost(CDB)
i=1

This is a contradiction.

Thus, we can conclude that every transactiofiiircan be covered by exactly one hy-
perrectangle.

Now we prove by contradiction that if more than one hypeaegte is used to cover
T, it cannot be minimal. AssumE. x c is covered by hyperrectangles i’ DB (k > 1),
expressed in the formdt x ¢ C Ty x cU- - - T}, x c. We see that we can simply combine all
k of them into oneTy U - - - T}, x c. The cost of that latter is less than the cost of the former:
[Ty U - Tg| + | < Zf:1(|Ti| + |e|) This again contradicts the assumption thdd B is
the minimal database covering.

Put together, we can see that x c is covered by only a single hyperrectandte.
Proof of Lemma2: Let CDB(w) = {T x I1,---, T} x I }. From lemma 1, we can see all
the transactions besidashave been covered by a hyperrectarifjlex ¢, c € C. Thus, the
Ty x I; can either be in the form&t. U {w} x c or {w} x I;, wherel; ¢ C (the casd; € C
can easily be excluded due to the minimal CDB assumption)fitdteshow that the latter
case{w} x I;, I; ¢ C, will not be optimal. Assumingy can be minimally covered hysets
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inC,w C e U---Uecs, then|w| < s. Thus, we can replacauv} x Is by s hyperrectangles,
(T, U{w}) xeq, - -+ (Te, U{w}) X cs, With less cost. This contradicts thaD B is minimal.
Thus, we can see each hyperrectangle coverihgs the formaf. U {w} x ¢, c € C.

Note that the cost af’ DB is

cost(CDB) = Z(|Tc| +lel) +s
ceC

This is the smallest such thatl; U --- U Is = D. We conclude thafy, - - -, Is forms the
minimal cover ofS. O
Several variants of the above problem turn out to be NP-hswdedl.

Theorem 2 GivenDB, itis an NP-hard problem to construct@pD B with no more thark
hyperrectangles that maximally covers3.

Proof: To prove this lemma, we reduce maximum edge biclique proplemch is NP-hard
[17], to this problem withk = 1.

Maximum edge bicliqgue problem can be formulated as: Giveiparbte graphG =
(V1 U Va, E), what is the biclique that has maximum edges?

The polynomial reduction is as follows: Creds5 by letting7 = V1, Z = V», and a
cell(¢,i) in DB (t € T andi € 7) if and only if ¢ and: are the two end points of an edge in
E. Also setk = 1.

Below we show that if we can constructe B with 1 cartesian product that maximally
coversD B, we find the maximum edge biclique @a.

Let the only cartesian product D B beT' x I. C DB Maximally coveringD B means
that|7'||] is maximum. Because a transactigi € 7°) contains an item (i € I) if and only
if t and: are the two end points of an edgefihwe can conclude that we find the maximum
edge bicliquel” U I with |T'||I] edgesD

Theorem 3 GivenDB and a budget, it is an NP-hard problem to construct@pD B that
maximally coverd) B with a cost no more thas, i.e.,cost(CDB) < §.

Proof:We can simply reduce the general compression problem irréhed into this
problem.

We need to show if we can construcCaD B with cost(CDB) < §, then we can find
the optimal solution for the covering problem in theorem 1.

By definition, we conclude the smallest cost@D B that coversD B is no more than
2|DB|). We only need to try from 1 to2|DBj|, so that we can find the optimal solution for
the compression problem in lemmarl.

Corallary 1 When false positive coverage is allowed with
% < B3, whereg is a user-defined threshold, the above problems in theore@s 1
and 3 are still NP-complete.

Proof: The proof is straightforward if we reduce the above problarwsfalse positive cases
by letting3 = 0. O

Assuming a set of hyperrectangles is given, i.e., the rg&eanused in the covering
database must be chosen from a predefined set, we can prdfie albove problems are
NP-hard as well.
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Theorem 4 GivenD B and a setS of candidate hyperrectangles such tliabB C S, itis
NP-hard to 1) construct & D B with minimal cost that cover® B; 2) construct aC DB to
maximally coverD B with |[CDB| < k; 3) construct aC' DB to maximally covetD B with
minimal cost whereost(CDB) < 4, (¢ is a user-defined budget). The same results hold for

the false positive casé% < 3, whereg is a user-defined threshold.

Proof: To prove 1), we reduce the minimum set cover problem, whitHshard, to this
problem.

The minimum set cover problem can be formulated as: Giverllection C' of subsets
of a finite setD, what is the minimuniC’| such that?’ C C and every element ib belongs
to at least one member 6f'.

The reduction is as follows: CreateB, whose item sef is isomorphic to the seb. Let
the setS of hyperrectangles be isomorphic@g such that a hyperrectangleé = 7. x I. €
S is isomorphic to a set € C where item set/. is isomorphic toc. Create7 of DB
such that each transaction 7 contains all items irZ and the number of transactions is
|7 = 1000|Z|(|S] + |Z]). Apparently, this reduction takes polynomial time.

Below we show that if we can construceD B with minimum> (|75 + | 1;]) (T; x I; €
S), then we find the optimal solution for the minimum set covextyem.

First, we observe that given any two transactiopsndi;, the set{T; : ¢; € T;}
and the se{T; : ¢, € T;} have the same size, i. & andt;, appear an equal number of
times in hyperrectangles i@ DB. This is because if a transaction appears more times
than a transaction,, we can always make; appear only in the hyperrectangles that
appears and get a neWD B with smaller} (73| + |1;|) but which still coversDB. This is
a contradiction. Furthermore, it's easy to observe thatrafisactions should appear in the
same hyperrectangles D B.

Second, we observe that the set sizg : t; € T;} is minimum for any transactioty.

If not, suppos€7; : t; € T;} is less inCDB’ than inC DB. Considering the size df is
|T'| = 1000|Z|(|S| +|Z|), it's not difficult to see thap_(|T;| + |1;|) is smaller inC DB’ than
in CDB. This is a contradiction.

Since|{T; : t; € T;}| is minimum and any transactian contains all items irZ, the
minimum set cover is exactly’ = {c : ¢ € C andcis isomorphic td. andT. x I. € CDB}
and|C’| = |{T; : t; € T;}|. Therefore, we conclude that to construat’®B of minimal
size that cover® B with CDB C S, is equivalent to finding a minimum sét C C where
every element irD belongs to at least one member@f

To prove 2), we can reduce the problem in 1) into this problgrtetiing £ = |S|, and
the proof is straigtforward.

3) can be proved by the similar reduction technique as in theff theorem 3.

4) can be proved by the similar reduction technique as in tbeff corollary 1.0

3.1 Relationship with directed bipartite graph compressio

Directed bipartite graph compression is a fundamentallprolvelated to important appli-
cations including the reachability query on DAG (Directecyalic Graph) [3] and modern
coding theorem [19], and etc. Here, we reveal the closeioektip between our summa-
rization problem and directed bipartite graph compresaiuth show how the solutions for
the former one can be applied to the latter one.

Consider a bipartite grapfl whose vertices can be divided into two sdtand B. Any
vertex inA may point to any vertex im.
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Any graph reachability query scheme must be able to tellilfa B) can be reached
froma (a € A)if there is an edge from to b in the bipartite grapldr. Further, we say graph
G’ (not necessarily bipartite) reachability isomorphito G, if A ¢ V(G’) andB c V(G")
such that if there is an edge frome A tob € B in G then there must be a directed path
froma € Atob € Bin G’, and vice versa.

The initial idea of bipartite graph compression by addinditinal vertices was orig-
inally pointed out in [3] as a simple heuristic for compressiransitive closure of a DAG.
However, no detailed investigation was performed in [3] aadurther research is done on
this topic to our best knowledge.

Considering a bipartite graphi stored as a linked list, we can reduce the storage space
of the graph reachability query of by finding a reachability isomorphic graglf of G
such thatE(G')| + |V (G| < |E(G)|+|V(G)|. To get aG’, we can add some intermediate
vertices, each of which points to a subseBofThen verticesA may point to some interme-
diate vertices so that the total storage sp&&’ )| + |V (G")| is less thanE(G)| + [V (GQ)|.
Figure 2 is an example: Graph (a) and graph (b) are reactyaisitimorphic but (b) has far
fewer edges.

We can reduce the summarization problem of a transacticatabese to the directed
bipartite graph compression problem, and vice versa. Famgie, let each transaction of a
databaselb be a vertex in the set of a directed bipartite grap&y. Let each item irZ of
DB be a vertex in the st of G. Then each hyperrectangle in the covering datalbasé
is expressed as a new intermediate vertex.ifror example, a transaction database in figure
1 has size6 if stored asDB ={(t1,1), (t1,i2), ---}. But it only has size 16 if stored as
CDB = {{t1,t2,t3,ta} x {i1,i2,43,14}, {t3, a, b5, te }o{is, 14, 15,96} }.

~
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Fig. 1 A transaction database.

We can reduce the summarization scheme for the transacitabae in figure 1 to the
bipartite graph compression method in figure 2.

i, i i i

2 I 3 I 4
|E|=16
(b)
Fig. 2 (a) A bipartite graph generated from the transaction datl@®) The compressed bipartite graph.
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Note that in our problem definition, there is no cost of intediate vertices. But the NP-
hardness results and our proposed algorithms would stitiete with only slight modifica-
tion for the situation where an extra cost is needed for tterimediate vertices. Therefore,
we believe our problems and algorithms are fundamentalrmteddsting to many areas.

4 Algorithmsfor Summarization without False Positive

In this section, we develop algorithms to find minimal costering databas€’'D B for a
given transactional database with no false positives. Asnetioned before, this problem
is closely related to the traditional weighted set covepngblem. LetC' be a candidate set
of all possible hyperrectangles, which cover a part of the without false positives, i.e.,
C ={T; x I; : T; x I; C DB}. Then, we may apply a classical greedy algorithm to find
the minimal set cover, which essentially corresponds tariemal covering database, as
follows.

Let R be the covered B (initially, R = (). For each possible hyperrectandle x I; €
C, we define the price df as:

(H) = T3] + |14
|T; x I; \ R|'

At each iteration, the greedy algorithm picks up the hypetaregle # with the minimum
~(H) (the cheapest price) and putdtD B. Then, the algorithm will updat& accordingly,
R = RUT; x I;. The process continues untilD B completely cover® B (R = DB). It has
been proved that the approximation ratio of this algorittetri(n) + 1, wheren = |DB]|
[71.

Clearly, this algorithm is not a feasible solution for thenimal database covering prob-
lem due to the exponential number of candidate hyperrefgarigC, which in the worst
case is in the order &f 7 I+1Z], whereZ andZ are the sets of transactions and item®iR,
respectively. To tackle this issue, we propose to work onalemcandidate set, denoted as

Co = {Tz X L‘L c Fo U IS},

where Fy, is the set of all frequent itemsets with minimal support lexgand I is the
set of all singleton sets (sets with only one item). We asséimé generated by Apriori
algorithm. Essentially, we put constraint on the colummgHe hyperrectangles. As we will
show in the experimental evaluation, the cost of the miniowalering database tends to
converge as we reduce the support levelNote that this reduced candidate set is still very
large and contains an exponential number of hyperrectanbét7'(1;) be the transaction
set wherd; appears|T'(I;)| is basically the support of itemsgt Then, the total number of

hyperrectangles ity is
|Ca| = Z ol T(I)]

I;€EF U

Thus, even running the aforementioned greedy algorithmhisréduced sef’, is too ex-
pensive.

In the following, we describe how to generate hyperrecesdly an approximate al-
gorithm which achieves the same approximation ratio wigpeet to the candidate s€t,,
while running in polynomial time in terms ot U Is| and7 .

11
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4.1 TheHY PER Algorithm

As we mentioned before, the candidateGSgtis still exponential in size. If we directly ap-
ply the aforementioned greedy algorithm, it will take an@xential time to find the hyper-
rectangle with the cheapest price. The major challengeus tih derive a polynomial-time
algorithm that finds such a hyperrectangle. Our basic idéa limndle all the hyperrectan-
gles with the same itemsets together as a single group. Adayltrhere is we develop a
polynomial time greedy algorithm which is guaranteed to fimel hyperrectangle with the
cheapest price among all the rectangles with the same iten&ace we only have, U |
such groups, we can then find the globally cheapest rectamglg in polynomial time.

Specifically, letCy, = {T(I;) x I;}, I; € FoUI,, whereT(I;) is the set of all supporting
transactions of;. We can see thaf, can easily be generated fro@},, which has only
polynomial sizeO(|(Fa U I)]).

The sketch of this algorithm is illustrated in 1. Takiag as input, thelY PE R algo-
rithm repeatedly adds sub-hyperrectangles tdxséh each iteration (Lineg-7), it will find
the lowest priced sub-hyperrectangié from each hyperrectanglg(I;) x I; € C, (Line
4), and then select the cheapé&tfrom the set of selected sub-hyperrectangles (b)nél’
will then be added inta’ D B (Line 6). SetR records the covered databd3&. The process
continues untilC DB coversDB (R = DB, line 3).

Algorithm 1HYPER(DB, C.)

R0

: CDB «— (Z);

: while R # DB do

call OptimalSubHyperRectangle to fidd with minimum~(H') for eachH; = T'(I;) x I; € Cy;
choose thé?’ with minimum~(H’) among all the ones discovered by OptimalSubHyperRectangle;
CDB «— CDBU{H'};

R+~ RUH’;

. end while

:return CDB

The key procedure ®ptimalSubHyperRectanghlhich will find the sub-hyperrectangle
with the cheapest price among all the sub-hyperrectan§lEglp) x I;. Algorithm 2 sketches
the procedure. The basic idea here is that we will decompashyperrectangl@(1;) x I;
into single-transactiorhyperrectanglesfs = {t;} x I; wheret; € T(I;). Then, we will
order those rectangles by the number of their uncoveresl deties1 — 4). We will perform
an iterative procedure to construct the sub-hyperrectangh cheapest price (Lines 6-13).
At each iteration, we will simply choose the single-trarigachyperrectangle with maximal
number of uncovered cells and try to add it ir#. If its addition can decreasg H'), we
will add it to H'. By addingHs = {t;} x I; into H' = T; x I;, H' will be updated as
H' = (T; U {t;}) x I;. We will stop whenH begins to increas#’.

Here is an example. Given hyperrectanglec C,, consisting ofH = T(I) x I =
{t1,t3,t4,t6,ts,to} x {i2,i4,i5, 7}, We construcH’ with minimum-~(H") in the following
steps. First, we order all the single-transaction hypéareges according to their uncovered
cellsasfollows{ts} x I, {tg} x I, {t1} x I, {te} x I, {ts} x I, {to} x I. Beginning with
H' = {t4} x I, the pricey(H') is (4 +1)/4 = 5/4 = 1.25.

If we add{ts} x I, y(H') falls to 54350 = § = 0.75.

If we add{t;} x I, y(H') decreases t6{15° = {5 = 0.70.

12
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Algorithm 2 A Greedy Procedure to Find the Sub Hyperrectangle with Gésteprice

Procedure OptimalSubHyperRectangl&()

{Input: H = T(I;) x I;}

{OUtpUtH’ =1T; x LL',TZ' (- T(LL)}
: forall Hy = {tj} x I; C H do
calculate the number of uncovered celldi, | Hs\ R|
. end for
. sortH, according to Hs\ R| and put it inU,;
. H' « first hyperrectangléfs popped fromJ
: whileU # (0 do
pop a single-transaction hyperrectangle from U;
if addingH s into H' increasesy(H') then

break;

10: ese
11: addH into H';
12:  endif
13: end while
14: return H';

CONOUAWNER

[l

w

IN

o

[

— o~ o~ o~ o~ -

©

H=T x |
Fig.3 Ahyperrectangléd € C,,. Shaded cells are covered by hyperrectangles currentilabiein C D B.

If we add{ts} x I, y(H') decreases 8110 = % = 0.67.

However, if we then addits} x I, v(H') would increase téf;14? = % = 0.69. Therefore
we stop at the point wherl’ = {t4,ts,t1,t¢} x T andy(H') = 0.67.

Properties of HYPER: We discuss several properties of HYPER, which will provejts

proximation ratio.

Lemma 3 The OptimalSubHyperRectangle procedure finds the minif(ui) for any in-
put hyperrectangld’(I;) x I; € Cq.

Proof:Let H' = T; x I; be the sub-hyperrectangle @f/;) x I; with the leasty(H’).
Then, we first prove that if a single-transactiti) = {t;} x I, C H’, then for any other
single-transactio; = {t;} x I;,t; € T(I;), if

|Hj \ R| < [H; \ R|,

thenH; will be part of H'. By way of contradiction, without loss of generality, letagssume
Hyis notin H'. Then, we have

(H') = |Til + i| _ [T\ {t;H + L] + 1
[H'\ R [(T: \{t;}) x ;i \ R| + |H; \ R|
z+1 > z+1+1

Tyt [H;\R| T y+H; \ R+ |H, \ R]

13
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(x = Ty \ {t;} + L]y = (T \ {t;}) x I; \ R]),
T x+1
y = y+I|H;\ R
(x+1)|H \R| >y +|H; \ R| =
(x+1)(y+ [H\ R+ [H; \ R|]) > (z +2)(y + |H; \ R)

=y <z|Hj\ Rl =

This shows that we can add; into H’ to reduce the pricey(H’)). This contradicts the
assumption thaf’ is the sub-hyperrectangle @f(I;) x I, with minimal cost. This sug-
gests that we can find the lowest cdst by considering the addition of single-transaction
hyperrectangles ift'(1;) x I;, ordered by their number of uncovered celfs.

Coroallary 2 In OptimalSubHyperRectangle, if two single-transactigpdrrectangles with
the same number of uncovered célls } x I;\R| = |{t;} x I;\R|, then either both of them
can be added int@7’ or none of them.

Proof: Without loss of generality assume in the&” PE R algorithm a single-transaction
hyperrectanglels;, is ranked before another single-transaction hyperretaafig;, , and

/ Ti|+|1; ; ;
|cell(Hs,, )\R| = |cell(Hs,,)\R| = a. y(H') = m = 2 just before adding/,,
H !/ H T r+1 r+1 r+2 T x+1 x+1 r+2
into H'. Since < = = 75, < 55, andy > 7 = 700 > Hhn, we conclude

that either both/;; andHj,, are added intdi’ or none of themO

Corollary 3 Assume that in iteratiop of thewhile loop in theOptimalSubHyperRectangle

procedure, we choos; = {t;} x I;. We denote; = [{t;} x I;|\R|, and letH’ =T} x I;

with minimuny (H) contain the single-transaction hyperrectanglés, Hs, - - -, Hy. Then
(17 a;

2ioy
we haven, 1 < S5

Proof:We know addingt 1 to H' will increase~(H'). Let y(H') = 7 before adding

Hg+1 into H'. According to the algorithm we havg < yjr‘qu , which meansi, 1z < y.
Yl a

We also know thai: = ¢ + |I;| andy = -7, a;. Thereforen, 1 < pERyARE

The above two corollaries can be used to speed up the OpitiiifperRectangle pro-
cedure. Corollary 2 suggests that we can process all théedirasaction hyperrectangles
with the same number of uncovered cells as a single groumli@nr 3 can be used to
quickly identify the cutting point for constructing’.

Lemma 3 and greedy algorithm (withg approximation bound) for weighted set cover
problem [7] lead to the major property of the HYPER algorittetated as Theorem 5.

Theorem 5 The HY PER algorithm has the exact same solution as the greedy approach
for the weighted set covering problem, which asks for thérmim costC' D B to coverD B,

and hadn(n)+1 (n = |DBJ) approximation ratio with respect to the optimal solutiamen
candidate seC .

Time Complexity of HYPER: Here we do not take into account the time to generate
which can be done through the classic Apriori algorithm. uksig £, is available, the
HY PER algorithm runs inO(|7|(|Z| + log|T|)(|Fa| + |Z])k), wherek is the number of
hyperrectangles i’ D B. The analysis is as follows. Assume the while loop in Alduritl
runsk times. Each time it choosesr& with minimum-~(H") from C,,, which contains no
more than F,| + |Z| candidates. To construét’ with minimum-~ (') for I, we need to
update every single-transaction hyperrectanglé jrsort them and add them one by one,

14
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which takesO(|T||Z| + |T|log|T| + |T|) = O(|T|(|Z| + log|T|)) time. Since we need to
do so for every hyperrectangle @, it takesO(|T|(|Z| + log|T|)(|Fa| + |Z|))- Therefore,
the total time complexity i€ (|7 |(|Z| + log|T|)(|Fa| + |Z])k). In addition, we note thait
is bounded by{|F| + |Z|) x | 7| since each hyperrectangledh, can be visited at most|
times. Thus, we conclude that our greedy algorithm runs prmonial time with respect to

|Fyol, |Z) and|T .

4.2 Pruning Technique for HYPER

Although the time complexity of Y PER is polynomial, it is still very expensive in prac-
tice since in each iteration, it needs to scan the emtiteto find the hyperrectangle with
cheapest price. Theorem 6 reveals an interesting propemyaP £ R, which leads to an
effective pruning technique for speeding up HYPER signifita(up to|Co| = |Fa U Z|
times faster!).

Theorem 6 For any H € C,, the minimumy(H’) output by OptimalSubHyperRectangle
will never decrease during the processing of the HYPER étlyor

Proof: This holds because the covered databiase monotonically increasing. L&t; and
R; be the covered database at thth and;j-th iterations in HYPER, respectively  j).
Then, foranyH’ = T; x I; C T(I;) x I; = H € Cy, we have

i T3] + |14 T3] + |1i] Y
) = | i il < 4 i I
7( ) TiXIi\RZ'_TiXIi\Rj ’y( )’

wherey!(H') and~ (H') are the price fors’ at iteration: and, respectivelyr

Algorithm 3HYPER(DB,Cy)

1. R+ 0

2: CDB «— 0;

3: call OptimalSubHyperRectangle to fiff@ with minimum-~ (H') for eachT'(I;) x I; € Cq;

4: SortallT(I;) x I; € Cq into a queud/ according to their minimuny(H’) from low to high and store

H’ and its price (as the lower bound);
5: whileR # DB do
6:  Pop the first elemerfif; with H{ from the queud’/;
7:  call OptimalSubHyperRectangle to upd#f¢ with minimum~(H?) for Hy;
8:  whiley(H]) > ~v(H}) do { H> is the next element itV after popping the last hyperrectangle

9: insertH with H; back toU in the sorting order;
10: Pop the first elemert; with H{ from the queud’;
11: call OptimalSubHyperRectangle to updaf¢ with minimum-~(H7 ) for Hy;

12:  end while

13: CDB <~ CDBU{H};

14: R+<— RUH];

15:  call OptimalSubHyperRectangle to find the updated minim#/ ) of H, and insert it back to the
queuel in the sorting order;

16: end while

17: return CDB;

Using Theorem 6, we can revise the” P E R algorithm to prune the unnecessary visits
of H € C,. Simply speaking, we can use the minimuiH’) computed forf7 in the previ-
ous iteration as its lower bound for the current iteratioma the minimury(4’) will be
monotonically increasing over time

15
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Our detailed procedure is as follows. Initially, we comptie minimunry(H’) for each
H in Cy. We then order allf into a queud/ according to the computed minimum possible
price ¢y(H")) from the sub-hyperrectangle &f. To find the cheapest hyperrectangle, we
visit H in the order ofU. When we visitH, we call theOptimalSubHyperRectangfgo-
cedure to find the exadt’ with the minimum price forFZ, and update its lower bound as
~v(H'"). We also maintain the current overall minimum price for theisited so far. If at any
point, the current minimum price is less than the lower boohthe nextH in the queue,
we will prune the rest of the hyperrectangles in the queue.

Algorithm 3 shows the complete HYPER algorithm which u#kzthe pruning tech-
nique.

5 Summarization of the Covering Database

In Section 4, we developed an efficient algorithm to find a $&yperrectangles; DB, to
cover a transaction database. When false positive covesagehibited, the summarization
is generally not succinct enough for the high-level streetaf the transaction database to be
revealed. In this section, we study how to provide more sitGummarization by allowing
certain false positive coverage. Our strategy is to buildw set of hyperrectangles, referred
to as thesuccinct covering databage cover the set of hyperrectangles found by HYPER.
Let SCDB be the set of hyperrectangles which covet® B, i.e., for any hyperrectangle
H € CDB,thereisal’ ¢ SCDB, suchthati C H’. Let the false positive ratio §C DB
be

|SCDB\DB|

IDB|

whereSCDBC is the set of all cells being covered I8’ D B. Given this, we are interested
in the following two questions:

1. Given the false positive budg@l%

C' DB such thatost(SCDB) is minimized?
2. Given|SCDB| = k, how can we minimize both the false positive rahg@%goc%
and the cost ofCDB?

< 3, how can we succinctly summarize

We will focus on the first problem and we will show later tha¢ ttame algorithm for
the first problem can be employed for solving the second problntuitively, we can lower
the total cost by selectively merging two hyperrectanghethe covering set into one. We
introduce the the merge operatios)(for any two hyperrectangled/; = 71 x I; and
H2 = T2 X IQ,

Hy ® Ho = (Th UTs) x (I1 U I)

The net cost savings from mergirfy andH is
cost(Hy) + cost(Ha) — cost(Hy @ H2)

=Tl + |Tj| + | Ll + ;| = 1T; U Ty| = [1; U I

To minimizecost(C D B) with given false positive constraint

% < 3, we apply a greedy heuristigve will combine the hyperrectangles in
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C' DB together so that the merge can yield the best savings witherggo the new false
positive coverage, i.e., for any two hyperrectangtgsand H ;,

arg ma (BT L+ 1| =1L U T = 1 U
HiH; |(H; ® Hj) \ SCDB¢| :

Algorithm 4 sketches the procedure which utilizes the retias.

Algorithm 4 HYPER+(DB, CDB, 3)

1: SCDB «+— CDB;

2: While% < pBdo

3:  find the two hyperrectangld$; andH; in SC DB whose merge is within the false positive budget:

|(SCDB\ {Hi, H;} U {H; ® H;})*\ DB|

<
|DB| <8

and produces the maximum (or near maximum) saving-false poxitie

ITil +1T5] + Uil + 11| = [T UT5] — |1 U 1|
arg max
H;,Hj |(H; ® Hj) \ SCDB|
4: removeH; ande from SC' DB and addH; @I‘Ij: SCDB «— SCDB\ {I‘Ii7 H]'} U {Hz @H7}

5: end while
6: return SCDB;

The second problem tries to group the hyperrectanglesiyB into k& super- hyper-
rectangles. We can see the same heuristic can be employedrge iinyperrectangles. In
essence, we can replace thigile condition (Line2) in Algorithm 4 with the condition that
SCDB has onlyk hyperrectangles. Finally, we note that the heuristic weleyga here is
similar to the greedy heuristic for the tradition&hapsack problerfiL3]. However, since we
consider only pair-wise merging, our algorithm does notehayguaranteed bound like the
knapsack greedy algorithm. Algorithm 4 could be too timstlyowhen|C D B| is large. In
practice, we slightly revise Algorithm 4 and perform a ramdsampling merging to speed
up the algorithm:

In each round, we randomly chooSepairs of hyperrectangles among all possible pairs
(ISCDB|(|SCDB| — 1)/2) of hyperrectangles (whef¥ > |SCDB|(|]SCDB| — 1)/2 we
choose all). Then among tliepairs of hyperrectangles we find two hyperrectangjeand
H; whose merge is within the false positive budget and prodtieesiaximum saving-false
positive ratio. Finally, we removél; and H; from SCDB and addH; ® H; into SCDB.
C'is an adjustable constant and the largerdhehe closer the random sampling merging
algorithm to Algorithm 4, and when' > |CDB|(|CDB| — 1)/2 the two algorithms are
equal.

In Section 7, we show that our greedy algorithm works efietyi for both real and
synthetic transactional datasets.

6 Visualization

In many visualization applications, such as overlappirgulster visualization and trans-
actional data visualization, people are interested incéffely visualizing matrix patterns.
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In [11], we ask the following questioi@iven a set of discovered hyperrectangles, how can
we order the rows and columns of the transactional databadeest display these hyper-
rectangles?

In addition, we define the visualization cost and matrix mjali visualization problem
as follows:

Given a databasP B with a set of hyperrectangl€sD B, and two orders (the order
of transactions) and; (the order of items), we define the visualization costCadB =
{Hi ={Th x 11}, Hy = {12 x Iz}, - ,Hp ={Tp x Ip}} to be

visual_cost(CDB,op,01) =
P

P
max o7 (ty) — min op(t + max oy(iy) — min oy(7
3t gmag, () = mi o)+ 3z or(i) = iy 1)

Given a databasP B with a set of hyperrectanglé D B, the Matrix Optimal Visualiza-
tion Problem is to find the optimal ordess- ando;, such thawisual_cost(CDB,op,07)
is minimized:

argming, o visual_cost(CDB,op,or)

In [11], we answered the above question by linking the viga&ibn problem to a well-
known graph theoretical problem: the minimal linear aremgnt (MinLA) problem. Inter-
ested readers may read [11] for details of our hyperrectaviglalization algorithm. In the
experimental section, we will display partial results of wisualization algorithm.

7 Experimental Results

In this section, we report our experimental evaluation oedhieal datasets and one synthetic
dataset. All of them are publicly available from the FIMI osjtory®. The basic characteris-
tics of the datasets are listed in Table 1. Borgelt's impletaton of the well-known Apriori
algorithm [5] was used to generate frequent itemsets. @ari#hms were implemented in
C++ and run on Linux 2.6 on an AMD Opteron 2.2 GHz with 2GB of neeyn

In our experimental evaluation, we will focus on answering following questions.

1. How can HYPER (Algorithm 3) and HYPER+ (Algorithm 4) sunmiza a transactional
dataset with respect to the summarization cost?

. How can the false positive condition improve the sumnagidn cost?

3. How does the set of frequent itemsets at different mininsupport levelsd) affect the
summarization results?

4. When users prefer a limited number of hyperrectangleslimited |[SC' D B|, how will
the summarization cost and the false positive ré&iﬁ% look?

5. What is the running time of our algorithms?

N

To answer these questions, we performed a list of expersnaiitich we summarized
as follows.

1 http://fimi.cs.helsinki.fildata/
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7.1 Summarization With Varying Support Levels

In this experiment, we study the summarization cost, thebmmof hyperrectangles, and
the running time of HYPER and HYPER+ using the sets of fretjitemsets at different
support levels.

In Figures 4(a) 4(b) 4(g), we show the summarization cost vaspect to different sup-
port levelsa on the chess, pumsdtar and T1014D100K datasets. Each of these three figures
has a total of six lines. Two of them ameference linesthe first reference line, named “DB”,
is the value of DB, i.e. the number of cells i B. Recall that in the problem formulation,
we denotecost(CDBy) = |7| + |DB| andcost(CDBy ) = |Z| + |DB|. Thus, this refer-
ence line corresponds to the upper bound of any summarizetist. The other reference
line, named “minpossiblecost”, is the value of7| + |Z|. This corresponds to the lower
bound any summarization can achieve, $€.D B contains only one hyperrectangiex Z.
The “CDB” line records the cost af'D B being produced by HYPER. The “SCD&1”,
“SCDB_0.2", and “SCDBO0.4" lines record the cost ¢C D B being produced by HYPER+
with 10%, 20%, and40% false positive budget.

Accordingly, in Figures 4(c) 4(d) 4(h), we show the numbenyferrectangles (i.&) in
the covering databaseéD B or SC DB at different support levels. The “CDB” line records
|CDB|, and the “SCDB0.1",“SCDB_0.2", “SCDB_.0.4" lines record SC D B| being gener-
ated by HYPER+ with 0%, 20%, and40% false positive budget.

Figures 4(e) 4(f) 5(a) shows the running time. Here the l@BB” records the running
time of HYPER generating' DB from DB. The “SCDB-0.1", “SCDB-0.2”, and “SCDB-
0.4” lines record the running time of HYPER+ generat$igD B under10%, 20%, 40%
false positive budget respectively. Here, we include bloéitime of generating’ D B from
DB (HYPER) andSC DB from CDB (HYPER+). However, we do not count the running
time of Apriori algorithm that is being used to generate frexf itemsets.

Here, we can make the following observations:

1. The summarization cost reduces as the support lexddcreases; the number of hy-
perrectangles increases as the support level decreaskthearunning time increases
as the support level decreases. Those are understandadxetise lower the support
level is, the bigger the input(,) is for HYPER, and the larger the possibility for a
more succinct covering database. However, this comes abtef a larger number of
hyperrectangles.

2. The summarization cost and the number of hyperrectangisdependent on the density
of the database. HYPER and HYPER+ have a much smaller suzatiari cost with
fewer hyperrectangles for the dense datasets, like cheas,for the sparse datasets,
like pumshstar. We believe this partly confirms our typical intuitidrat the high level
structure of a dense transaction database can be relatigsly to describe. The fre-
guent itemsets in the dense database can generally coveclalarger portion of the
database, and thus, can serve as a good candidate to déiserftigh level structure of
the database. However, the frequent itemsets in the spatakase will be more likely
to span only a relatively small portion of the database. Timaswill have to use a larger
number of hyperrectangles to summarize the sparse database

3. One of the most interesting observations is the “thresbehavior” and the “conver-
gence behavior” across all the data, including the summatoiz cost, the number of
hyperrectangles, and the running time on all these datdSess, we observe the sum-
marization cost tends to converge whermrops. Second, we can see that the number
of hyperrectanglesk] increases rather sharply whendrops below some threshold,
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Datasets T T Avg. Len. | |DB] density
chess 75 3,196 37 118,252 dense
pumshstar 2,088 | 49,046 | 50.5 2,476,823 sparse
mushroom 119 8,124 23 186,852 dense
T1014D100K | 1,000 | 100,000 | 10 ~ 1,000,000 sparse

Table 1 dataset characteristics

particularly for no false positive case (i.e. “CDB”) and Idaelse positive cases (i.e.
“SCDB-0.1", “SCDB-0.2"), and the running time increases@udingly (sharing the
same threshold). However, the convergence behavior tendgaintain the summariza-
tion cost at the same level or only decrease slightly. Thidbeleve suggests that a lot
of smaller hyperrectangles are chosen without reducingadise significantly, and that
these small hyperrectangles are of little benefit to the datamarization. This phe-
nomena suggests that a reasonably higlan produce a comparable summarization as
a low o with much less computational cost, which would be espaciedportant for
summarizing very large datasets.

7.2 Summarization with Varying

In this experiment, we will construct a succinct summararatvith varying limited numbers
of hyperrectanglesi. We perform the experiments on chess, mushroom and T10@K 1
datasets. We vary the numberfofrom around100 to 10.

In Figures 5(c) 5(e) 5(g), each graph has two lines whichespond to two different
minimum support levels for generatingSC D B. For instance, suppaft5 is the 15% min-
imal support for the HYPER+.

Here in Figures 5(b) 5(d) 5(f) , we observe that the summtozaosts converge to-
wards minimum possible cost when k decreases. This is uagelable since the minimum
possible cost is achieved whénr= 1, i.e., there is only one hyperrectanglex Z in SCDB.

In the meantime, we observe that the false positive raticeases whek decreases. Espe-
cially, we observe a similar threshold behavior for thedgi®sitive ratio. This threshold

again provides us a reasonable choice for the number of fegiangles to be used in sum-
marizing the corresponding database.

We also observe that the sparse datasets, like T1014D1@8KHsto have a rather higher
false positive ratio. However, if we compare with the worase scenario, where only one
hyperrectangle is used, the false positive ratio seemeradasonable. For instance, the
maximum false positive ratio is around000% for T1014D100K, i.e., there is only around
1% ones in the binary matrix. Using the minimal supp0i% and k£ = 200, our false
positive ratio is less thab00%, which suggests that we use arouwiyd of the cells in the
binary matrix to summarize T1014D100K.

7.3 Hyperrectangle Visualization

In this subsection we show partial results from our viswion paper [11], for more results
and more details, please refer to [11].

In Figure 6 we display visualization effects on datasetsshmaom” and "T1014D100K”
by our hyperrectangle visualization algorithm in [11]. Waibve the visualization method
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can be incorporated into an interactive visualization emment to allow users to focus on
different parts of the data and the hyperrectangles.

We visualize a transactional database in two dimensionslesvk. If a transaction
contains iteny, then the corresponding pixél, j) is black. We extract the top0 hyper-
rectangles (i.e. top0 lowest-price hyperrectangles) from each dataset, anchzgueach
hyperrectangle by drawing a minimum bounding rectangle sthallest rectangle that cov-
ers all of its cells - around it. The denser (blacker) areaumting rectangle has, the better
the reordering is. In some cases the bounding rectanglemgpletely black, then it is equal
to the corresponding hyperrectangle.

To visualize a large transactional dataset on a relativeBllamatrix, we apply a random
sampling technique. Specifically, we sampled 250 transastbf each dataset, to bring the
number of transactions more in line with the number of itelfms.each sampled dataset, we
display four figures. Figure 6(a) and Figure 6(e) show thgiresrances with original orders
or ando;. Figure 6(b) and Figure 6(f) show their appearances wittatgatiorders by our
proposed hypergraph ordering methods for the best viataliz of top ten hyperrectangles.
Figure 6(c) and Figure 6(g) highlight the first five hyperesajles by zooming in and draw-
ing a colored rectangular boundary around each correspgiiperrectangle. Figure 6(d)
and Figure 6(h) highlight the second five hyperrectanglefiénsame way as Figure 6(c)
and Figure 6(g) do.

8 Conclusions

In this paper, we have introduced a new research problemciirsily summarize trans-
actional databases. We have formulated this problem asceeting problem using over-
lapped hyperrectangles; we then proved that this problaintarseveral variations are NP-
hard. We have developed two novel algorithmi&y PER and HY PER+ to effectively
summarize the transactional database. In the experinmerghiation, we have demonstrated
the effectiveness and efficiency of our methods. In paricue found interesting “thresh-
old behavior” and “convergence behavior”, which we beliega help us generate succinct
summarizations in terms of the summarization cost, the murob hyperrectangles, and
the computational cost. In the future, we plan to inveséighbse behaviors analytically
and thus produce better summarizations. We also plan ty dpigl method on real world
applications, such as microarray data in bioinformatieswfhich we conjecture the hyper-
rectangles may correspond to certain biological process.
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