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Abstract Transactional data are ubiquitous. Several methods, including frequent itemsets
mining and co-clustering, have been proposed to analyze transactional databases. In this
work, we propose a new research problem to succinctly summarize transactional databases.
Solving this problem requires linking the high level structure of the database to a potentially
huge number of frequent itemsets. We formulate this problemas a set covering problem us-
ing overlapped hyperrectangles; we then prove that this problem and its several variations are
NP-hard, and we further reveal its relationship with the directed bipartite graph compression.
We develop an approximation algorithmHY PER which can achieve a logarithmic approx-
imation ratio in polynomial time. We propose a pruning strategy that can significantly speed
up the processing of our algorithm, and we also propose an efficient algorithm to further
summarize the set of hyperrectangles by allowing false positive conditions. Additionally,
we show that hyperrectangles generated by our algorithms can be properly visualized. A
detailed study using both real and synthetic datasets showsthe effectiveness and efficiency
of our approaches in summarizing transactional databases.

Keywords hyperrectangle, set cover, summarization, transactionaldatabases

1 Introduction

Transactional data are ubiquitous. In the business domain,from the world’s largest retailers
to the multitude of online stores, transactional databasescarry the most fundamental busi-
ness information: customer shopping transactions. In biomedical research, high-throughput
experimental data, like microarray, can be recorded as transactional data, where each trans-
action records the conditions under which a gene or a proteinis expressed [16] (or alter-
natively, repressed). In document indexing and search engine applications, a transactional
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model can be applied to represent the document-term relationship. Transactional data also
appear in several different equivalent formats, such as binary matrix and bipartite graph,
among others.

Driven by the real-world applications, ranging from business intelligence to bioinfor-
matics, mining transactional data has been one of the major topics in data mining research.
Several methods have been proposed to analyze transactional data. Among them, frequent
itemset mining [2] is perhaps the most popular and well-known. It tries to discover sets of
items which appear in at least a certain number of transactions. Recently, co-clustering [15],
has gained much attention. It tries to simultaneously cluster transactions (rows) and items
(columns) into different respective groups. Using binary matrix representation, co-clustering
can be formulated as a matrix-factorization problem.

In general, we may classify transactional data mining methods and their respective tools
into two categories (borrowing terms from economics):micro-pattern miningandmacro-
pattern mining. The first type focuses on providing local knowledge of the transactional
database, exemplified by frequent itemset mining. The second type works to offer a global
view of the entire database; co-clustering is one such method. However, both types are fac-
ing some major challenges which significantly limit their applicability. On the micro-pattern
mining side, the number of patterns being generated from thetransaction data is gener-
ally very large, containing many patterns which differ onlyslightly from one another. Even
though many methods have been proposed to tackle this issue,it remains a major open prob-
lem in the data mining research community. On the macro-pattern mining side, as argued by
Faloutsos and Megalooikonomou [8], data mining is essentially the art of trying to develop
concise descriptions of a complex dataset, and the conciseness of the description can be
measured by Kolmogorov complexity. So far, limited effortshave been undertaken towards
this goal of concise descriptions of transactional databases.

Above all, little work has been done to understand the relationship between the macro-
patterns and micro-patterns. Can a small number of macro-pattern or high-level structures be
used to infer or explain the large number of micro-patterns in a transactional database? How
can the micro-patterns, like frequent itemsets, be augmented to form the macro-patterns?
Even though this paper will not provide all the answers for all these questions, we believe the
research problem formulated and addressed in this work takes a solid step in this direction,
and particularly sheds light on a list of important issues related to mining transactional
databases.

Specifically, we seek a succinct representation of a transactional database based on the
hyperrectanglenotion. A hyperrectangle is a Cartesian product of a set of transactions (rows)
and a set of items (columns). A database is covered by a set of hyperrectangles if any element
in the database, i.e., the transaction-item pair, is contained in at least one of the hyperrectan-
gles in the set. Each hyperrectangle is associated with a representation cost, which is the sum
of the representation costs (commonly the cardinality) of its set of transactions and set of
items. The most succinct representation for a transactional database is the one which covers
the entire database with the least total cost.

Here, the succinct representation can provide a high-levelstructure of the database and
thus, mining succinct representation corresponds to a macro-pattern mining problem. In ad-
dition, the number of hyperrectangles in the set may serve asa measurement of the intrinsic
complexity of the transactional database. In the meantime,as we will show later, the rows of
the hyperrectangle generally correspond to the frequent itemsets, and the columns are those
transactions in which they appear. Given this, the itemsetsbeing used in the representation
can be chosen as representative itemsets for the large collection of frequent itemsets, as they
are more informative for revealing the underlying structures of the transactional database.
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Thus, the hyperrectangle notion and the succinct covering problem build a bridge between
the macro-structures and the micro-structures of a transactional database.

1.1 Problem Formulation

Let the transaction databaseDB be represented as a binary matrix such that a cell(i, j)

is 1 if a transactioni contains itemj, otherwise0. For convenience, we also denote the
databaseDB as the set of all cells which are1, i.e., DB = {(i, j) : DB[i, j] = 1}. Let
the hyperrectangleH be the Cartesian product of a transaction setT and an item setI, i.e.
H = T × I = {(i, j) : i ∈ T and j ∈ I}. Let CDB = {H1, H2, · · · , Hp} be a set of
hyperrectangles, and let the set of cells being covered byCDB be denoted asCDBc =
Sp

i=1 Hi.
If databaseDB is contained inCDBc, DB ⊆ CDBc, then, we refer toCDB as the

covering databaseor thesummarizationof DB. If there is no false positive coverage in
CDB, we haveDB = CDBc. If there is false positive coverage, we will have|CDBc \

DB| > 0.
For a hyperrectangleH = T × I, we define its cost to be the sum of the cardinalities of

its transaction set and item set:cost(H) = |T | + |I|. Given this, the cost ofCDB is

cost(CDB) =

p
X

i=1

cost(Hi) =

p
X

i=1

|Ti| + |Ii|

Typically, we store the transactional database in either horizontal or vertical representation.
The horizontal representation can be represented asCDBH = {{ti}× Iti}, whereIti is all
the set of items transactionti contains. The vertical representation is asCDBV = {Tj ×

{j}}, whereTj is the transactions which contain itemj. Let T be the set of all transactions
in DB andI be the set of all items inDB. Then, the cost of these two representations are:

cost(CDBH) = |T | +

|T |
X

i=1

|Iti | = |T | + |DB|,

cost(CDBV ) = |I| +

|I|
X

j=1

|Tj | = |I| + |DB|

In this work, we are interested in the following main problem. Given a transactional
databaseDB and with no false positives allowed, how can we find the covering database
CDB with minimal cost (or simply theminimal covering database) efficiently?

min
DB=CDBc

cost(CDB)

In addition, we are also interested in how we can further reduce the cost of the covering
database if false positives are allowed.

3
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1.2 Our Contributions

Our contributions are as follows.
1. We propose a new research problem to succinctly summarize transactional databases, and
formally formulate it as a variant of a weighted set coveringproblem based on a hyperrect-
angle notion.
2. We provide a detailed discussion on how this new problem is related to a list of important
data mining problems (Section 2).
3. We study the complexity of this problem and prove this problem and its several variations
are NP-hard, and we show that our problem is closely related to another hard problem, the
directed bipartite graph compression problem (Section 3).
4. We develop an approximation algorithmHY PER which can achieve aln(n)+1 approx-
imation ratio in polynomial time. We also propose a pruning strategy that can significantly
speed up the processing of our algorithm (Section 4).
5. We propose an efficient algorithm to further summarize the set of hyperrectangles by
allowing false positive conditions. (Section 5).
6. We show that hyperrectangles generated by our algorithms can be properly visualized.
(Section 6).
7. We provide a detailed study using both real and synthetic datasets. Our research shows
that our method can provide a succinct summarization of transactional data (Section 7).

2 Related Research Problems and Work

In this section, we discuss how the summarization problem studied in this work is related
to a list of other important data mining problems, and how solving this problem can help to
tackle those related problems.
Data Descriptive Mining and Rectangle Covering: This problem is generally in the line
of descriptive data mining. More specifically, it is closelyrelated to the efforts in applying
rectangles to summarize underlying datasets. In [4], Agrawal et al. define and develop
a heuristic algorithm to represent a dense cluster in grid data using a set of rectangles.
Further, Lakshmanan et al. [14] consider the situation where a false positive is allowed.
Recently, Gao et al. [9] extend descriptive data mining froma clustering description to a
discriminative setting using a rectangle notion. Our problem is different from these problems
from several perspectives. First, they focus on multi-dimensional spatial data where the
rectangle area forms a continuous space. Clearly, the hyperrectangle is more difficult to
handle because transactional data are discrete, so any combination of items or transactions
can be selected to form a rectangle. Further, their cost functions are based on the minimal
number of rectangles, whereas our cost is based on the cardinalities of sets of transactions
and items. This is potentially much harder to handle.
Summarization for categorical databases: Data summarization has been studied by some
researchers in recent years. Wang and Karypis proposed to summarize categorical databases
by mining summary set [24]. Each summary set contains a set ofsummary itemsets. A
summary itemset is the longest frequent itemsets supportedby a transaction. This approach
can be regarded as a special case of our summarization by fixing hyperrectangle width (i.e.
the transaction dimension) to be one. Chandola and Kumar compress datasets of transactions
with categorical attributes into informative representations by summarizing transactions [6].
They showed their methods are effective in summarizing network traffic. Their approach
is similar to ours but different in the problem definition andresearch focus. Their goal is to

4
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effectively cover all transactions with more compaction gain and less information loss, while
our goal is to effectively cover all cells (i.e. transactionitem pair), which are finer granules
of a database. In addition, our methods are shown to be effective not only by experimental
results but also by the theoretical approximation bound.
Data Categorization and Comparison: Our work is closely related to the effort by Siebes
et al. [20] [22] [23]. In [20] [22], they propose to recognize significant itemsets by their
ability to compress a database based on the MDL principles. The compression strategy can
be explained as covering the entire database using the non-overlapped hyperrectangles with
no false positives allowed. The set of itemsets being used inthe rectangles is referred to as
the code table, and each transaction is rewritten using the itemsets in the code table. They
try to optimize the description length of both the code tableand the rewritten database. In
addition, they propose to compare databases by the code length with regard to the same code
table [23]. A major difference between our work and this workis that we applyoverlapped
hyperrectangles to cover the entire database. Furthermore, the optimization function is also
different. Our cost is determined by the cardinalities of the sets forming the rectangles, and
their cost is based on the MDL principle. In addition, we alsostudy how the hyperrectangle
can be further summarized by allowing false positive data. Thus, our methods can provide a
much more succinct summarization of the transactional database. Finally, their approach is
purely heuristic with no analytical results on the difficulty of their compression problem. As
we will discuss in Section 3, we provide rigorous analysis and proof on the hardness of our
summarization problem. We also develop an algorithm with proven approximation bound
under certain constraints.
Co-clustering: As mentioned before, co-clustering attempts simultaneousclustering of both
row and column sets in different groups in a binary matrix. This approach can be formulated
as a matrix factorization problem [15]. The goal of co-clustering is to reveal the homoge-
neous block structures being dominated by either1s or 0s in the matrix. From the sum-
marization viewpoint, co-clustering essentially provides a so-calledcheckerboard structure
summarization with false positive data allowed. Clearly, the problem addressed in this work
is much more general in terms of the summarization structureand the false positive assump-
tion (we consider both).
Approximate Frequent Itemset Mining: Mining error-tolerant frequent itemsets has at-
tracted a lot of research attention over the last several years. We can look at error-tolerant
frequent itemsets from two perspectives. On one side, it tries to recognize the frequent item-
sets considering if some noise is added into the data. In other words, the frequent itemsets
are disguised in the data. On another side, it provides a way to reduce the number of fre-
quent itemsets since many of the frequent itemsets can be recognized as the variants of a
true frequent itemset. This in general is referred to as pattern summarization [1][18]. Most
of the efforts in error-tolerant frequent itemsets can be viewed as finding dense hyperrectan-
gles with certain constraints. The support envelope notionproposed by Steinbach et al. [21]
also fits into this framework. Generally speaking, our work does not directly address how to
discover individual error-tolerant itemsets. Our goal is to derive a global summarization of
the entire transactional database. However, we can utilizeerror-tolerant frequent itemsets to
form a succinct summarization if false positives are allowed.
Data Compression: How to effectively compress large boolean matrices or transactional
databases is becoming an increasingly important research topic as the size of databases is
growing at a very fast pace. For instance, in [12], Johnsonet al. tries to reorder the rows and
columns so that the consecutive1’s and0’s can be compressed together. Our work differs
because compression is concerned only with reducing data representation size; our goal is
summarization, with aims to emphasize the important characteristics of the data.
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Set Covering: From the theoretical computer science viewpoint, our problem can be gener-
alized as a variation of theset coveringproblem. Similar to the problem studied in [10], our
covering problem does not directly have a list of candidate sets as in traditional set covering,
because our total set of candidate sets is too large to be materialized. The problem and so-
lution studied in [10] cannot be applied in our problem as it tries to find a minimal number
of sets for covering. The strategy proposed in this work to handle this variation of the set
covering problem is also very different from [10]. In [10], the strategy is to transform the set
cover problem into an independent vertex set problem. The graph in the new problem space
contains all the elements in the universal (or grounding) set which needs to be covered. Any
two elements in the grounding set can potentially be put intoone candidate set for covering
if connected with an edge. Then, finding a minimal set cover islinked to finding an inde-
pendent vertex set, and a heuristic algorithm progressively collapses the graph to identify
the set cover. Considering the number of elements in the transaction database, this strategy
is too expensive and the solution is not scalable. Here, we propose to identify a large family
of candidate sets which is significantly smaller than the number of all candidate sets but
is deemed sufficient for set covering. Then, we investigate how to efficiently process these
candidate sets to find an optimal set cover.

3 Hardness Results

In the following, we prove the complexity of the succinct summarization problem and sev-
eral of its variants. We begin the problem with no false positives and extend it to false
positive cases in corollary 1 and theorem 4. Even though these problems can quickly be
identified as variants of the set-covering problem, provingthem to be NP-hard is non-trivial
as we need to show that at least one of the NP-hard problems canbe reduced to these prob-
lems.

Theorem 1 GivenDB, it is an NP-hard problem to construct aCDB of minimal cost which
coversDB.

Proof:To prove this theorem, we reduce the minimum set cover problem, which is NP-
hard, to this problem.

The minimum set cover problem can be formulated as: Given a collection C of subsets
of a finite setD, what is the minimum|C′| such thatC′ ⊆ C and every element inD belongs
to at least one member ofC′.

The reduction utilizes the databaseDB, whose entire set of items isD, i.e., each element
in D corresponds to a unique item inDB. All items in a setc ∈ C is recorded in10|c|

transactions inDB, denoted collectively as a setTc. In addition, a special transactionw in
DB contains all items inD. Clearly, this reduction takes polynomial time with respect to C

andD. Note that we will assume that there is only onew in DB containing all items inD.
If there were another one, it would mean there is a setc in C which covers the entireD; the
covering problem could be trivially solved in that case. We will also assume each setc is
unique inC.

Below we show that if we can construct aCDB with minimum cost, then we can find the
optimal solution for the minimum set cover problem. This canbe inferred by the following
two key observations, which we state as lemmas 1 and 2.

Lemma 1 Let CDB be the minimal covering ofDB. Then, all theTc transactions inDB

which record the same itemsetc ∈ C will be covered by a single hyperrectangleTi × Ii ∈

CDB, i.e.Tc ⊆ Ti andc = Ii.

6
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Lemma 2 LetCDB be the minimal covering ofDB. Let transactionw which contains all
the items inD be covered byk hyperrectangles inCDB, T1 × I1, · · ·, Tk × Ik. Then each
of the hyperrectangles is in the format ofTc ∪ {w} × c, c ∈ C. Further, thek itemsets in the
hyperrectangles,I1, · · ·, Ik, correspond to the minimum set cover ofD.

Putting these two lemmas together, we can immediately see that the minimalCDB

problem can be used to solve the minimum set cover problem. Proofs of the two lemmas are
given below.2

In the following, we prove Lemma 1 and 2.
Proof of Lemma 1: We prove it in three steps. First, we observe that all transactions
in Tc will be covered by the same number of hyperrectangles inCDB. Specifically, let
CDB(tj), tj ∈ Tc be the subset ofCDB, which includes only the hyperrectangles cov-
ering transactiontj , i.e., CDB(tj) = {Ti × Ii : tj ∈ Ti}. Then, we observe that for
any two transactionstj and tk in Tc, |CDB(tj)| = |CDB(tk)|. This is true because if
|CDB(tj)| > |CDB(tk)|, we can simply covertj by CDB(tk) with less cost. This contra-
dicts thatCDB is the minimal covering database.

Given this, we will prove that every transaction inTc will be covered by one hyperrect-
angle, i.e.|CDB(tj)| = 1, tj ∈ Tc. By way of contradiction, we assume every transaction
in Tc is covered byk hyperrectangles(k > 1). Let CDB = {T1 × I1, · · · , Ts × Is}. Then,
we can modify it as follows:

CDB′ = {(T1 \ Tc) × I1, · · · , (Ts \ Tc) × Is} ∪ {Tc × c}

Clearly,CDB′ coversDB and with less cost.

cost(CDB′) =
s

X

i=1

|Ti \ Tc|+ |Ii|+ |Tc|+ |c|

=
s

X

i=1

|Ti|+ |Ii| − k × |Tc|+ |Tc|+ |c| (|CDB(tj)| = k, tj ∈ Tc)

=

s
X

i=1

|Ti|+ |Ii| − (k − 1)× 10|c|+ |c| (|Tc| = 10|c|)

<

s
X

i=1

|Ti|+ |Ii| = cost(CDB)

This is a contradiction.
Thus, we can conclude that every transaction inTc can be covered by exactly one hy-

perrectangle.
Now we prove by contradiction that if more than one hyperrectangle is used to cover

Tc, it cannot be minimal. AssumeTc × c is covered byk hyperrectangles inCDB (k > 1),
expressed in the formatTc × c ⊆ T1 × c∪ · · ·Tk × c. We see that we can simply combine all
k of them into one:T1 ∪ · · ·Tk × c. The cost of that latter is less than the cost of the former:
|T1 ∪ · · ·Tk| + |c| <

Pk
i=1(|Ti| + |c|) This again contradicts the assumption thatCDB is

the minimal database covering.
Put together, we can see thatTc × c is covered by only a single hyperrectangle.2

Proof of Lemma 2: Let CDB(w) = {T1 × I1, · · · , Tk × Ik}. From lemma 1, we can see all
the transactions besidesw have been covered by a hyperrectangleTc × c, c ∈ C. Thus, the
Tk × Ii can either be in the formatTc ∪{w}× c or {w}× Ii, whereIi 6∈ C (the caseIi ∈ C

can easily be excluded due to the minimal CDB assumption). Wefirst show that the latter
case{w} × Ii, Ii 6∈ C, will not be optimal. Assumingw can be minimally covered bys sets

7
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in C, w ⊂ c1 ∪ · · · ∪ cs, then|w| ≤ s. Thus, we can replace{w} × Is by s hyperrectangles,
(Tc1∪{w})×c1, · · ·, (Tcs ∪{w})×cs, with less cost. This contradicts thatCDB is minimal.
Thus, we can see each hyperrectangle coveringw has the formatTc ∪ {w} × c, c ∈ C.

Note that the cost ofCDB is

cost(CDB) =
X

c∈C

(|Tc| + |c|) + s

This is the smallests such thatI1 ∪ · · · ∪ Is = D. We conclude thatI1, · · · , Is forms the
minimal cover ofS. 2

Several variants of the above problem turn out to be NP-hard as well.

Theorem 2 GivenDB, it is an NP-hard problem to construct aCDB with no more thank
hyperrectangles that maximally coversDB.

Proof:To prove this lemma, we reduce maximum edge biclique problem, which is NP-hard
[17], to this problem withk = 1.

Maximum edge biclique problem can be formulated as: Given a bipartite graphG =

(V1 ∪ V2, E), what is the biclique that has maximum edges?
The polynomial reduction is as follows: CreateDB by lettingT = V1, I = V2, and a

cell (t, i) in DB (t ∈ T andi ∈ I) if and only if t andi are the two end points of an edge in
E. Also setk = 1.

Below we show that if we can construct aCDB with 1 cartesian product that maximally
coversDB, we find the maximum edge biclique inG.

Let the only cartesian product inCDB beT × I. CDB Maximally coveringDB means
that|T ||I| is maximum. Because a transactiont (t ∈ T ) contains an itemi (i ∈ I) if and only
if t andi are the two end points of an edge inE, we can conclude that we find the maximum
edge bicliqueT ∪ I with |T ||I| edges.2

Theorem 3 GivenDB and a budgetδ, it is an NP-hard problem to construct aCDB that
maximally coversDB with a cost no more thanδ, i.e.,cost(CDB) ≤ δ.

Proof:We can simply reduce the general compression problem in theorem 1 into this
problem.

We need to show if we can construct aCDB with cost(CDB) ≤ δ, then we can find
the optimal solution for the covering problem in theorem 1.

By definition, we conclude the smallest cost ofCDB that coversDB is no more than
2|DB|). We only need to tryδ from 1 to2|DB|, so that we can find the optimal solution for
the compression problem in lemma 1.2

Corollary 1 When false positive coverage is allowed with
|CDBc\DB|

|DB|
≤ β, whereβ is a user-defined threshold, the above problems in theorems 1, 2,

and 3 are still NP-complete.

Proof:The proof is straightforward if we reduce the above problemsinto false positive cases
by lettingβ = 0. 2

Assuming a set of hyperrectangles is given, i.e., the rectangles used in the covering
database must be chosen from a predefined set, we can prove allthe above problems are
NP-hard as well.
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Theorem 4 GivenDB and a setS of candidate hyperrectangles such thatCDB ⊆ S, it is
NP-hard to 1) construct aCDB with minimal cost that coversDB; 2) construct aCDB to
maximally coverDB with |CDB| ≤ k; 3) construct aCDB to maximally coverDB with
minimal cost wherecost(CDB) ≤ δ, (δ is a user-defined budget). The same results hold for

the false positive case:|CDBc\DB|
|DB|

≤ β, whereβ is a user-defined threshold.

Proof:To prove 1), we reduce the minimum set cover problem, which isNP-hard, to this
problem.

The minimum set cover problem can be formulated as: Given a collection C of subsets
of a finite setD, what is the minimum|C′| such thatC′ ⊆ C and every element inD belongs
to at least one member ofC′.

The reduction is as follows: CreateDB, whose item setI is isomorphic to the setD. Let
the setS of hyperrectangles be isomorphic toC, such that a hyperrectangleH = Tc × Ic ∈

S is isomorphic to a setc ∈ C where item setIc is isomorphic toc. CreateT of DB

such that each transaction inT contains all items inI and the number of transactions is
|T | = 1000|I|(|S| + |I|). Apparently, this reduction takes polynomial time.

Below we show that if we can construct aCDB with minimum
P

(|Ti|+ |Ii|) (Ti×Ii ∈

S), then we find the optimal solution for the minimum set cover problem.
First, we observe that given any two transactionstj and tk, the set{Ti : tj ∈ Ti}

and the set{Ti : tk ∈ Ti} have the same size, i. e.tj andtk appear an equal number of
times in hyperrectangles inCDB. This is because if a transactiontj appears more times
than a transactiontk, we can always maketj appear only in the hyperrectangles thattk
appears and get a newCDB with smaller

P

(|Ti| + |Ii|) but which still coversDB. This is
a contradiction. Furthermore, it’s easy to observe that alltransactions should appear in the
same hyperrectangles inCDB.

Second, we observe that the set size{Ti : tj ∈ Ti} is minimum for any transactiontj .
If not, suppose{Ti : tj ∈ Ti} is less inCDB′ than inCDB. Considering the size ofT is
|T | = 1000|I|(|S|+ |I|), it’s not difficult to see that

P

(|Ti|+ |Ii|) is smaller inCDB′ than
in CDB. This is a contradiction.

Since|{Ti : tj ∈ Ti}| is minimum and any transactiontj contains all items inI, the
minimum set cover is exactlyC′ = {c : c ∈ C andc is isomorphic toIc andTc×Ic ∈ CDB}

and|C′| = |{Ti : tj ∈ Ti}|. Therefore, we conclude that to construct aCDB of minimal
size that coversDB with CDB ⊆ S, is equivalent to finding a minimum setC′ ⊆ C where
every element inD belongs to at least one member ofC′.

To prove 2), we can reduce the problem in 1) into this problem by letting k = |S|, and
the proof is straigtforward.

3) can be proved by the similar reduction technique as in the proof of theorem 3.
4) can be proved by the similar reduction technique as in the proof of corollary 1.2

3.1 Relationship with directed bipartite graph compression

Directed bipartite graph compression is a fundamental problem related to important appli-
cations including the reachability query on DAG (Directed Acyclic Graph) [3] and modern
coding theorem [19], and etc. Here, we reveal the close relationship between our summa-
rization problem and directed bipartite graph compressionand show how the solutions for
the former one can be applied to the latter one.

Consider a bipartite graphG whose vertices can be divided into two setsA andB. Any
vertex inA may point to any vertex inB.

9
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Any graph reachability query scheme must be able to tell thatb (b ∈ B) can be reached
from a (a ∈ A) if there is an edge froma to b in the bipartite graphG. Further, we say graph
G′ (not necessarily bipartite) isreachability isomorphicto G, if A ⊂ V (G′) andB ⊂ V (G′)

such that if there is an edge froma ∈ A to b ∈ B in G then there must be a directed path
from a ∈ A to b ∈ B in G′, and vice versa.

The initial idea of bipartite graph compression by adding additional vertices was orig-
inally pointed out in [3] as a simple heuristic for compressing transitive closure of a DAG.
However, no detailed investigation was performed in [3] andno further research is done on
this topic to our best knowledge.

Considering a bipartite graphG stored as a linked list, we can reduce the storage space
of the graph reachability query onG by finding a reachability isomorphic graphG′ of G

such that|E(G′)|+ |V (G′)| < |E(G)|+ |V (G)|. To get aG′, we can add some intermediate
vertices, each of which points to a subset ofB. Then verticesA may point to some interme-
diate vertices so that the total storage space|E(G′)|+ |V (G′)| is less than|E(G)|+ |V (G)|.
Figure 2 is an example: Graph (a) and graph (b) are reachability isomorphic but (b) has far
fewer edges.

We can reduce the summarization problem of a transactional database to the directed
bipartite graph compression problem, and vice versa. For example, let each transaction of a
databasedb be a vertex in the setA of a directed bipartite graphG. Let each item inI of
DB be a vertex in the setB of G. Then each hyperrectangle in the covering databaseCDB

is expressed as a new intermediate vertex inG. For example, a transaction database in figure
1 has size56 if stored asDB ={(t1, i1), (t1, i2), · · ·}. But it only has size 16 if stored as
CDB = {{t1, t2, t3, t4} × {i1, i2, i3, i4}, {t3, t4, t5, t6}x{i3, i4, i5, i6}}.
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Fig. 1 A transaction database.

We can reduce the summarization scheme for the transaction database in figure 1 to the
bipartite graph compression method in figure 2.
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Fig. 2 (a) A bipartite graph generated from the transaction database. (b) The compressed bipartite graph.

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Note that in our problem definition, there is no cost of intermediate vertices. But the NP-
hardness results and our proposed algorithms would still beheld with only slight modifica-
tion for the situation where an extra cost is needed for the intermediate vertices. Therefore,
we believe our problems and algorithms are fundamental and interesting to many areas.

4 Algorithms for Summarization without False Positive

In this section, we develop algorithms to find minimal cost covering databaseCDB for a
given transactional database with no false positives. As wementioned before, this problem
is closely related to the traditional weighted set coveringproblem. LetC be a candidate set
of all possible hyperrectangles, which cover a part of theDB without false positives, i.e.,
C = {Ti × Ii : Ti × Ii ⊆ DB}. Then, we may apply a classical greedy algorithm to find
the minimal set cover, which essentially corresponds to theminimal covering database, as
follows.

LetR be the coveredDB (initially, R = ∅). For each possible hyperrectangleTi × Ii ∈

C, we define the price ofH as:

γ(H) =
|Ti| + |Ii|

|Ti × Ii \ R|
.

At each iteration, the greedy algorithm picks up the hyperrectangleH with the minimum
γ(H) (the cheapest price) and put itCDB. Then, the algorithm will updateR accordingly,
R = R∪Ti×Ii. The process continues untilCDB completely coversDB (R = DB). It has
been proved that the approximation ratio of this algorithm is ln(n) + 1, wheren = |DB|

[7].
Clearly, this algorithm is not a feasible solution for the minimal database covering prob-

lem due to the exponential number of candidate hyperrectangles in C, which in the worst
case is in the order of2|T |+|I|, whereT andI are the sets of transactions and items inDB,
respectively. To tackle this issue, we propose to work on a smaller candidate set, denoted as

Cα = {Ti × Ii|Ii ∈ Fα ∪ Is},

whereFα is the set of all frequent itemsets with minimal support level α, andIs is the
set of all singleton sets (sets with only one item). We assumeFα is generated by Apriori
algorithm. Essentially, we put constraint on the columns for the hyperrectangles. As we will
show in the experimental evaluation, the cost of the minimalcovering database tends to
converge as we reduce the support levelα. Note that this reduced candidate set is still very
large and contains an exponential number of hyperrectangles. LetT (Ii) be the transaction
set whereIi appears.|T (Ii)| is basically the support of itemsetIi. Then, the total number of
hyperrectangles inCα is

|Cα| =
X

Ii∈Fα∪Is

2|T (Ii)|.

Thus, even running the aforementioned greedy algorithm on this reduced setCα is too ex-
pensive.

In the following, we describe how to generate hyperrectangles by an approximate al-
gorithm which achieves the same approximation ratio with respect to the candidate setCα,
while running in polynomial time in terms of|Fα ∪ Is| andT .
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4.1 TheHY PER Algorithm

As we mentioned before, the candidate setCα is still exponential in size. If we directly ap-
ply the aforementioned greedy algorithm, it will take an exponential time to find the hyper-
rectangle with the cheapest price. The major challenge is thus to derive a polynomial-time
algorithm that finds such a hyperrectangle. Our basic idea isto handle all the hyperrectan-
gles with the same itemsets together as a single group. A key result here is we develop a
polynomial time greedy algorithm which is guaranteed to findthe hyperrectangle with the
cheapest price among all the rectangles with the same itemsets. Since we only have|Fα∪Is|

such groups, we can then find the globally cheapest rectanglein Cα in polynomial time.
Specifically, letCα = {T (Ii)×Ii}, Ii ∈ Fα∪Is, whereT (Ii) is the set of all supporting

transactions ofIi. We can see thatCα can easily be generated fromCα, which has only
polynomial sizeO(|(Fα ∪ Is)|).

The sketch of this algorithm is illustrated in 1. TakingCα as input, theHY PER algo-
rithm repeatedly adds sub-hyperrectangles to setR. In each iteration (Lines4-7), it will find
the lowest priced sub-hyperrectangleH ′ from each hyperrectangleT (Ii) × Ii ∈ Cα (Line
4), and then select the cheapestH ′ from the set of selected sub-hyperrectangles (Line5). H ′

will then be added intoCDB (Line 6). SetR records the covered databaseDB. The process
continues untilCDB coversDB (R = DB, line 3).

Algorithm 1 HYPER(DB, Cα)
1: R← ∅;
2: CDB ← ∅;
3: while R 6= DB do
4: call OptimalSubHyperRectangle to findH′ with minimumγ(H′) for eachHi = T (Ii)× Ii ∈ Cα;
5: choose theH′ with minimumγ(H′) among all the ones discovered by OptimalSubHyperRectangle;
6: CDB ← CDB ∪ {H′};
7: R← R ∪H′;
8: end while
9: return CDB

The key procedure isOptimalSubHyperRectangle, which will find the sub-hyperrectangle
with the cheapest price among all the sub-hyperrectangles of T (Ii)×Ii. Algorithm 2 sketches
the procedure. The basic idea here is that we will decompose the hyperrectangleT (Ii) × Ii

into single-transactionhyperrectanglesHs = {tj} × Ii wheretj ∈ T (Ii). Then, we will
order those rectangles by the number of their uncovered cells (Lines1−4). We will perform
an iterative procedure to construct the sub-hyperrectangle with cheapest price (Lines 6-13).
At each iteration, we will simply choose the single-transaction hyperrectangle with maximal
number of uncovered cells and try to add it intoH ′. If its addition can decreaseγ(H ′), we
will add it to H ′. By addingHs = {tj} × Ii into H ′ = Ti × Ii, H ′ will be updated as
H ′ = (Ti ∪ {tj}) × Ii. We will stop whenHs begins to increaseH ′.

Here is an example. Given hyperrectangleH ∈ Cα, consisting ofH = T (I) × I =

{t1, t3, t4, t6, t8, t9}×{i2, i4, i5, i7}, we constructH ′ with minimumγ(H ′) in the following
steps. First, we order all the single-transaction hyperrectangles according to their uncovered
cells as follows:{t4} × I, {t8} × I, {t1} × I, {t6} × I, {t3} × I, {t9} × I. Beginning with
H ′ = {t4} × I, the priceγ(H ′) is (4 + 1)/4 = 5/4 = 1.25.
If we add{t8} × I, γ(H ′) falls to 5+1+0

4+4 = 6
8 = 0.75.

If we add{t1} × I, γ(H ′) decreases to6+1+0
8+2 = 7

10 = 0.70.
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Algorithm 2 A Greedy Procedure to Find the Sub Hyperrectangle with Cheapest Price
Procedure OptimalSubHyperRectangle(H)
{Input:H = T (Ii)× Ii}
{Output:H′ = Ti × Ii, Ti ⊆ T (Ii)}

1: for all Hs = {tj} × Ii ⊆ H do
2: calculate the number of uncovered cells inHs, |Hs\R|
3: end for
4: sortHs according to|Hs\R| and put it inU ;
5: H′ ← first hyperrectangleHs popped fromU

6: while U 6= ∅ do
7: pop a single-transaction hyperrectangleHs from U ;
8: if addingHs into H′ increasesγ(H′) then
9: break;

10: else
11: addHs into H′;
12: end if
13: end while
14: return H′;

H= X
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Fig. 3 A hyperrectangleH ∈ Cα. Shaded cells are covered by hyperrectangles currently available inCDB.

If we add{t6} × I, γ(H ′) decreases to7+1+0
10+2 = 8

12 = 0.67.
However, if we then add{t3}× I, γ(H ′) would increase to8+1+0

12+1 = 9
13 = 0.69. Therefore

we stop at the point whereH ′ = {t4, t8, t1, t6} × I andγ(H ′) = 0.67.
Properties of HYPER: We discuss several properties of HYPER, which will prove itsap-
proximation ratio.

Lemma 3 The OptimalSubHyperRectangle procedure finds the minimumγ(H ′) for any in-
put hyperrectangleT (Ii) × Ii ∈ Cα.

Proof:Let H ′ = Ti × Ii be the sub-hyperrectangle ofT (Ii) × Ii with the leastγ(H ′).
Then, we first prove that if a single-transactionHj = {tj} × Ii ⊆ H ′, then for any other
single-transactionHl = {tl} × Ii, tl ∈ T (Ii), if

|Hj \ R| ≤ |Hl \ R|,

thenHl will be part ofH ′. By way of contradiction, without loss of generality, let usassume
Hl is not inH ′. Then, we have

γ(H ′) =
|Ti| + |Ii|

|H ′ \ R|
=

|Ti \ {tj}| + |Ii| + 1

|(Ti \ {tj}) × Ii \ R| + |Hj \ R|

=
x + 1

y + |Hj \ R|
≥

x + 1 + 1

y + |Hj \ R| + |Hl \ R|
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(x = |Ti \ {tj}| + |Ii|, y = |(Ti \ {tj}) × Ii \ R|),

x

y
≥

x + 1

y + |Hj \ R|
⇒ y ≤ x|Hj \ R| ⇒

(x + 1)|Hl \ R| ≥ y + |Hj \ R| ⇒

(x + 1)(y + |Hl \ R| + |Hj \ R|) ≥ (x + 2)(y + |Hj \ R|)

This shows that we can addHl into H ′ to reduce the price (γ(H ′)). This contradicts the
assumption thatH ′ is the sub-hyperrectangle ofT (Ii) × Ii with minimal cost. This sug-
gests that we can find the lowest costH ′ by considering the addition of single-transaction
hyperrectangles inT (Ii) × Ii, ordered by their number of uncovered cells.2

Corollary 2 In OptimalSubHyperRectangle, if two single-transaction hyperrectangles with
the same number of uncovered cells|{tj}× Ii\R| = |{tl}× Ii\R|, then either both of them
can be added intoH ′ or none of them.

Proof:Without loss of generality assume in theHY PER algorithm a single-transaction
hyperrectangleHsj1

is ranked before another single-transaction hyperrectangle Hsj2
, and

|cell(Hsj1
)\R| = |cell(Hsj2

)\R| = a. γ(H ′) =
|Ti|+|Ii|

|cell(H′)\R|
= x

y just before addingHsj1

into H ′. Sincex
y < x+1

y+a =⇒ x+1
y+a < x+2

y+2a , and x
y ≥ x+1

y+a =⇒ x+1
y+a ≥ x+2

y+2a , we conclude
that either bothHsj1

andHsj2
are added intoH ′ or none of them.2

Corollary 3 Assume that in iterationj of thewhile loop in theOptimalSubHyperRectangle
procedure, we chooseHj = {tj}× Ii. We denoteaj = |{tj}× Ii|\R|, and letH ′ = Ti × Ii

with minimumγ(H) contain the single-transaction hyperrectanglesH1, H2, · · · , Hq. Then

we haveaq+1 <
Pq

i=1
ai

q+|Ii|
.

Proof:We know addingHq+1 to H ′ will increaseγ(H ′). Let γ(H ′) = x
y before adding

Hq+1 into H ′. According to the algorithm we havexy < x+1
y+aq+1

, which meansaq+1x < y.

We also know thatx = q + |Ii| andy =
Pq

i=1 ai. Thereforeaq+1 <
Pq

i=1
ai

q+|Ii|
. 2

The above two corollaries can be used to speed up the OptimalSubHyperRectangle pro-
cedure. Corollary 2 suggests that we can process all the single-transaction hyperrectangles
with the same number of uncovered cells as a single group. Corollary 3 can be used to
quickly identify the cutting point for constructingH ′.

Lemma 3 and greedy algorithm (withlog approximation bound) for weighted set cover
problem [7] lead to the major property of the HYPER algorithm, stated as Theorem 5.

Theorem 5 TheHY PER algorithm has the exact same solution as the greedy approach
for the weighted set covering problem, which asks for the minimum costCDB to coverDB,
and hasln(n)+1 (n = |DB|) approximation ratio with respect to the optimal solution given
candidate setCα.

Time Complexity of HYPER: Here we do not take into account the time to generateFα,
which can be done through the classic Apriori algorithm. Assuming Fα is available, the
HY PER algorithm runs inO(|T |(|I| + log|T |)(|Fα| + |I|)k), wherek is the number of
hyperrectangles inCDB. The analysis is as follows. Assume the while loop in Algorithm 1
runsk times. Each time it chooses aH ′ with minimumγ(H ′) from Cα, which contains no
more than|Fα| + |I| candidates. To constructH ′ with minimumγ(H ′) for H, we need to
update every single-transaction hyperrectangle inH, sort them and add them one by one,
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which takesO(|T ||I| + |T |log|T | + |T |) = O(|T |(|I| + log|T |)) time. Since we need to
do so for every hyperrectangle inCα, it takesO(|T |(|I| + log|T |)(|Fα| + |I|)). Therefore,
the total time complexity isO(|T |(|I| + log|T |)(|Fα| + |I|)k). In addition, we note thatk
is bounded by(|Fα|+ |I|)× |T | since each hyperrectangle inCα can be visited at most|T |

times. Thus, we conclude that our greedy algorithm runs in polynomial time with respect to
|Fα|, |I| and|T |.

4.2 Pruning Technique for HYPER

Although the time complexity ofHY PER is polynomial, it is still very expensive in prac-
tice since in each iteration, it needs to scan the entireCα to find the hyperrectangle with
cheapest price. Theorem 6 reveals an interesting property of HY PER, which leads to an
effective pruning technique for speeding up HYPER significantly (up to |Cα| = |Fα ∪ I|

times faster!).

Theorem 6 For anyH ∈ Cα, the minimumγ(H ′) output by OptimalSubHyperRectangle
will never decrease during the processing of the HYPER algorithm.

Proof:This holds because the covered databaseR is monotonically increasing. LetRi and
Rj be the covered database at thei-th andj-th iterations in HYPER, respectively (i < j).
Then, for anyH ′ = Ti × Ii ⊆ T (Ii) × Ii = H ∈ Cα, we have

γi(H ′) =
|Ti| + |Ii|

Ti × Ii \ Ri
≤

|Ti| + |Ii|

Ti × Ii \ Rj
= γj(H ′),

whereγi(H ′) andγj(H ′) are the price forH ′ at iterationi andj, respectively.2

Algorithm 3 HYPER(DB,Cα)
1: R← ∅;
2: CDB ← ∅;
3: call OptimalSubHyperRectangle to findH′ with minimumγ(H′) for eachT (Ii)× Ii ∈ Cα;
4: Sort allT (Ii)× Ii ∈ Cα into a queueU according to their minimumγ(H′) from low to high and store

H′ and its price (as the lower bound);
5: while R 6= DB do
6: Pop the first elementH1 with H′

1
from the queueU ;

7: call OptimalSubHyperRectangle to updateH′
1

with minimumγ(H′
1
) for H1;

8: while γ(H′
1
) > γ(H′

2
) do {H2 is the next element inU after popping the last hyperrectangle}

9: insertH1 with H′
1

back toU in the sorting order;
10: Pop the first elementH1 with H′

1
from the queueU ;

11: call OptimalSubHyperRectangle to updateH′
1

with minimumγ(H′
1
) for H1;

12: end while
13: CDB ← CDB ∪ {H′

1
};

14: R← R
S

H′
1
;

15: call OptimalSubHyperRectangle to find the updated minimumγ(H′
1
) of H1, and insert it back to the

queueU in the sorting order;
16: end while
17: return CDB;

Using Theorem 6, we can revise theHY PER algorithm to prune the unnecessary visits
of H ∈ Cα. Simply speaking, we can use the minimumγ(H ′) computed forH in the previ-
ous iteration as its lower bound for the current iteration since the minimumγ(H ′) will be
monotonically increasing over time.
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Our detailed procedure is as follows. Initially, we computethe minimumγ(H ′) for each
H in Cα. We then order allH into a queueU according to the computed minimum possible
price (γ(H ′)) from the sub-hyperrectangle ofH. To find the cheapest hyperrectangle, we
visit H in the order ofU . When we visitH, we call theOptimalSubHyperRectanglepro-
cedure to find the exactH ′ with the minimum price forH, and update its lower bound as
γ(H ′). We also maintain the current overall minimum price for theH visited so far. If at any
point, the current minimum price is less than the lower boundof the nextH in the queue,
we will prune the rest of the hyperrectangles in the queue.

Algorithm 3 shows the complete HYPER algorithm which utilizes the pruning tech-
nique.

5 Summarization of the Covering Database

In Section 4, we developed an efficient algorithm to find a set of hyperrectangles,CDB, to
cover a transaction database. When false positive coverageis prohibited, the summarization
is generally not succinct enough for the high-level structure of the transaction database to be
revealed. In this section, we study how to provide more succinct summarization by allowing
certain false positive coverage. Our strategy is to build a new set of hyperrectangles, referred
to as thesuccinct covering databaseto cover the set of hyperrectangles found by HYPER.
Let SCDB be the set of hyperrectangles which coversCDB, i.e., for any hyperrectangle
H ∈ CDB, there is aH ′ ∈ SCDB, such thatH ⊆ H ′. Let the false positive ratio ofSCDB

be
|SCDBc\DB|

|DB|
,

whereSCDBC is the set of all cells being covered bySCDB. Given this, we are interested
in the following two questions:

1. Given the false positive budgetβ, |SCDBc\DB|
|DB|

≤ β, how can we succinctly summarize
CDB such thatcost(SCDB) is minimized?

2. Given|SCDB| = k, how can we minimize both the false positive ratio|SCDBc\DB|
|DB|

and the cost ofSCDB?

We will focus on the first problem and we will show later that the same algorithm for
the first problem can be employed for solving the second problem. Intuitively, we can lower
the total cost by selectively merging two hyperrectangles in the covering set into one. We
introduce the the merge operation (⊕) for any two hyperrectangles,H1 = T1 × I1 and
H2 = T2 × I2,

H1 ⊕ H2 = (T1 ∪ T2) × (I1 ∪ I2)

The net cost savings from mergingH1 andH2 is

cost(H1) + cost(H2) − cost(H1 ⊕ H2)

= |Ti| + |Tj | + |Ii| + |Ij | − |Ti ∪ Tj | − |Ii ∪ Ij |

To minimizecost(CDB) with given false positive constraint
|CDBc\DB|

|DB|
≤ β, we apply a greedy heuristic:we will combine the hyperrectangles in
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CDB together so that the merge can yield the best savings with respect to the new false
positive coverage, i.e., for any two hyperrectanglesHi andHj ,

arg max
Hi,Hj

|Ti| + |Tj | + |Ii| + |Ij | − |Ti ∪ Tj | − |Ii ∪ Ij |

|(Hi ⊕ Hj) \ SCDBc|
.

Algorithm 4 sketches the procedure which utilizes the heuristics.

Algorithm 4 HYPER+(DB, CDB, β)
1: SCDB ← CDB;
2: while |SCDBc\DB|

|DB|
≤ β do

3: find the two hyperrectanglesHi andHj in SCDB whose merge is within the false positive budget:

|(SCDB \ {Hi, Hj} ∪ {Hi ⊕Hj})c \DB|

|DB|
≤ β,

and produces the maximum (or near maximum) saving-false positiveratio:

arg max
Hi,Hj

|Ti|+ |Tj |+ |Ii|+ |Ij | − |Ti ∪ Tj | − |Ii ∪ Ij |

|(Hi ⊕Hj) \ SCDBc|

4: removeHi andHj from SCDB and addHi⊕Hj : SCDB ← SCDB \ {Hi, Hj}∪{Hi⊕Hj}
5: end while
6: return SCDB;

The second problem tries to group the hyperrectangles inCDB into k super- hyper-
rectangles. We can see the same heuristic can be employed to merge hyperrectangles. In
essence, we can replace thewhile condition (Line2) in Algorithm 4 with the condition that
SCDB has onlyk hyperrectangles. Finally, we note that the heuristic we employed here is
similar to the greedy heuristic for the traditionalKnapsack problem[13]. However, since we
consider only pair-wise merging, our algorithm does not have a guaranteed bound like the
knapsack greedy algorithm. Algorithm 4 could be too time-costly when|CDB| is large. In
practice, we slightly revise Algorithm 4 and perform a random sampling merging to speed
up the algorithm:

In each round, we randomly chooseC pairs of hyperrectangles among all possible pairs
(|SCDB|(|SCDB| − 1)/2) of hyperrectangles (whenC > |SCDB|(|SCDB| − 1)/2 we
choose all). Then among theC pairs of hyperrectangles we find two hyperrectangleHi and
Hj whose merge is within the false positive budget and producesthe maximum saving-false
positive ratio. Finally, we removeHi andHj from SCDB and addHi ⊕ Hj into SCDB.
C is an adjustable constant and the larger theC, the closer the random sampling merging
algorithm to Algorithm 4, and whenC ≥ |CDB|(|CDB| − 1)/2 the two algorithms are
equal.

In Section 7, we show that our greedy algorithm works effectively for both real and
synthetic transactional datasets.

6 Visualization

In many visualization applications, such as overlapping bicluster visualization and trans-
actional data visualization, people are interested in effectively visualizing matrix patterns.
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In [11], we ask the following question:Given a set of discovered hyperrectangles, how can
we order the rows and columns of the transactional database to best display these hyper-
rectangles?

In addition, we define the visualization cost and matrix optimal visualization problem
as follows:

Given a databaseDB with a set of hyperrectanglesCDB, and two ordersσT (the order
of transactions) andσI (the order of items), we define the visualization cost ofCDB =

{H1 = {T1 × I1}, H2 = {T2 × I2}, · · · , Hp = {Tp × Ip}} to be

visual cost(CDB, σT , σI) =
p

X

j=1

( max
tu∈Tj

σT (tu) − min
tw∈Tj

σT (tw)) +

p
X

j=1

(max
iu∈Ij

σI(iu) − min
iw∈Ij

σI(iw))

Given a databaseDB with a set of hyperrectangleCDB, the Matrix Optimal Visualiza-
tion Problem is to find the optimal ordersσT andσI , such thatvisual cost(CDB, σT , σI)

is minimized:

argminσT ,σI visual cost(CDB, σT , σI)

In [11], we answered the above question by linking the visualization problem to a well-
known graph theoretical problem: the minimal linear arrangement (MinLA) problem. Inter-
ested readers may read [11] for details of our hyperrectangle visualization algorithm. In the
experimental section, we will display partial results of our visualization algorithm.

7 Experimental Results

In this section, we report our experimental evaluation on three real datasets and one synthetic
dataset. All of them are publicly available from the FIMI repository1. The basic characteris-
tics of the datasets are listed in Table 1. Borgelt’s implementation of the well-known Apriori
algorithm [5] was used to generate frequent itemsets. Our algorithms were implemented in
C++ and run on Linux 2.6 on an AMD Opteron 2.2 GHz with 2GB of memory.

In our experimental evaluation, we will focus on answering the following questions.

1. How can HYPER (Algorithm 3) and HYPER+ (Algorithm 4) summarize a transactional
dataset with respect to the summarization cost?

2. How can the false positive condition improve the summarization cost?
3. How does the set of frequent itemsets at different minimumsupport levels (α) affect the

summarization results?
4. When users prefer a limited number of hyperrectangles, i.e. limited|SCDB|, how will

the summarization cost and the false positive ratio|SCDBc\DB|
|DB|

look?
5. What is the running time of our algorithms?

To answer these questions, we performed a list of experiments, which we summarized
as follows.

1 http://fimi.cs.helsinki.fi/data/
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Fig. 4 Experimental results
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Fig. 5 Experimental results (continued)
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7.1 Summarization With Varying Support Levels

In this experiment, we study the summarization cost, the number of hyperrectangles, and
the running time of HYPER and HYPER+ using the sets of frequent itemsets at different
support levels.

In Figures 4(a) 4(b) 4(g), we show the summarization cost with respect to different sup-
port levelsα on the chess, pumsbstar and T10I4D100K datasets. Each of these three figures
has a total of six lines. Two of them arereference lines: the first reference line, named “DB”,
is the value of|DB|, i.e. the number of cells inDB. Recall that in the problem formulation,
we denotecost(CDBH) = |T | + |DB| andcost(CDBV ) = |I| + |DB|. Thus, this refer-
ence line corresponds to the upper bound of any summarization cost. The other reference
line, named “minpossiblecost”, is the value of|T | + |I|. This corresponds to the lower
bound any summarization can achieve, i.e.SCDB contains only one hyperrectangleT ×I.
The “CDB” line records the cost ofCDB being produced by HYPER. The “SCDB0.1”,
“SCDB 0.2”, and “SCDB0.4” lines record the cost ofSCDB being produced by HYPER+
with 10%, 20%, and40% false positive budget.

Accordingly, in Figures 4(c) 4(d) 4(h), we show the number ofhyperrectangles (i.e.k) in
the covering databaseCDB or SCDB at different support levels. The “CDB” line records
|CDB|, and the “SCDB0.1”,“SCDB 0.2”, “SCDB 0.4” lines record|SCDB| being gener-
ated by HYPER+ with10%, 20%, and40% false positive budget.

Figures 4(e) 4(f) 5(a) shows the running time. Here the line “CDB” records the running
time of HYPER generatingCDB from DB. The “SCDB-0.1”, “SCDB-0.2”, and “SCDB-
0.4” lines record the running time of HYPER+ generatingSCDB under10%, 20%, 40%

false positive budget respectively. Here, we include both the time of generatingCDB from
DB (HYPER) andSCDB from CDB (HYPER+). However, we do not count the running
time of Apriori algorithm that is being used to generate frequent itemsets.

Here, we can make the following observations:

1. The summarization cost reduces as the support levelα decreases; the number of hy-
perrectangles increases as the support level decreases; and the running time increases
as the support level decreases. Those are understandable since the lower the support
level is, the bigger the input (Cα) is for HYPER, and the larger the possibility for a
more succinct covering database. However, this comes at thecost of a larger number of
hyperrectangles.

2. The summarization cost and the number of hyperrectanglesare dependent on the density
of the database. HYPER and HYPER+ have a much smaller summarization cost with
fewer hyperrectangles for the dense datasets, like chess, than for the sparse datasets,
like pumsbstar. We believe this partly confirms our typical intuition that the high level
structure of a dense transaction database can be relativelyeasy to describe. The fre-
quent itemsets in the dense database can generally cover a much larger portion of the
database, and thus, can serve as a good candidate to describethe high level structure of
the database. However, the frequent itemsets in the sparse database will be more likely
to span only a relatively small portion of the database. Thus, we will have to use a larger
number of hyperrectangles to summarize the sparse database.

3. One of the most interesting observations is the “threshold behavior” and the “conver-
gence behavior” across all the data, including the summarization cost, the number of
hyperrectangles, and the running time on all these datasets. First, we observe the sum-
marization cost tends to converge whenα drops. Second, we can see that the number
of hyperrectangles (k) increases rather sharply whenα drops below some threshold,
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Datasets I T Avg. Len. |DB| density
chess 75 3,196 37 118,252 dense
pumsbstar 2,088 49,046 50.5 2,476,823 sparse
mushroom 119 8,124 23 186,852 dense
T10I4D100K 1,000 100,000 10 ≈ 1,000,000 sparse

Table 1 dataset characteristics

particularly for no false positive case (i.e. “CDB”) and lowfalse positive cases (i.e.
“SCDB-0.1”, “SCDB-0.2”), and the running time increases accordingly (sharing the
same threshold). However, the convergence behavior tends to maintain the summariza-
tion cost at the same level or only decrease slightly. This webelieve suggests that a lot
of smaller hyperrectangles are chosen without reducing thecost significantly, and that
these small hyperrectangles are of little benefit to the datasummarization. This phe-
nomena suggests that a reasonably highα can produce a comparable summarization as
a low α with much less computational cost, which would be especially important for
summarizing very large datasets.

7.2 Summarization with Varyingk

In this experiment, we will construct a succinct summarization with varying limited numbers
of hyperrectangles (k). We perform the experiments on chess, mushroom and T10I4D100K
datasets. We vary the number ofk from around100 to 10.

In Figures 5(c) 5(e) 5(g), each graph has two lines which correspond to two different
minimum support levelsα for generatingSCDB. For instance, support15 is the 15% min-
imal support for the HYPER+.

Here in Figures 5(b) 5(d) 5(f) , we observe that the summarization costs converge to-
wards minimum possible cost when k decreases. This is understandable since the minimum
possible cost is achieved whenk = 1, i.e., there is only one hyperrectangleT ×I in SCDB.
In the meantime, we observe that the false positive ratio increases whenk decreases. Espe-
cially, we observe a similar threshold behavior for the false positive ratio. This threshold
again provides us a reasonable choice for the number of hyperrectangles to be used in sum-
marizing the corresponding database.

We also observe that the sparse datasets, like T10I4D100K, tends to have a rather higher
false positive ratio. However, if we compare with the worst case scenario, where only one
hyperrectangle is used, the false positive ratio seems rather reasonable. For instance, the
maximum false positive ratio is around10000% for T10I4D100K, i.e., there is only around
1% ones in the binary matrix. Using the minimal support0.5% and k = 200, our false
positive ratio is less than500%, which suggests that we use around6% of the cells in the
binary matrix to summarize T10I4D100K.

7.3 Hyperrectangle Visualization

In this subsection we show partial results from our visualization paper [11], for more results
and more details, please refer to [11].

In Figure 6 we display visualization effects on datasets ”mushroom” and ”T10I4D100K”
by our hyperrectangle visualization algorithm in [11]. We believe the visualization method
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(a) mushroom unordered (b) mushroom reordered

(c) mushroom hyperrectangles 1-5 (d) mushroom hyperrectangles 6-10

(e) T10I4D100K unordered (f) T10I4D100K reordered

(g) T10I4D100K hyperrectangles 1-5 (h) T10I4D100K hyperrectangles 6-10

Fig. 6 Visualization results (hyperrectangles best viewed in color)
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can be incorporated into an interactive visualization environment to allow users to focus on
different parts of the data and the hyperrectangles.

We visualize a transactional database in two dimensions as follows. If a transactioni
contains itemj, then the corresponding pixel(i, j) is black. We extract the top10 hyper-
rectangles (i.e. top10 lowest-price hyperrectangles) from each dataset, and visualize each
hyperrectangle by drawing a minimum bounding rectangle - the smallest rectangle that cov-
ers all of its cells - around it. The denser (blacker) area a bounding rectangle has, the better
the reordering is. In some cases the bounding rectangle is completely black, then it is equal
to the corresponding hyperrectangle.

To visualize a large transactional dataset on a relatively small matrix, we apply a random
sampling technique. Specifically, we sampled 250 transactions of each dataset, to bring the
number of transactions more in line with the number of items.For each sampled dataset, we
display four figures. Figure 6(a) and Figure 6(e) show their appearances with original orders
σT andσI . Figure 6(b) and Figure 6(f) show their appearances with updated orders by our
proposed hypergraph ordering methods for the best visualization of top ten hyperrectangles.
Figure 6(c) and Figure 6(g) highlight the first five hyperrectangles by zooming in and draw-
ing a colored rectangular boundary around each corresponding hyperrectangle. Figure 6(d)
and Figure 6(h) highlight the second five hyperrectangles inthe same way as Figure 6(c)
and Figure 6(g) do.

8 Conclusions

In this paper, we have introduced a new research problem to succinctly summarize trans-
actional databases. We have formulated this problem as a setcovering problem using over-
lapped hyperrectangles; we then proved that this problem and its several variations are NP-
hard. We have developed two novel algorithms,HY PER andHY PER+ to effectively
summarize the transactional database. In the experimentalevaluation, we have demonstrated
the effectiveness and efficiency of our methods. In particular, we found interesting “thresh-
old behavior” and “convergence behavior”, which we believecan help us generate succinct
summarizations in terms of the summarization cost, the number of hyperrectangles, and
the computational cost. In the future, we plan to investigate those behaviors analytically
and thus produce better summarizations. We also plan to apply this method on real world
applications, such as microarray data in bioinformatics, for which we conjecture the hyper-
rectangles may correspond to certain biological process.
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