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Abstract. Let G = (V, E) be a graph and T be a spanning tree of G. We consider the following
strategy in advancing in G from a vertex x towards a target vertex y: from a current vertex z (initially,
z = x), unless z = y, go to a neighbor of z in G that is closest to y in T (breaking ties arbitrarily).
In this strategy, each vertex has full knowledge of its neighborhood in G and can use the distances in
T to navigate in G. Thus, additionally to standard local information (the neighborhood NG(v)), the
only global information that is available to each vertex v is the topology of the spanning tree T (in
fact, v can know only a very small piece of information about T and still be able to infer from it the
necessary tree-distances). For each source vertex x and target vertex y, this way, a path, called a greedy
routing path, is produced. Denote by gG,T (x, y) the length of a longest greedy routing path that can
be produced for x and y using this strategy and T . We say that a spanning tree T of a graph G is
an additive r-carcass for G if gG,T (x, y) ≤ dG(x, y) + r for each ordered pair x, y ∈ V . In this paper,
we investigate the problem, given a graph family F , whether a small integer r exists such that any
graph G ∈ F admits an additive r-carcass. We show that rectilinear p× q grids, hypercubes, distance-
hereditary graphs, dually chordal graphs (and, therefore, strongly chordal graphs and interval graphs),
all admit additive 0-carcasses. Furthermore, every chordal graph G admits an additive (ω(G) + 1)-
carcass (where ω(G) is the size of a maximum clique of G), each 3-sun-free chordal graph admits an
additive 2-carcass, each chordal bipartite graph admits an additive 4-carcass. In particular, any k-tree
admits an additive (k + 2)-carcass. All those carcasses are easy to construct.
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1 Introduction

As part of the recent surge of interest in different kind of networks, there has been active research
exploring strategies for navigating synthetic and real-world networks (modeled usually as graphs).
These strategies specify some rules to be used to advance in a graph (a network) from a given
vertex towards a target vertex along a path that is close to shortest. Current strategies include
(but not limited to): routing using full-tables, interval routing, routing labeling schemes, greedy
routing, geographic routing, compass routing, etc. in wired or wireless communication networks
and in transportation networks (see [25, 26, 34, 40, 31, 48] and papers cited therein); routing through
common membership in groups, popularity, and geographic proximity in social networks and e-mail
networks (see [3, 4, 22, 34, 39] and literature cited therein).

In this paper we use terminology used mostly for communication networks. Thus, navigation is
performed using a routing scheme, i.e., a mechanism that can deliver packets of information from
any vertex of a network to any other vertex. In most strategies, each vertex v of a graph has full
knowledge of its neighborhood and uses a piece of global information available to it about the graph
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topology – some ”sense of direction” to each destination, stored locally at v. Based only on this
information and the address of a destination vertex, vertex v needs to decide whether the packet
has reached its destination, and if not, to which neighbor of v to forward the packet.

1.1 Some Known Strategies

In routing using full-tables, each vertex v of G knows for each destination u the first edge along some
shortest path from v to u (so-called complete routing table). When v needs to send a message to u,
it just sends the message along the edge stored for destination u. While this approach guarantees
routing along a shortest path, it is too expensive for large systems since it requires to store locally
O(n log δ) bits of global information for an n-vertex graph with maximum degree δ.

Unfortunately, if one insists on a routing via shortest paths, Ω(n log δ) bits is the lower bound
on the memory requirements per vertex [30] (this much each vertex needs to know at least). To
obtain routing schemes for general graphs that use o(n) of memory at each vertex, one has to
abandon the requirement that packets are always delivered via shortest paths, and settle instead
for the requirement that packets are routed on paths that are relatively close to shortest. The
efficiency of a routing scheme is measured in terms of its additive stretch, called deviation (or
multiplicative stretch, called delay), namely, the maximum surplus (or ratio) between the length of
a route, produced by the scheme for a pair of vertices, and the shortest route. There is a tradeoff
between the memory requirements of a routing scheme (how much of global information is available
locally at a vertex) and the worst case stretch factor it guarantees. Any multiplicative t-stretched
routing scheme must use Ω(n) bits for some vertices in some graphs for t < 3 [27] (see also [23]),
and Ω(n log n) bits for t < 1.4 [30]. These lower bounds show that it is not possible to lower memory
requirements of a routing scheme for an arbitrary network if it is desirable to route messages along
paths close to optimal. Therefore, it is interesting, both from a theoretical and a practical view
point, to look for specific routing strategies on graph families with certain topological properties.

One specific way of routing, called interval routing, has been introduced in [44] and later general-
ized in [38]. In this method, the complete routing tables are compressed by grouping the destination
addresses which correspond to the same output edge. Then each group is encoded as an interval, so
that it is easy to check whether a destination address belongs to the group. This approach requires
O(δ log n) bits of memory per vertex, where δ is the maximum degree of a vertex of the graph. A
graph must satisfy some topological properties in order to support interval routing, especially if
one insists on paths close to optimal. Routing schemes for many graph classes were obtained by
using interval routing techniques. The classical and most recent results in this field are presented
in [25, 26].

Recently, so-called routing labeling schemes [40] become very popular. A number of interesting
results for general graphs and particular classes of graphs were obtained. These are schemes that
label the vertices of a graph with short labels (describing some global topology information) in
such a way that given the label of a source vertex and the label of a destination, it is possible
to compute efficiently the edge from the source that heads in the direction of the destination. In
[24, 48], a shortest path routing scheme for trees with O(log2 n/ log log n)-bit labels is described.
For general graphs, the most general result to date is a multiplicative (4k − 5)-stretched routing
labeling scheme that uses labels of size Õ(kn1/k) bits1 is obtained in [48] for every k ≥ 2. For
planar graphs, a shortest path routing labeling scheme which uses 8n + o(n) bits per vertex is
developed in [28], and a multiplicative (1 + ε)-stretched routing labeling scheme for every ε > 0
which uses O(ε−1 log3 n) bits per vertex is developed in [47]. This has been generalized in [1] to
graphs excluding a fixed minor with the same stretch and space bounds. Routing in graphs with

1 Here, Õ(f) means O(f polylog n).
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doubling dimension α has been considered in [2, 12, 45, 46]. It was shown that any graph with
doubling dimension α admits a multiplicative (1 + ε)-stretched routing labeling scheme with labels
of size ε−O(α) log2 n bits. Recently, the routing result for trees of [24, 48] was used in designing
additive O(1)-stretched routing labeling schemes with O(logO(1) n) bit labels for several families
of graphs, including chordal graphs, chordal bipartite graphs, circular-arc graphs, AT-free graphs
and their generalizations, the graphs with bounded longest induced cycle, the graphs of bounded
tree–length, the bounded clique-width graphs, etc. (see [16, 18–20] and papers cited therein).

In wireless networks, the most popular strategy is the geographic routing (sometimes called also
the greedy geographic routing), were each vertex forwards the packet to the neighbor geographically
closest to the destination (see survey [31]). Each vertex of the network knows its position (e.g.,
Euclidean coordinates) in the underlying physical space and forwards messages according to the
coordinates of the destination and the coordinates of neighbors. Although this greedy method is
effective in many cases, packets may get routed to where no neighbor is closer to the destination
than the current vertex. Many recovery schemes have been proposed to route around such voids
for guaranteed packet delivery as long as a path exists [6, 33, 37]. These techniques typically exploit
planar subgraphs (e.g., Gabriel graph, Relative Neighborhood graph), and packets traverse faces
on such graphs using the well-known right-hand rule.

All earlier papers assumed that vertices are aware of their physical location, an assumption which
is often violated in practice for various of reasons (see [21, 35, 42]). In addition, implementations of
recovery schemes are either based on non-rigorous heuristics or on complicated planarization proce-
dures. To overcome these shortcomings, recent papers [21, 35, 42] propose routing algorithms which
assign virtual coordinates to vertices in a metric space X and forward messages using geographic
routing in X. In [42], the metric space is the Euclidean plane, and virtual coordinates are assigned
using a distributed version of Tutte’s ”rubber band” algorithm for finding convex embeddings of
graphs. In [21], the graph is embedded in Rd for some value of d much smaller than the network
size, by identifying d beacon vertices and representing each vertex by the vector of distances to
those beacons. The distance function on Rd used in [21] is a modification of the `1 norm. Both
[21] and [42] provide substantial experimental support for the efficacy of their proposed embedding
techniques – both algorithms are successful in finding a route from the source to the destination
more than 95% of the time – but neither of them has a provable guarantee. Unlike embeddings of
[21] and [42], the embedding of [35] guarantees that the geographic routing will always be successful
in finding a route to the destination, if such a route exists. Algorithm of [35] assigns to each vertex
of the network a virtual coordinate in the hyperbolic plane, and performs greedy geographic routing
with respect to these virtual coordinates. More precisely, [35] gets virtual coordinates for vertices of
a graph G by embedding in the hyperbolic plane a spanning tree of G. The proof that this method
guaranties delivery is relied only on the fact that the hyperbolic greedy route is no longer than the
spanning tree route between two vertices; even more, it could be much shorter as greedy routes
take enough short cuts (edges which are not in the spanning tree) to achieve significant saving
in stretch. However, although the experimental results of [35] confirm that the greedy hyperbolic
embedding yields routes with low stretch when applied to typical unit-disk graphs, the worst-case
stretch is still linear in the network size.

1.2 Our Approach

Motivated by the work of Robert Kleinberg [35], in this paper, we initiate exploration of the
following strategy in advancing in a graph from a source vertex towards a target vertex. Let G =
(V, E) be a graph and T be a spanning tree of G. To route/move in G from a vertex x towards a
target vertex y, use the following rule:
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from a current vertex z (initially, z = x), unless z = y,
go to a neighbor of z in G that is closest to y in T
(break ties arbitrarily).

In this strategy, each vertex has full knowledge of its neighborhood in G and can use the distances
in T to navigate in G. Thus, additionally to standard local information (the neighborhood NG(v)),
the only global information that is available to each vertex v is the topology of the spanning tree
T . In fact, v can know only a very small piece of information about T and still be able to infer
from it the necessary tree-distances. It is known [29, 41] that the vertices of an n-vertex tree T can
be labeled in O(n log n) total time with labels of up to O(log2 n) bits such that given the labels of
two vertices v, u of T , it is possible to compute in constant time the distance dT (v, u), by merely
inspecting the labels of u and v. Hence, one may assume that each vertex v of G knows, additionally
to its neighborhood in G, only its O(log2 n) bit distance label. This distance label can be viewed
as a virtual coordinate of v.

For each source vertex x and target vertex y, by this routing strategy, a path, called a greedy
routing path, is produced (clearly, this routing strategy will always be successful in finding a route
to the destination). Denote by gG,T (x, y) the length of a longest greedy routing path that can be
produced for x and y using this strategy and T . We say that a spanning tree T of a graph G is an
additive r-carcass for G if gG,T (x, y) ≤ dG(x, y) + r for each ordered pair x, y ∈ V (in a similar way
one can define also a multiplicative t-carcass of G). Note that this notion differs from the notion of
”remote-spanners” introduced recently in [32].

In this paper, we start investigating the problem, given a graph family F , whether a small
integer r exists such that any graph G ∈ F admits an additive r-carcass, and give our preliminary
results. We show that rectilinear p×q grids, hypercubes, distance-hereditary graphs, dually chordal
graphs (and, therefore, strongly chordal graphs and interval graphs), all admit additive 0-carcasses.
Furthermore, every chordal graph G admits an additive (ω(G) + 1)-carcass (where ω(G) is the
size of a maximum clique of G), each 3-sun-free chordal graph admits an additive 2-carcass, each
chordal bipartite graph admits an additive 4-carcass. In particular, any k-tree admits an additive
(k + 2)-carcass. All those carcasses are easy to construct.

2 Preliminaries

All graphs occurring in this paper are connected, finite, undirected, unweighted, loopless and with-
out multiple edges. In a graph G = (V, E) (n = |V |,m = |E|) the length of a path from a vertex
v to a vertex u is the number of edges in the path. The distance dG(u, v) between the vertices u
and v is the length of a shortest path connecting u and v. The neighborhood of a vertex v of G is
the set NG(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}.
The disk of radius k centered at v is the set of all vertices at distance at most k to v, i.e.,
Dk(v) = {u ∈ V : dG(u, v) ≤ k}. A set S ⊆ V is a clique (an independent set) of G if all ver-
tices of S are pairwise adjacent (respectively, nonadjacent) in G. A clique of G is maximal if it is
not contained in any other clique of G.

Next we recall the definitions of special graph classes mentioned in this paper (see survey [10]).
A graph is chordal if it does not have any induced cycle of length greater than 3. A p-sun (p ≥ 3) is
a chordal graph on 2p vertices whose vertex set can be partitioned into two sets, U = {u0, . . . , up−1}
and W = {w0, . . . , wp−1}, such that W is an independent set, U is a clique, and every wi is adjacent
only to ui and ui+1 (mod p). A chordal graph having no induced subgraphs isomorphic to p-suns
(for any p ≥ 3) is called a strongly chordal graph. A chordal graph having no induced subgraphs
isomorphic to 3-sun is called a 3-sun-free chordal graph. A graph is chordal bipartite if it is bipartite
and has no induced cycles of length greater than 4. A dually chordal graph is the intersection graph
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of the maximal cliques of a chordal graph (see [10, 9] for many equivalent definitions of dually
chordal graphs and strongly chordal graphs). A graph is interval if it is the intersection graph
of intervals of a line. It is known that interval graphs are strongly chordal and strongly chordal
graphs are dually chordal (see [10, 9]). A graph G is distance-hereditary if every induced path of
G is shortest (see [10] for many equivalent definitions of distance-hereditary graphs). The k-trees
are defined recursively: a clique of size k (denoted by Kk) is a k-tree; if G is a k-tree, then a graph
obtained from G by adding a new vertex v adjacent to all vertices of some clique Kk of G is a k-tree.
It is known (see [10]) that all k-trees are chordal graphs and that maximal cliques of a k-tree have
size at most k + 1.

Let now G = (V,E) be a graph and T be a spanning tree of G. In what follows, we will use the
following notations. For vertices v and u from V , denote by vTu the (unique) path of T connecting
vertices v and u. For a source vertex x and a target vertex y in G, denote by RG,T (x, y) a greedy
routing path obtained for x and y by using tree T and the strategy described in Subsection 1.2.
Clearly, for the same pair of vertices x and y, breaking ties differently, different greedy routing
paths RG,T (x, y) can be produced. Denote, as before, by gG,T (x, y), the length of a longest greedy
routing path that can be produced for x and y. If no confusion can arise, we will omit indexes G
and T , i.e., use R(x, y) and g(x, y) instead of RG,T (x, y) and gG,T (x, y).

For r ≥ 0 and t ≥ 1, a spanning tree T of a graph G is called an additive r-carcass (a multi-
plicative t-carcass) for G if gG,T (x, y) ≤ dG(x, y) + r (respectively, gG,T (x, y) ≤ t dG(x, y)) for each
ordered pair x, y ∈ V .

Let x∗ be the neighbor of x in RG,T (x, y) and x′ be the neighbor of x in xTy. Since both x∗

and x′ are in NG(x) and dT (x′, y) = dT (x, y)− 1, according to our strategy dT (x∗, y) ≤ dT (x′, y) =
dT (x, y)− 1 must hold. Furthermore, any subpath of a greedy routing path RG,T (x, y) containing
y is a greedy routing path to y as well. Hence, one can conclude, by induction, that the length of
any greedy routing path RG,T (x, y) never exceeds dT (x, y). It is clear also, that a greedy routing
path RG,T (x, y) := (x := x0, x1, x2, . . . , y := x`) cannot have a chord xixj ∈ E with j > i + 1
(since dT (xi+1, y) > dT (xj , y)), i.e., any greedy routing path is an induced path. Thus, we have the
following.

Observation 1. Let G be an arbitrary graph and T be its arbitrary spanning tree. Then, for any
vertices x, y of G,

(a) gG,T (x, y) ≤ dT (x, y),
(b) any greedy routing path RG,T (x, y) is an induced path of G,
(c) a tale of any greedy routing path is a greedy routing path.

Since in distance-hereditary graphs each induced path is a shortest path, by Observation 1(b),
we conclude.

Corollary 1. Any spanning tree of a distance-hereditary graph G is a 0-carcass of G.

Papers [14, 5, 43] introduce and investigate a family of graphs, denoted by DH(k, +), which
generalizes in a parameterized way the class of distance-hereditary graphs. Let k ≥ 0 be an integer.
A graph G belongs to the family DH(k, +) if and only if the length of any induced (x, y)-path of
G is at most dG(x, y) + k for any x, y in G. Hence, we have.

Corollary 2. Any spanning tree of a graph G from DH(k, +) is an additive k-carcass of G.

There are well-known notions of additive tree r-spanners and multiplicative tree t-spanners. For
r ≥ 0 and t ≥ 1, a spanning tree T of a graph G is called an additive tree r-spanner (a multiplicative
tree t-spanner) of G if dT (x, y) ≤ dG(x, y) + r (respectively, dT (x, y) ≤ t dG(x, y)) for each pair
x, y ∈ V [11]. By Observation 1(a), we obtain.
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Corollary 3. Any additive tree r-spanner (multiplicative tree t-spanner) of a graph G is an additive
r-carcass (multiplicative t-carcass) of G.

Note that the converse of Corollary 3 is not generally true. As we will see in next sections,
there are many families of graphs which do not admit any tree r-spanners (additive as well as
multiplicative) for any constant r, yet they admit very good carcasses. For example, there is no
constant r such that any 2-tree or any chordal bipartite graph has a tree r-spanner (additive or
multiplicative), but both these families of graphs admit additive 4-carcasses (see Section 5 and
Section 6 for details).

In what follows, in a rooted tree T , by f(v) we will denote the father of a vertex v.

3 Rectilinear Grids and Hypercubes

In this section we show that the rectilinear grids and the hypercubes admit additive 0-carcasses.
Let G be a m× n rectilinear grid with m rows and n columns. The rows are numbered from 1

to m and the columns are numbered from 1 to n. A cell (i, j) denotes the cell in row i and column
j in the grid, for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Assume that it is naturally embedded into the plane
such that all inner faces of G are squares (see Fig. 1) and (1, 1) is the left upper corner.

First we notice that G does not admit any good tree spanner. For this, consider an arbitrary
spanning tree T of G, and assume that m and n are odd integers and m ≤ n. Since T is a planar
graph with only the outer face, we can connect by a Jordan curve C a point of the plane inside the
central square of G with a point in the outer face of G without intersecting the tree T . Let R be
the first square of G crossed by C and x and y be two opposite vertices of R (see Fig. 1(a) for an
illustration). Clearly, for x and y, dT (x, y) ≥ m + 1 holds, while dG(x, y) = 2. Here, we considered
nonadjacent vertices of G since adjacent vertices are of no interest in our greedy routing. Thus,
there are no good tree spanners for rectilinear grids. On the other hand, G admits an additive 0-
carcass. Consider a Hamiltonian path of G depicted on Fig. 1(b), called column-wise Hamiltonian
path. This path is an additive 0-carcass of G. We leave verification of this fact to the reader. We
prove instead the following result.

Fig. 1. Rectilinear grids do not admit any (additive or multiplicative) tree r-spanners with a constant r, but have
additive 0-carcasses.

Theorem 1. Let G be the m× n grid and T be its additive 0-carcass. Then T is the column-wise
Hamiltonian path or the row-wise Hamiltonian path, or it is two parallel paths connected by an edge
if min{m,n} = 2.
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Proof. Let us assume that T is a 0-carcass for the grid G with m rows and n columns. Remember
that we label the vertices of G as (i, j) where i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. We assume that
the (1, 1) vertex is in the upper left corner and (m,n) vertex is in the lower right corner.

Let v be a leaf of T . Let us assume that v = (i, j) with 1 ≤ i ≤ m and that a = (i, j + 1) is its
father. Then, j = 1 as, otherwise, the greedy routing from a to (i, j − 1) will not choose v as the
next vertex since the path on T between v and (i, j − 1) passes through a. Let k be the smallest
integer such that the vertex (i, k) has a neighbor in T in the same column. Let us assume that this
neighbor is (i− 1, k). As (i, 1) is a leaf and we are assuming that its father is (i, 2), we know that
k ≥ 2. If i < m, then the greedy routing from (i−1, k−1) to (i+1, k−1) may not choose (i, k−1)
as next vertex since the distance in T from (i, k − 1) to (i + 1, k − 1) is at least the distance in T
from (i − 1, k) to (i + 1, k − 1). Therefore, i = m. By an analogous argument, if the neighbor in
T of (i, k) is the vertex (i + 1, k), then we can prove that i = 1. Therefore, we have the following
property.

(1) Any leaf of T lays in a corner of the grid.
Furthermore, the following property holds.
(2) If (i, j), . . . , (i, j + p) is a subpath of T and (i, j + p)(i − 1, j + p) is an edge of T , then

(i − 1, j + 1), . . . , (i − 1, j + p) is a subpath of T . (Analogously, if (i, j), . . . , (i, j + p) is a subpath
of T and (i, j)(i− 1, j) is an edge of T , then (i− 1, j), . . . , (i− 1, j + p− 1) is a subpath of T .)

If this is not the case, then the distance in T between (i− 1, j + 1) and (i− 1, j + p) is at least
their distance in G plus two. As this latter quantity equals the distance in T between (i, j) and
(i− 1, j + p), the greedy routing strategy could choose (i, j) as the next vertex when routing from
(i− 1, j) to (i− 1, j + p). Hence, a routing path from (i− 1, j) to (i− 1, j + p) will be longer than
a shortest path.

As a corollary we obtain one more property.
(3) If (i, j), . . . , (i, j + p) (p ≥ 2) is a subpath of T , then at most one edge (i, j + t)(i− 1, j + t)

is an edge of T for 0 ≤ t ≤ p.
Let us assume that T is not a Hamiltonian path. Let v = (i, j) be a vertex having at least

three neighbors in T and let us assume that these neighbors are (i + 1, j), (i− 1, j) and (i, j + 1). If
(i, j + 1) is adjacent in T neither to (i− 1, j + 1) nor to (i + 1, j + 1), then either there is an edge
(i, l)(i + 1, l) or (i− 1, l)(i, l) in T with l > j + 1. Note that vertex (i, j + 1) cannot be a leaf of T
by (1). Moreover, any leaf of T is in a corner of the grid. But, the existence of either edge also is a
contradiction with property (3).

Hence, we can assume that (i, j+1)(i− 1, j + 1) is an edge of T . As the edge (i−1, j+1)(i−1, j)
does not belong to T , by property (2), we deduce that edge (i, j + 1)(i, j + 2) does not belong to T
either. As the distance in T between (i+1, j) and (i−1, j+1) is three, the edge (i, j+1)(i+1, j+1)
must belong to T as, otherwise, one can choose (i− 1, j) as the next vertex when greedily routing
from (i− 1, j + 1) to (i + 1, j + 1). By property (3), we know that the subpath of T starting with
(i, j)(i+1, j) cannot go right when it leaves column j for the first time. Hence, either it never leaves
column j, in which case j = 1 or it does and then j > 1. As a similar argument can be applied to
the subpath of T starting with (i, j)(i−1, j) we conclude, by property (3), that j = 1. Similarly, we
conclude that n = 2 by arguing as before with the subpaths of T starting at (i, j + 1) and moving
along column j + 1. Therefore, if T is not Hamiltonian, then min{n,m} = 2 and T consists of two
parallel paths joined by an edge.

To finish the proof, let us assume that min{n,m} > 2 and let v be one of the two ends of the
Hamiltonian path T . Then we already know that v is a corner of G. Let us say that v = (1, 1) and
that the father of v is (2, 1). Let (k, 1) be the first time the path T enters column 2. By property
(2), we know that T moves up at least until it reaches vertex (2, 2).
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Then (k − 1, 2) is contained in the subpath of T from (k, 1) to any vertex (i, j) with j > 1 or
i > k. This implies that (k−1, 2) can be the next vertex when greedily routing from (k−1, 1) to any
vertex (i, j) with j > 1 or i > k. As the existence of vertex (k +1, 1) would lead to a contradiction,
we conclude that k = m.

As T is a path, (2, 2) is not a leaf of T and (1, 1) is a leaf of T , then the edges (2, 2)(1, 2) and
(1, 2)(1, 3) belong to T . We can apply again property (2) to conclude that T continues from (1, 3)
in column 3 at least until it reaches vertex (m− 1, 3). It is clear that unless T had reached column
n we can apply the same argument as before to show that T moves in G column by column. ut

Now we turn to the hypercubes. Let Hq = (V, E) be the q-dimensional hypercube whose vertices
are binary words of length q and two vertices are adjacent if they differ in exactly one letter. Let
a ∈ {0, 1} and i ∈ {1, . . . , q}. Let Ha,i

q be a subgraph of Hq induced by vertices having letter
a in the position i. Then, H ′ := Ha,i

q is isomorphic to the (q − 1)-dimensional hypercube and
dHq(x, y) = dH′(x, y), whenever the letter in the position i of x and y is a.

Let T be the Gray-Hamiltonian path of Hq defined recursively as follows. If x1, . . . , x2q−1 is the
Gray-Hamiltonian path for Hq−1, then T is given by T0T1, where T0 = x10, . . . , x2q−10 and T1 =
x2q−11, . . . , x11. By applying two steps of previous recursion, it is clear that T can be decomposed
into four consecutive subpaths T = T00T10T11T01, where the subpath Tw contains all the vertices
of Hq ending with w. Notice that T0 is the Gray-Hamiltonian path for H0,q

q , T1 is the reverse of
the Gray-Hamiltonian path for H1,q

q and T10T11 is the Gray-Hamiltonian path for the hypercube
H1,q−1

q .
By using induction on q, we prove that g(x, y) := gG,T (x, y) = dG(x, y), where G = Hq and T

is the Gray-Hamiltonian path of Hq. When x and y belong to T0 (resp. T1), conclusion is obtained
by applying induction hypothesis to vertices x and y in the hypercube H0,q

q (resp. H1,q
q ) with the

Gray-Hamiltonian path T0 (resp. T1). Similarly, when x belongs to T10 and y belongs to T11, we
can apply induction in the hypercube H1,q−1

q with the Gray-Hamiltonian path T10T11.
For the remaining cases, let x∗ denote the vertex next to x in a greedy routing path RG,T (x, y).

If x∗ and y belong to T1, and x belongs to T0, then dG(x∗, y) = dG(x, y)−1, since x∗ and y agree in
their last letters. By applying induction to x∗ and y using T1, we get that g(x∗, y) = d

H1,q
q

(x∗, y) =
dG(x∗, y). Hence, g(x, y) = 1 + g(x∗, y) = 1 + dG(x∗, y) = dG(x, y). Let us now consider the case
when x and x∗ belong to T0, and y belongs to T1. As x has a neighbor in T1 and we are assuming
that x∗ belongs to T0, vertex y must belong to T11. We have already considered the case when
x belongs to T10. Hence, let us assume that x belongs to T00. As x has a neighbor in T10, vertex
x∗ must belong to T10. Since in this case dG(x∗, y) = dG(x, y) − 1, we can conclude as before, by
applying induction to x∗ and y in H1,q−1

q with the Gray-Hamiltonian path T10T11.
So, we can state the following theorem.

Theorem 2. Every rectilinear grid and every hypercube admits an additive 0-carcass (which is a
Hamiltonian path) constructible in linear time.

4 Locally Connected Spanning Trees are Additive 0-Carcasses: Dually Chordal
Graphs

In this section, we show that every dually chordal graph G = (V, E) admits an additive 0-carcass
constructible in linear time. Recall that every dually chordal graph has an additive tree 3-spanner
and there are dually chordal graphs without any additive tree 2-spanners (see [8]). Clearly, those ad-
ditive tree 3-spanners are additive 3-carcasses, but it is not hard to see that they are not necessarily
additive 0-carcasses (see, e.g., Fig. 2).

8



Fig. 2. A dually chordal graph with an additive tree 3-spanner (on the left) and an additive 0-carcass (on the
right). This dually chordal graph does not have any additive tree 2-spanner. A greedy routing path from x to y
with respect to the corresponding tree is shown on both pictures.

Let G be a graph. We say that a spanning tree T of G is locally connected if the closed
neighborhood NG[v] of any vertex v of G induces a subtree in T (i.e., T ∩ NG[v] is a connected
subgraph of T ). See the right picture on Fig. 2 for an example of a locally connected spanning tree.

Theorem 3. If T is a locally connected spanning tree of a graph G, then T is an additive 0-carcass
of G.

Proof. Assume that we want to route from a source vertex x to a target vertex y in G. Let v be
an arbitrary vertex of G and v∗ be a vertex from NG[v] closest to y in T . Since T ∩ NG[v] is a
connected subgraph of T , for each vertex v ∈ V such a neighbor v∗ is unique (any subtree of a
tree has only one vertex closest in T to a given vertex y). Moreover, v∗ 6= v, unless v = y. In what
follows, we will assume that the tree T is rooted at vertex y.

Claim 1. For any vertex v ∈ V , the vertex v∗ belongs to a shortest path of G connecting v and y.

Proof. We prove by induction on dG(v, y). If dG(v, y) ≤ 1, then v∗ = y and therefore v∗ belongs
to any shortest path between v and y. So, assume that dG(v, y) ≥ 2. Consider a shortest path
P (v, y) := (v, a, b, . . . , y) in G connecting v and y, where a and b are the first two (after v) vertices
of this path. They exist since dG(v, y) ≥ 2.

To obtain the conclusion, we prove that v∗ and b are adjacent. For sake of contradiction, let us
assume that they are not adjacent. Since a, b∗ ∈ NG(b) and T ∩NG[b] is a connected subgraph of
T , we get that v∗ is not on path aTb∗. We also know that a ∈ NG[v]∩NG[b] and therefore both v∗

and b∗ are ancestors in T of a (recall that we have rooted T at y). Hence, b∗ is on the path aTv∗.
As a, v∗ ∈ NG(v) and T ∩NG[v] is a connected subgraph of T , we get that v and b∗ are adjacent.
By induction, b∗ belongs to a shortest path of G between b and y, which leads to the following
contradiction: dG(v, y) ≤ 1 + dG(b∗, y) = dG(b, y) < dG(v, y). 2(of Claim)

Now we prove by induction on dT (x, y) that g(x, y) = dG(x, y). Indeed, g(x, y) = 1 + g(x∗, y)
and, by induction, g(x∗, y) = dG(x∗, y) as dT (x, y) > dT (x∗, y). By Claim 1, we conclude g(x, y) =
1 + dG(x∗, y) = dG(x, y). ut

It has been shown in [9] that the graphs admitting locally connected spanning trees are precisely
the dually chordal graphs. Furthermore, [9] showed that the class of dually chordal graphs contains
such known families of graphs as strongly chordal graphs, interval graphs and others. Thus, we
have the following corollary.

9



Corollary 4. Every dually chordal graph admits an additive 0-carcass constructible in linear time.
In particular, any strongly chordal graph (any interval graph) admits an additive 0-carcass con-
structible in linear time.

Note that, in [7, 9], it was shown that dually chordal graphs can be recognized in linear time,
and if a graph G is dually chordal, then a locally connected spanning tree of G can be efficiently
constructed.

5 Additive 4-Carcasses for Chordal Bipartite Graphs

In this section, we show that every chordal bipartite graph G = (V, E) admits an additive 4-carcass
constructible in linear time. Recall that chordal bipartite graphs do not have any tree r-spanners
(additive or multiplicative) with a constant r (see, e.g., [13]).

Let G = (V, E) be a chordal bipartite graph. Consider an arbitrary vertex s ∈ V and let
Li := {v ∈ V : dG(v, s) = i}, i = 0, 1, 2, . . . be the layering of G with respect to s. For a vertex
u ∈ Lj , denote by N↓G(u) := NG(u) ∩ Lj−1 and deg↓(u) := |N↓G(u)| the down-neighborhood and
the down-degree of u, respectively. We assume that deg↓(s) := 0.

First we state an auxiliary lemma which will be useful in our construction of a carcass and its
analysis.

Lemma 1. If a vertex v ∈ Li has two neighbors x and y in Li−1, then the down-neighborhoods of
x and y are comparable, i.e., N↓G(x) ⊆ N↓G(y) or N↓G(y) ⊆ N↓G(x).

Proof. Assume that the down-neighborhoods of x and y are not comparable and let x′ ∈ N↓G(x) \
N↓G(y) and y′ ∈ N↓G(y) \ N↓G(x). Since G is bipartite, xy, x′y′ /∈ E. Consider an induced path
P (x′, y′) connecting vertices x′ and y′ in G and using only vertices from layers Lj , j < i − 2 as
the inner vertices. Clearly, such a path exists. Note now that a cycle of G formed by P (x′, y′) and
edges x′x, xv, vy, yy′ ∈ E is induced and has length at least 6. The latter is in contradiction with
G being a chordal bipartite graph. ut

A carcass T for G we construct by connecting every vertex v ∈ Li, i > 0, by an edge to its
neighbor f(v) ∈ Li−1 that has the minimum down-degree deg↓(f(v)) among all neighbors of v in
Li−1. Vertex f(v) will be called the father of v in T . Clearly, given a graph G, such a tree T can
be constructed in linear time. It turns out that T is an additive 4-carcass of G.

Theorem 4. Every chordal bipartite graph G = (V,E) admits an additive 4-carcass T constructible
in linear time.

Proof. We prove that the tree T constructed above is an additive 4-carcass of G. Assume that we
want to route from a vertex x ∈ Li to a vertex y ∈ Lj . Note that, if x is an ancestor of y or y is an
ancestor of x in T , then g(x, y) ≤ dT (x, y) = dG(x, y) by Observation 1(a) and since T is a shortest
path tree (SP-tree) of G. Hence, in what follows, we will assume that neither x ∈ sTy nor y ∈ sTx.
We distinguish between two cases: x is adjacent in G to a vertex x′ of sTy (we say x sees sTy) or
it is not adjacent in G to any vertex of sTy (we say x misses sTy).

Case 1: x sees sTy.
Let x′ be a vertex of NG(x) and sTy, and x∗ be a vertex from NG(x) closest to y in T . We have
g(x, y) = 1 + g(x∗, y) ≤ 1 + dT (x∗, y) ≤ 1 + dT (x′, y) = 1 + dG(x′, y) by choice of x∗, Observation
1(a) and since x′ is an ancestor of y in SP-tree T of G. Since G is bipartite, x′ belongs to Li+1 or to
Li−1. If x′ ∈ Li+1, then dG(x′, y) = j− i− 1 and therefore g(x, y) ≤ 1+dG(x′, y) = j− i ≤ dG(x, y)
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since dG(x, y) ≥ j− i. If x′ ∈ Li−1, then dG(x′, y) = j− i+1 and therefore g(x, y) ≤ 1+dG(x′, y) =
j − i + 2 ≤ dG(x, y) + 2. Thus, in this case, we get g(x, y)− dG(x, y) ≤ 2.

Case 2: x misses sTy.
Let again x∗ be a vertex from NG(x) closest to y in T . We claim that, in this case, x∗ ∈ Li−1.
Assume, by way of contradiction, that x∗ ∈ Li+1. We have dT (f(x), y) ≥ dT (x∗, y) (by choice
of x∗) and dT (f(x), y) < dT (x, y), dT (f(x∗), y) < dT (x∗, y) (since x, x∗ are not ancestors of y in
T ). Therefore, f(x∗) 6= x and, by the construction of T , deg↓(f(x∗)) ≤ deg↓(x). By Lemma 1,
N↓G(f(x∗)) ⊆ N↓G(x) and therefore vertex x must be adjacent in G to f(f(x∗)). Since x misses
sTy, vertex f(f(x∗)) cannot belong to sTy. Consequently, the nearest common ancestor of y and
x∗ in T is an ancestor of f(f(x∗)) as well. But then, dT (f(f(x∗)), y) = dT (x∗, y) − 2. The latter
combined with f(f(x∗)) ∈ NG(x) is in contradiction with the choice of x∗.

Thus, we proved that if x ∈ Li misses sTy then x∗ must belong to Li−1. Consider now a
greedy routing path R(x, y) := (x, x∗, . . . , u, v, y′, . . . , y) and assume that v ∈ R(x, y) is the first
vertex of this path (when moving from x to y) which sees sTy. Clearly, v exists and v 6= x. Let
v ∈ Lk. By the above proof, subpath (x, x∗, . . . , u, v) of the path R(x, y) has length i − k. Then,
g(x, y) = dG(x, v) + g(v, y) = i− k + g(v, y). Let v′ be the vertex from NG(v) and sTy closest to y.
By the proof of Case 1, we have also that g(v, y) equals j−k, if v′ ∈ Lk+1, and is at most j−k +2,
if v′ ∈ Lk−1. Thus,

g(x, y) ≤
{

i + j − 2k, if v′ ∈ Lk+1;
i + j − 2k + 2, if v′ ∈ Lk−1.

(1)

Consider now in G a shortest (x, y)-path P (x, y), and let z be a vertex of this path closest to s
and assume z ∈ Lq (see Fig. 3 for an illustration). If q ≤ k+1 then dG(x, y) = dG(x, z)+dG(z, y) ≥
i− q + j− q = i+ j− 2q ≥ i+ j− 2k− 2 ≥ g(x, y)− 4, and we are done. Therefore, we may assume
that q ≥ k + 2.

Fig. 3. Paths P (x, y) (in blue), sTy, sTv (both in red) and (x, x∗, . . . , u, v) (in green).

We have from the proof above that vertex u of path (x, x∗, . . . , u, v) belongs to Lk+1. Let w be the
vertex of sTy from layer Lk+1. In a subgraph of G induced by vertices of (x, x∗, . . . , u), P (x, y) and
those vertices of sTy that are at distance at least k + 1 from s, choose a shortest path Above(u,w)
connecting u and w. Analogously, in a subgraph of G induced by vertices of paths sTv ∪ vu and
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sTw, choose a shortest path Below(u,w) connecting u and w. Since G cannot have any induced
cycle of length greater than 4 and no edge exists in G between vertices of Above(u,w) \ {w, u} and
vertices of Below(u,w) \ {w, u}, both paths Above(u,w) and Below(u, w) must have length 2. Let
Above(u,w) = (u, a, w) and Below(u,w) = (u, b, w).

Since v is the first vertex of path R(x, y) (when moving from x to y) that sees sTy, vertex a
cannot be in sTy or in (x, x∗, . . . , u) and hence must belong to P (x, y), i.e., q = k + 2. By similar
argument, vertex b must coincide with v, i.e., v′ = w. We have v′ ∈ Lk+1 and, therefore, g(x, y) ≤
i+ j−2k. On the other hand, dG(x, y) = dG(x, a)+dG(a, y) ≥ i−k−2+ j−k−2 = i+ j−2k−4.
Thus, dG(x, y) ≥ g(x, y)− 4. ut

6 Additive Carcasses for Chordal Graphs and k-Trees

In this section, we show that every chordal graph admits an additive (ω(G)+1)-carcass constructible
in linear time. Here ω(G) is the size of a maximum clique of G. In particular, every k-tree admits
an additive (k + 2)-carcass and any 2-tree admits an additive 4-carcass. Recall that 2-trees do not
have any tree r-spanners (additive or multiplicative) with a constant r (see, e.g., [36]). We also
show that every 3-sun-free chordal graph admits an additive 2-carcass.

We will need the following lemmata from [15] and [49].

Lemma 2. [15] If vertices a and b of a disk Dk(s) of a chordal graph are connected by a path
P (a, b) outside of Dk(s) [i.e., P (a, b) ∩Dk(s) = {a, b}], then a and b must be adjacent.

Lemma 3. [49] If vertices of a clique of a chordal graph G are equidistant from a vertex of G,
then this clique is not maximal.

Lemma 4. [49] If two adjacent vertices a and b of a chordal graph G are equidistant from a vertex
v, then there must exist a vertex c in G which is adjacent to both a and b and is at distance
dG(a, v)− 1 = dG(b, v)− 1 from v.

Theorem 5. Any shortest path tree of a chordal graph G is an additive (ω(G) + 1)-carcass of G.
Here ω(G) is the size of a maximum clique of G.

Proof. Let G = (V,E) be a chordal graph and s ∈ V be an arbitrary vertex of G. Construct a
shortest path tree (SP-tree) T of G rooted at s. We prove that T is an additive (ω(G) + 1)-carcass
of G. Let, as before, Li := {v ∈ V : dG(v, s) = i}, i = 0, 1, 2, . . . be the layering of G with respect
to s.

Assume that we want to route from a vertex x ∈ Li to a vertex y ∈ Lj . By the proof of Theorem
4, we may assume that neither x ∈ sTy nor y ∈ sTx. Moreover, we may also assume that x misses
sTy, since, otherwise, g(x, y) ≤ dG(x, y) + 2 and we are done.

Consider a greedy routing path R(x, y) := (x0 := x, x1, . . . , xq−1, v = xq, w, . . . , y) and assume
that v ∈ R(x, y) is the first vertex of this path (when moving from x to y) which sees sTy. Clearly,
v exists, v 6= x and v is not an ancestor of y. Let v ∈ Lk.

According to our routing strategy, for each index h ∈ {0, . . . , q−1}, xhxh+1 ∈ E and dT (xh, y) >
dT (xh+1, y). We claim that, for every h ∈ {0, . . . , q− 1}, dG(xh, s) ≥ dG(xh+1, s). Assume not, and
consider a vertex xh′ with dG(xh′ , s) = dG(xh′+1, s)− 1. Since vertex xh′ and the father f(xh′+1) of
xh′+1 in T are connected outside of D`(s) (` := dG(xh′ , s)) by a path, by Lemma 2, xh′ and f(xh′+1)
must be adjacent. But, that is in contradiction with the choice of xh′+1 because xh′+1 is a vertex
of NG(xh′) closest to y in T , yet f(xh′+1) ∈ NG(xh′) and dT (xh′+1, y) > dT (f(xh′+1), y) (note that
xh′+1 is not an ancestor of y in T and hence dT (xh′+1, y) > dT (f(xh′+1), y)). So, the claim is true.
In particular, we have dG(xh, s) ≥ dG(xq, s) = dG(v, s) = k for every h ∈ {0, . . . , q − 1}.
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Denote by yh the nearest common ancestor in T of xh and y. From dT (xh, y) > dT (xh+1, y) we
can deduce that yh coincides with yh+1 only if dT (xh, s) = dT (xh+1, s) + 1, i.e., only if dG(xh, s) =
dG(xh+1, s) + 1. Furthermore, if yh and yh+1 are different, then dT (yh, s) < dT (yh+1, s) must hold.
Thus, all vertices y0, y1, . . . , yq−1, yq are at distance at most dT (yq, s) ≤ k − 1 from s (recall that
v ∈ Lk and, since v is not an ancestor of y in T , dT (yq, s) ≤ k − 1).

We claim now that the set Y := {y0, y1, . . . , yq−1, yq} has cardinality at most ω(G)−1. Assume,
by way of contradiction, that there are ω(G) distinct vertices in Y , say yh1 , yh2 , . . . , yhω(G)

. Let
ahµ ∈ Lk−1 ∩ sTxhµ , µ = 1, 2, . . . , ω(G). Vertices {ahµ : µ = 1, 2, . . . , ω(G)} are pairwise different
and must be pairwise adjacent as each pair can be connected outside of Dk−1(s) by a path (e.g.,
ah1 and ah2 are connected by ah1Txh1 concatenated with a subpath of R(x, y) between xh1 and xh2

concatenated with xh2Tah2). Since vertices of a clique {ah1 , ah2 , . . . , ahω(G)
} are equidistant from s

in G, by Lemma 3, this clique is not maximal. As G cannot have any clique of size greater than
ω(G), the claim is proved by contradiction.

We have proved above that dG(xh, s) ≥ dG(xh+1, s) ≥ k holds for every h ∈ {0, . . . , q − 1}.
Moreover, yh coincides with yh+1 only if dG(xh, s) = dG(xh+1, s)+1, and if yh and yh+1 are different
then dT (yh, s) < dT (yh+1, s). Since the cardinality of Y is at most ω(G) − 1, the subpath (x0 :=
x, x1, . . . , xq−1, v = xq) of path R(x, y) can have at most ω(G)−2 horizontal edges (an edge ab ∈ E
is called horizontal if dG(a, s) = dG(b, s)). Hence, the length of path (x0 := x, x1, . . . , xq−1, v = xq)
is at most i − k + ω(G) − 2, and therefore g(x, y) ≤ i − k + ω(G) − 2 + g(v, y). Let v′ be the
vertex from NG(v) and sTy closest to y. Since v′ is an ancestor of y, we get g(v, y) = 1 + g(w, y) ≤
1 + dT (w, y) ≤ 1 + dT (v′, y) ≤ 1 + j − k + 1 = j − k + 2 (furthermore, g(v, y) ≤ j − k + 1 if
v′ ∈ Lk+1 ∪ Lk). Combining two inequalities, we get

g(x, y) ≤
{

i + j − 2k + ω(G), if v′ ∈ Lk−1;
i + j − 2k + ω(G)− 1, otherwise.

(2)

Consider now in G a shortest (x, y)-path P (x, y), and let z be a vertex of this path closest
to s. If dG(z, s) ≤ k then dG(x, y) = dG(x, z) + dG(z, y) ≥ i + j − 2k ≥ g(x, y) − ω(G), and we
are done. Therefore, assume that dG(z, s) ≥ k + 1. Let y′ be the vertex of sTy from layer L`,
where ` = dG(z, s) − 1. Consider also the vertex xh of path (x0 := x, x1, . . . , xq−1, v = xq) which
is at distance ` from s and has the smallest index h ∈ {1, 2, . . . , q}. These vertices xh and y′ are
connected in G by a path outside D`(s) (by y′Ty concatenated with P (x, y) concatenated with
(x0 := x, x1, . . . , xh−1, xh)). Hence, by Lemma 2, xh and y′ must be adjacent in G. As v is the
first vertex of path R(x, y) (when moving from x to y) that sees sTy, necessarily, v = xh, i.e.,
dG(z, s) = k + 1. Furthermore, v′ must belong to Lk or Lk+1. Consequently, dG(x, y) ≥ i− k− 1 +
j−k−1 = i+j−2k−2 and g(x, y) ≤ i+j−2k+ω(G)−1. Thus, g(x, y) ≤ dG(x, y)+2+ω(G)−1 =
dG(x, y) + ω(G) + 1. ut

Since k-trees are chordal graphs with the size of a maximum clique is at most k+1, we conclude.

Corollary 5. Every k-tree admits an additive (k + 2)-carcass constructible in linear time. In par-
ticular, any 2-tree admits an additive 4-carcass constructible in linear time.

From the proof of Theorem 5 we can deduce also the following result.

Corollary 6. Every 3-sun-free chordal graph admits an additive 2-carcass.

Proof. Let G = (V, E) be a 3-sun-free chordal graph and s ∈ V be an arbitrary vertex of G. Let
again Li := {v ∈ V : dG(v, s) = i}, i = 0, 1, 2, . . . be the layering of G with respect to s. We call an
edge of G horizontal if its end-vertices are equidistant from s. According to the proof of Theorem
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5, if we can guarantee, by specially constructed shortest path tree T rooted at s, that a greedy
routing path R(x, y) will never use a horizontal edge of G (except, possibly, one which is incident
to path sTy), then a surplus ω(G)− 1 in the length of R(x, y) can be avoided.

Let construct for a 3-sun-free chordal graph G a special shortest path tree T by specifying for
each vertex v ∈ Li (i = 1, 2, . . .) that neighbor u ∈ Li−1, to be its father in T , which maximizes
|NG(u) ∩NG(v)|.

Let now R(x, y) be a greedy routing path from x to y obtained by using the distances in this
T , and assume that the first edge xx∗ of this path is horizontal and is not incident to sTy. Let
x, x∗ ∈ Li. Consider the fathers f(x), f(x∗) of x and x∗ in T . Since dT (x, y) > dT (x∗, y) and x∗ is
not an ancestor of y in T , vertices f(x) and f(x∗) are different. By Lemma 2, they must be adjacent
in G. We know also, from dT (x∗, y) > dT (f(x∗), y) and by choice of x∗, that f(x∗) /∈ NG[x]. To avoid
an induced cycle on four vertices in G, f(x) must be adjacent to x∗ in G. Now, since x ∈ NG(x∗) is
adjacent in G to f(x) and not to f(x∗), by construction of T , there must be a vertex w ∈ NG(x∗)
which is adjacent in G to f(x∗) and not to f(x). By Lemma 2, necessarily, w ∈ Li. As adjacent
vertices f(x) and f(x∗) from Li−1 are equidistant from s, by Lemma 4, there must exist a vertex
c ∈ Li−2 which is adjacent to both f(x) and f(x∗) in G. It is easy to see now, from the distance
requirements and the chordality of G, that the vertices x, x∗, f(x), f(x∗), w, c induce a 3-sun in G,
which is impossible.

Thus, we cannot have such a horizontal edge in R(x, y). According to the proof of Theorem 5,
g(x, y) ≤ dG(x, y) + 3, and if g(x, y) = dG(x, y) + 3 then for vertices x, y, z, v, v′ we have: v′ ∈ Lk,
z ∈ Lk+1, dG(x, v) = i− k, dG(y, v′) = j − k, dG(x, z) = i− k− 1 and dG(y, z) = j − k− 1. We will
show that these conditions lead to an induced 3-sun in G. Pick a neighbor a of v′ on v′Ty and a
neighbor xq−1 of v on R(x, y). We know that va, xq−1v

′ /∈ E. Since z and a are connected outside
of Dj−k−1(y) and z and xq−1 are connected outside of Di−k−1(x), z must be adjacent in G to a
and xq−1 (note that z can coincide neither with a nor with xq−1). By Lemma 4, vertices v, v′ must
have a common neighbor c in Lk−1. Now, from the distance requirements and the chordality of G,
the vertices xq−1, z, a, v′, c, v induce a 3-sun in G, which is impossible. ut

7 Conclusion and future work

In this paper, we investigated a new strategy of how to use a spanning tree T of a graph G to navigate
in G, i.e., to move from a current vertex x towards a destination vertex y via a path that is close to
optimal. In this strategy, each vertex v has full knowledge of its neighborhood NG[v] in G and uses
a small piece of global information from spanning tree T (a small piece of the distance information
from T ), available locally at v, to navigate in G. We defined a new combinatorial structure additive
r-carcass and showed that rectilinear p × q grids, hypercubes, distance-hereditary graphs, dually
chordal graphs (and, therefore, strongly chordal graphs and interval graphs), all admit additive
0-carcasses. Furthermore, every chordal graph G admits an additive (ω(G) + 1)-carcass (where
ω(G) is the size of a maximum clique of G), each 3-sun-free chordal graph admits an additive 2-
carcass, each chordal bipartite graph admits an additive 4-carcass. In particular, any k-tree admits
an additive (k + 2)-carcass. All those carcasses are easy to construct.

Many questions and problems remain open. Here, we list only few of them.

– What other interesting graph families do admit additive (or multiplicative) c-carcasses for small
values of c?

– Given a graph G and a number c, how hard is it to decide whether G admits a c-carcass (additive
or multiplicative)? If a c-carcass exists, how hard is it to construct one?

14



– What other (decentralized) (small piece of) information from a spanning tree of G would be
useful for navigating in G?

– What other (decentralized) (small piece of) global information can be useful for navigating in
graphs?
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