
Compact and Low Delay Routing Labeling Scheme for Unit Disk

Graphs?

Chenyu Yan, Yang Xiang and Feodor F. Dragan??

Algorithmic Research Laboratory, Department of Computer Science

Kent State University, Kent, Ohio, U.S.A.

{cyan,yxiang,dragan}@cs.kent.edu

? Part of these results will be presented at WADS 2009 Conference, 21-23 August 2009, Banff Conference Centre,
Banff, Alberta, Canada.

?? Feodor F. Dragan is the corresponding author, Phone: +1-330-672-9058, Fax: +1-330-672-0737

Abstract. In this paper, we propose a new compact and low delay routing labeling scheme for Unit

Disk Graphs (UDGs) which often model wireless ad hoc networks. We show that one can assign each

vertex of an n-vertex UDG G a compact O(log2 n)-bit label such that, given the label of a source

vertex and the label of a destination, it is possible to compute efficiently, based solely on these two

labels, a neighbor of the source vertex that heads in the direction of the destination. We prove that

this routing labeling scheme has a constant hop route-stretch (= hop delay), i.e., for each two vertices

x and y of G, it produces a routing path with h(x, y) hops (edges) such that h(x, y) ≤ 3 ·dG(x, y)+12,

where dG(x, y) is the hop distance between x and y in G. To the best of our knowledge, this is the

first compact routing scheme for UDGs which not only guaranties delivery but has a low hop delay.

Furthermore, our routing labeling scheme has a constant length route-stretch and a constant power

route-stretch.

To obtain this result, we establish a novel balanced separator theorem for UDGs, which mimics the

well-known Lipton and Tarjan’s planar balanced shortest paths separator theorem. We prove that, in

any n-vertex UDG G, one can find two hop-shortest paths P (s, x) and P (s, y) such that the removal

of the 3-hop-neighborhood of these paths (i.e., N3
G[P (s, x) ∪ P (s, y)]) from G leaves no connected

component with more than 2/3n vertices. This new balanced shortest-paths—3-hop-neighborhood sep-

arator theorem allows us to build, for any n-vertex UDG G, a system T (G) of at most 2 log 3
2

n + 2

spanning trees of G such that, for any two vertices x and y of G, there exists a tree T in T (G) with

dT (x, y) ≤ 3 · dG(x, y) + 12. That is, the distances in any UDG can be approximately represented by

the distances in at most 2 log 3
2

n + 2 of its spanning trees.

Keywords: unit disk graphs, collective tree spanners, routing and distance labeling schemes, balanced

separators, efficient geometric graph algorithms.

2

1 Introduction

A common assumption for wireless ad hoc networks is that all nodes have the same maximum transmission

range. By proper scaling, one can model these networks with Unit Disk Graphs (UDGs), which are defined

as the intersection graphs of equal sized circles in the plane [3]. In other words, there is an edge between

two vertices in an UDG if and only if their Euclidean distance is no more than one.

Communications in networks are performed using routing schemes, i.e., mechanisms that can deliver

packets of information from any vertex of a network to any other vertex. In most strategies, each vertex

v of a graph has full knowledge of its neighborhood and uses a piece of global information available to it

about the graph topology – some ”sense of direction” to each destination – stored locally at v. Based only

on this information and the address of a destination vertex, vertex v needs to decide whether the packet

has reached its destination, and if not, to which neighbor of v to forward the packet. The efficiency of a

routing scheme is measured in terms of its multiplicative route-stretch (or additive route-stretch), namely,

the maximum ratio (or surplus) between the cost (which could be the hop-count, the length or the power-

consumption) of a route, produced by the scheme for a pair of vertices, and the cost of an optimal route

available in graph for that pair. Here, the hop-count of a route is defined as the number of edges on it, the

length of a route is defined as the sum of the Euclidean length of its edges, the power-consumption of a route

is defined as the sum of the β-powers of the Euclidean length of its edges (for some β ∈ [2, 5] depending on

the routing environment). Using different cost functions, for a given graph G and a given routing scheme

on G, one can define three different notions of route-stretch: hop route-stretch, length route-stretch, and

power route-stretch.

The most popular strategy in wireless networks is the geographic routing (sometimes called also the

greedy geographic routing), where each vertex forwards the packet to the neighbor geographically closest

to the destination (see survey [12] for this and many other strategies). Each vertex of the network knows

its position (e.g., Euclidean coordinates) in the underlying physical space and forwards messages according

to the coordinates of the destination and the coordinates of neighbors. Although this greedy method is

effective in many cases, packets may get routed to where no neighbor is closer to the destination than

the current vertex. Many recovery schemes have been proposed to route around such voids for guaranteed

packet delivery as long as a path exists [4, 14, 16]. These techniques typically exploit planar subgraphs

(e.g., Gabriel graph, Relative Neighborhood graph), and packets traverse faces on such graphs using the

well-known right-hand rule. Although these techniques guarantee packet delivery, none of them give any

guaranties on how the routing path traveled is ”close” to an optimal path; the worst-case route-stretch can

be linear in the network size.

3

All earlier papers assumed that vertices are aware of their physical location, an assumption which is

often violated in practice for various of reasons (see [7, 15, 24]). In addition, implementations of recovery

schemes are either based on non-rigorous heuristics or on non-trivial planarization procedures. To overcome

these shortcomings, recent papers [7, 15, 24] propose routing algorithms which assign virtual coordinates to

vertices in a metric space X and forward messages using geographic routing in X. In [24], the metric space

is the Euclidean plane, and virtual coordinates are assigned using a distributed version of Tutte’s ”rubber

band” algorithm for finding convex embeddings of graphs. In [7], the graph is embedded in Rd for some

value of d much smaller than the network size, by identifying d beacon vertices and representing each vertex

by the vector of distances to those beacons. The distance function on Rd used in [7] is a modification of

the `1 norm. Both [7] and [24] provide substantial experimental support for the efficacy of their proposed

embedding techniques – both algorithms are successful in finding a route from the source to the destination

more than 95% of the time – but neither of them has a provable guarantee. Unlike embeddings of [7] and

[24], the embedding of [15] guarantees that the geographic routing will always be successful in finding a

route to the destination, if such a route exists. Algorithm of [15] assigns to each vertex of the network a

virtual coordinate in the hyperbolic plane, and performs greedy geographic routing with respect to these

virtual coordinates. However, although the experimental results of [15] confirm that the greedy hyperbolic

embedding yields routes with low route-stretch when applied to typical unit-disk graphs, the worst-case

route-stretch is still linear in the network size.

In this paper, we propose a new compact and low delay routing labeling scheme for Unit Disk Graphs.

We show that one can assign each vertex of an n-vertex UDG G a compact O(log2 n)-bit label such that,

given the label of a source vertex and the label of a destination, it is possible to compute efficiently, based

solely on these two labels, a neighbor of the source vertex that heads in the direction of the destination.

We prove that this routing labeling scheme has a constant hop route-stretch (= hop delay), i.e., for each two

vertices x and y of G, it produces a routing path with h(x, y) hops such that h(x, y) ≤ 3·dG(x, y)+12, where

dG(x, y) is the hop distance between x and y in G. To the best of our knowledge, this is the first compact

routing scheme for UDGs which not only guaranties delivery but has a low hop delay. Furthermore, our

routing labeling scheme has a constant length route-stretch and a constant power route-stretch. Note also

that, unlike geographic routing or any other strategies discussed in [4, 7, 12, 14–16, 24], our routing scheme

is degree-independent. That is, each current vertex makes routing decision based only on its label and the

label of destination, does not involve any labels of neighbors. The label assigned to a vertex in our scheme

can be interpreted as its virtual coordinates. To assign those labels to vertices, we need to know only the

topology of the input unit disk graph and relative Euclidean lengths of its edges.

4

To obtain our routing scheme, we establish a novel balanced separator theorem for UDGs, which mimics

the well-known Lipton and Tarjan’s planar balanced shortest paths separator theorem. We prove that, in

any n-vertex UDG G, one can find two hop-shortest paths P (s, x) and P (s, y) such that the removal of

the 3-hop-neighborhood of these paths (i.e., N3
G[P (s, x)∪ P (s, y)]) from G leaves no connected component

with more than 2/3n vertices. The famous Lipton and Tarjan’s planar balanced separator theorem has

two variants (see [22]). One variant (called planar balanced
√

n-separator theorem) states that any n-vertex

planar graph G has a set S of vertices such that |S| = O(
√

n) and the removal of S from G leaves no

connected component with more than 2/3n vertices. Another variant (called planar balanced shortest-paths

separator theorem) states that any n-vertex planar graph G has two shortest paths removal of which from

G leaves no connected component with more than 2/3n vertices. Although the first variant of the planar

balanced separator theorem has an extension to the class of disk graphs (which includes UDGs) (see [1]),

the second variant of the theorem proved to be more useful in designing compact routing (and distance)

labeling schemes for planar graphs (see [13, 25]). To the date, there was not known any extension of the

planar balanced shortest-paths separator theorem to unit disk graphs. The paper [11] notes that

”Unfortunately, Thorup’s algorithm uses balanced shortest-path separators in pla-

nar graphs which do not obviously extend to the unit-disk graphs.”

and uses the well-separated pair decomposition to get fast approximate distance computations in UDGs. We

do not know how to use the well-separated pair decomposition of an UDG G to design a compact and low

delay routing labeling scheme for G. Application of the balanced
√·-separator theorem of [1] to UDGs can

result only in routing (and distance) labeling schemes with labels of size no less than O(
√

n log n)-bits per

vertex. Our separator theorem allows us to get O(log2 n)-bit labels which is more suitable for the wireless

ad hoc and sensor networks where the issues of memory size and power-conservation are critical.

Our new balanced shortest-paths—3-hop-neighborhood separator theorem allows us to build, for any n-

vertex UDG G = (V, E), a system T (G) of at most 2 log 3
2

n + 2 spanning trees of G such that, for any

two vertices x and y of G, there exists a tree T in T (G) with dT (x, y) ≤ 3 · dG(x, y) + 12. That is, the

distances in any UDG can be approximately represented by the distances in at most 2 log 3
2

n + 2 of its

spanning trees. An earlier version of these results has appeared in [27] (see Section 3.4 and pages 124 and

125 of Section 3.5.5). Taking the union of all these spanning trees of G, we obtain a hop (3, 12)-spanner H

of G (i.e., a spanning subgraph H of G with dH(x, y) ≤ 3 · dG(x, y) + 12 for any x, y ∈ V) with at most

O(n log n) edges. There is a number of papers describing different types of power-spanners, length-spanners

and hop-spanners for UDGs (see [2, 8, 10, 17–19, 21] and literature cited therein). Many of those spanners

have nice properties of being planar or sparse, or having bounded maximum degree or bounded length

(or power or hop) spanner-stretch, or having localized construction. Unfortunately, neither of those papers

5

develops or discusses any routing schemes which could translate the constant spanner-stretch bounds into

some constant route-stretch bounds.

Finally, we would like to note that since the construction of our compact and low delay routing labeling

scheme is centralized and time consuming (its complexity in worst case is O(m2 log n) for a n-vertex m-edge

UDG), it is best suited for static or less mobile wireless ad-hoc or sensor networks.

2 Notions and Notations

Let V be a set of n = |V | nodes on the Euclidean plane and let G = (V, E) be the unit disk graph

(UDG) induced by those nodes. Let also m = |E|. For each edge (a, b) of G, by (a, b) we denote also the

open straightline segment representing it, and by |ab| the Euclidean length of the edge/segment (a, b). For

simplicity, in what follows, we will assume that any two edges in G can intersect at no more than one point

(i.e., no two intersecting edges are on the same straight line), and no three edges intersect at the same

point.

For a path P of G, the hop-count of P is defined as the number of edges on P , the length of P is defined

as the sum of the Euclidean length of its edges and the power-consumption of P is defined as the sum of

the β-powers of the Euclidean length of its edges. For any two vertices x and y of G, we denote by

– dG(x, y), the hop-distance (or simply distance) in G between x and y, i.e., the minimum hop-count of

any path connecting x and y in G,

– lG(x, y), the length-distance in G between x and y, i.e., the minimum length of any path connecting x

and y in G,

– pG(x, y), the power-distance in G between x and y, i.e., the minimum power-consumption of any path

connecting x and y in G.

A graph family Γ is said (see [23]) to have an l(n) bit (s, r)-approximate distance labeling scheme if

there is a function L labeling the vertices of each n-vertex graph in Γ with distinct labels of up to l(n) bits,

and there exists an algorithm/function f , called distance decoder, that given two labels L(v), L(u) of two

vertices v, u in a graph G from Γ , computes, in time polynomial in the length of the given labels, a value

f(L(v), L(u)) such that dG(v, u) ≤ f(L(v), L(u)) ≤ s ·dG(v, u)+r. Note that the algorithm is not given any

additional information, other that the two labels, regarding the graph from which the vertices were taken.

Similarly, a family Γ of graphs is said (see [23]) to have an l(n) bit routing labeling scheme if there exist

a function L, labeling the vertices of each n-vertex graph in Γ with distinct labels of up to l(n) bits, and

an efficient algorithm/function, called the routing decision or routing protocol, that given the label L(v)

of a current vertex v and the label L(u) of the destination vertex u (the header of the packet), decides in

6

time polynomial in the length of the given labels and using only those two labels, whether this packet has

already reached its destination, and if not, to which neighbor of v to forward the packet.

Let R be a routing scheme and R(x, y) be a route (path) produced by R for a pair of vertices x and y

in a graph G. We say that R has

– hop (α, β)-route-stretch if hop-count of R(x, y) is at most α · dG(x, y) + β, for any x, y ∈ V ,

– length (α, β)-route-stretch if length of R(x, y) is at most α · lG(x, y) + β, for any x, y ∈ V ,

– power (α, β)-route-stretch if power-consumption of R(x, y) is at most α · pG(x, y) + β, for any x, y ∈ V .

Let H = (V,E′) be a spanning subgraph of a graph G = (V, E). We say that H is

– hop (α, β)-spanner of G if dH(x, y) ≤ α · dG(x, y) + β, for any x, y ∈ V ,

– length (α, β)-spanner of G if lH(x, y) ≤ α · lG(x, y) + β, for any x, y ∈ V ,

– power (α, β)-spanner of G if pH(x, y) ≤ α · pG(x, y) + β, for any x, y ∈ V .

In Section 6, we will need also the notion of collective tree spanners from [6]. It is said that a graph G

admits a system of µ collective tree (α, β)-spanners if there is a system T (G) of at most µ spanning trees of G

such that for any two vertices x,y of G a spanning tree T ∈ T (G) exists such that dT (x, y) ≤ α ·dG(x, y)+β.

For a vertex v of G, the kth neighborhood of v in G is the set Nk
G[v] = {u ∈ V : dG(v, u) ≤ k}. For a

vertex v of G, the sets NG[v] = N1
G[v] and NG(v) = NG[v] \ {v} are called the neighborhood and the open

neighborhood of v, respectively. For a set S ⊆ V , by Nk
G[S] =

⋃
v∈S Nk

G[v] we denote the kth neighborhood

of S in G.

3 Intersection Lemmas

In this section we present few auxiliary lemmas. From the definition of unit disk graphs, we immediately

conclude the following.

Lemma 1. In an UDG G = (V, E), if edges (a, b), (c, d) ∈ E intersect, then G must have at least one of

(a, c), (b, d) and at least one of (a, d), (c, b) in E.

Proof. Let o be the intersection point of (a, b) and (c, d). We know that |ab| ≤ 1 and |cd| ≤ 1. According

to the triangle inequality, |ao| + |co| > |ac| and |bo| + |do| > |bd|. Combining these inequalities, we get

2 ≥ |ab|+ |cd| = |ao|+ |ob|+ |co|+ |od| > |ac|+ |bd|. The latter implies that |ac| ≤ 1 or |bd| ≤ 1, i.e., (a, c)

or (b, d) must be in E. Similarly, one can show that (a, d) or (c, b) must be in E. ut

Let r be an arbitrary but fixed vertex of an UDG G = (V, E), and L0, L1, . . . Lq be the layering of G

with respect to r, where Li = {u ∈ V : dG(r, u) = i}. For G, using this layering, we construct a layering

7

Fig. 1. A crossing of two edges (a, b)
and (c, d), where a, c belong to layer Li

and b, d belong to layer Li+1.

Fig. 2. A crossing of two tree-edges (a, b) and
(c, d) implies that (c, b) is an edge in G and
(a, d) is not an edge in G.

tree Torig rooted at r as follows: each vertex v ∈ Li (i ∈ {1, . . . , q}) chooses a neighbor u in Li−1 such that

|vu| is minimum (closest neighbor in Li−1) to be its father in Torig (breaking ties arbitrarily). Let E(Torig)

be the edge set of Torig. This tree Torig will help us to construct a balanced separator for G. It will be

convenient, for each vertex v ∈ V , by L(v) to denote the layer index of v, i.e., L(v) = dG(r, v). In what

follows, we will also adopt the following agreements (unless otherwise is specified). When we refer to any

edge (a, b) of Torig, we assume L(a) = L(b) − 1. When we refer to any two intersecting edges (a, b) and

(c, d) of Torig (in that order), we assume that L(a) ≤ L(c).

Lemma 2. In Torig, no two edges (a, b) and (c, d) with L(a) = L(c) and L(b) = L(d) can cross.

Proof. We prove by contradiction. Assume that edges (a, b) and (c, d) cross. Let the crossing point be o,

as shown in Fig. 1. By the triangle inequality, |ao| + |do| > |ad| and |bo| + |co| > |bc|. Combining the two

inequalities, we get |ab| + |cd| = |ao| + |ob| + |co| + |od| > |ad| + |bc|, which implies 2 max{|ab|, |cd|} ≥
|ab| + |cd| > |ad| + |bc| ≥ 2min{|ad|, |bc|}. Without loss of generally, assume |bc| ≤ |ad|. Then, |bc| <

max{|ab|, |cd|}. If |bc| < |ab|, then according to our layering tree construction rule, b would choose c rather

than a as its father, a contradiction. Assume now that |bc| ≥ |ab|. Then 6 bac ≥ 6 bca, which implies

6 oac > 6 oca and hence |oc| > |oa|. By the triangle inequality, |ad| < |do| + |ao|. Since |oc| > |oa|, we get

|ad| < |do|+ |oc| = |dc|. By the layering tree construction rule, d would choose a rather than c as its father,

a contradiction. ut

Lemma 3. Let (a, b), (c, d) be two edges in Torig that intersect. If L(a) = L(b) − 1, L(c) = L(d) − 1 and

L(a) ≤ L(c), then L(a) = L(c)− 1, (a, d) 6∈ E and (b, c) ∈ E.

Proof. By Lemma 2, L(a) 6= L(c), i.e., L(a) < L(c). By Lemma 1, (a.d) or (c, b) is an edge of G. Hence,

L(a) ≥ L(c) − 2. Similarly, by Lemma 1, L(a) ≥ L(d) − 2. Thus, L(a) = L(c) − 1 = L(d) − 2 must hold.

8

Now, because L(a) = L(d)− 2, (a, d) can not be an edge of G. Then, by Lemma 1, (c, b) ∈ E. Fig. 2 is an

illustration. ut

For an UDG G = (V, E), in what follows, by Gp = (Vp, Ep) we denote the planar graph obtained from

G by turning each edge intersection point in G into a vertex in Gp. The vertices of Torig (i.e. vertices of G)

will be called real vertices, to differentiate them from imaginary and null points that will be defined later. In

the following, we will use the term ”element” as a general name for real vertices, imaginary points and null

points. For any graph G, we will use E(G) to denote the set of its edges and V (G) to denote the set of its

vertices (or elements, if V (G) contains imaginary or null points). Below, we will create an imaginary point

(details will be given later) at the point where two edges (a, b) and (c, d) from Torig intersect. Recall that

we agreed to assume that L(a) = L(b)− 1, L(c) = L(d)− 1 and L(a) ≤ L(c). By Lemma 3, we know that

L(a) = L(c) − 1. Now, assuming that the imaginary point is m, we define a(m) = a, b(m) = b, c(m) = c

and d(m) = d.

4 Balanced Separator for Restricted UDGs

In this section, we consider a special unit disk graph, a simple-crossing UDG. On this simple case, we

demonstrate our idea of construction of a balanced separator. It may help the reader to follow the much

more complicated case, where we construct a balanced separator for an arbitrary UDG. We define a simple-

crossing UDG to be an UDG G = (V,E) with each edge crossing at most one other edge.

Fig. 3. Handling an intersection between two edges (a, b) and (c, d) of Torig by creating an imaginary point
ma,b,c,d.

In what follows, we will transform tree Torig into a special spanning tree T for the planar graph Gp.

Let T = Torig initially. For each two intersecting edges (a, b) and (c, d) of Torig (by Lemma 3, we know

9

L(a) = L(c)− 1), we do the following (see Fig. 3 for an illustration). Create a vertex ma,b,c,d at the point

where (a, b) and (c, d) intersect. We call ma,b,c,d an imaginary point. Remove edges (a, b), (c, d) from T

and add vertex ma,b,c,d and edges (ma,b,c,d, d), (a,ma,b,c,d) and (b,ma,b,c,d) into T . One can see that all the

descendants of b and d in T find their way to the root via a.

There are two other kinds of edge intersections in G: the intersection between a tree-edge and a non-

tree-edge and the intersection between two non-tree-edges. We handle them separately (see Fig. 4 for an

illustration).

– Assume a tree-edge (u,w) intersects a non-tree-edge (s, t). We create a new vertex, called a null point,

say o, at the point where (u,w) and (s, t) intersect. We remove edge (u,w) from T and add vertex o

and edges (u, o), (o, w) into T .

– Assume two non-tree-edges (a, b) and (c, d) intersect. We create a new vertex, called a null point, say

o, at the point where (a, b) and (c, d) intersect. We add vertex o (as a pendant vertex) and edge (a, o)

into T .

It is easy to see that T is a spanning tree for the planar graph Gp. We will need the Lipton and Tarjan’s

planar separator theorem [22] in the following form.

Theorem 1 (Planar Separator Theorem). [22] Let G be any planar graph with non-negative vertex

weights and W be the total weight of G (which is the sum of the weights of its vertices). Let T be any

spanning tree of G rooted at a vertex r. Then, there exist two vertices x and y in G such that if one

removes from G the tree-paths connecting in T r with x and r with y, then each connected component of

the resulting graph has total weight at most 2/3W . Vertices x and y can be found in linear time.

We can apply Theorem 1 to T and Gp by letting the weight of each real vertex be 1 and the weight

of each imaginary or null point be 0 in Gp. Then, there must exist in T two paths P1 = PT (r, x) and

P2 = PT (r, y) such that removal of them from Gp leaves no connected component with more than 2/3n

real vertices.

Using paths P1 = (x0 = r, x1, . . . , xk−1, xk = x) and P2 = (y0 = r, y1, . . . , yl−1, yl = y) of Gp (of T), we

can create a balanced separator for G as follows.

(1) Skip all the null points in P1 and P2.

(2) Skip every imaginary point in Pi which is collinear with its two neighbors in Pi (i = 1, 2).

(3) For any imaginary point ma,b,c,d in Pi (i = 1, 2) which is not collinear with its two neighbors in Pi (the

only possible case is shown in Fig. 3, where L(a) = L(c)−1 and imaginary point ma,b,c,d connects a and

d in Pi), replace the subpath (a,ma,b,c,d, d) by either (a, c, d) (if (a, c) ∈ E) or (a, b, d) (if (b, d) ∈ E).

By Lemma 1, (a, c) or (b, d) is in E.

10

Let P ′i be the resulting path obtained from Pi (i = 1, 2). It is easy to check that P ′1 and P ′2 are shortest

paths in G. Here and in what follows, by a shortest path we mean a hop-shortest path. We can also show

that the union of N1
G[P ′1] and N1

G[P ′2] is a balanced separator for G, i.e., removal of N1
G[P ′1] ∪N1

G[P ′2] from

G leaves no connected component with more that 2/3n vertices. Assume that removal of P1 and P2 from

Gp = (Vp, Ep) results in removing a set of edges E′
p from Ep, and removal of N1

G[P ′1] and N1
G[P ′2] from

G = (V, E) results in removing a set of edges E′ from E. It is easy to check that, for any edge e′p ∈ E′
p there

exists an edge e′ ∈ E′ that covers e′p. The latter implies that the union of N1
G[P ′1] and N1

G[P ′2] is a balanced

separator for G. A formal proof of this will be presented in Section 5 (Theorem 3) where the general case,

i.e., arbitrary UDGs, are discussed.

Fig. 4. (left) Handling an intersection between a tree-edge and a non-tree-edge. (right) Handing an inter-
section between two non-tree-edges.

5 Balanced Separator for Arbitrary UDGs

In an arbitrary unit disk graph G = (V, E), an edge may cross any number of other edges. Our basic strategy

for building a balanced separator for G is similar to one we used in the case of a simple-crossing UDG,

but details are more complicated. Let T = Torig initially. We will revise T to create a special spanning tree

for the planar graph Gp obtained from G. Then, we will apply the Planar Separator Theorem from [22]

(Theorem 1 above) to Gp and T to get a balanced separator S for Gp. Finally, we will recover from S the

required separator for G.

5.1 Building a special spanning tree T of Gp

In what follows, the edges of the tree Torig will be called original tree-edges. By Lemma 3, for any two

intersecting original tree-edges (a, b) and (c, d) (for which we assumed that L(a) = L(b)−1, L(c) = L(d)−1

11

and L(a) ≤ L(c)), we have L(a) = L(c) − 1, (a, d) 6∈ E(G) and (b, c) ∈ E(G). We handle this kind of

intersections (between original tree-edges) using PROCEDURE 1. Fig. 5 gives a running example.

PROCEDURE 1. Handle original tree-edge intersections

Input: A layering tree Torig rooted at r.

Output: A tree T where all original tree-edge intersections resolved.

Method: /* Break ties arbitrarily */

(1) Let Li = {v : L(v) = i} and T = Torig;

(2) Let q be the maximum layer number of T ;

(3) FOR i = 1 to q DO

(4) FOR each vertex vj ∈ Li DO

(5) FOR each vertex vk ∈ Li+1 adjacent to vj in T DO

(6) IF there is an original tree-edge intersection on (vj , vk) such that L(vj) is the SECOND smallest

layer index among the layer indices of all four end-vertices of the two edges giving the intersection

THEN DO

(7) Choose such an original tree-edge intersection closest to vk and assume it is the intersection

between (vj , vk) and (x, y) in T and between (vj , vk) and (vp, vh) in Torig (i.e., (x, y) ⊆ (vp, vh));

(8) Create an imaginary point mj,k,p,h at the point where (vj , vk) and (x, y) intersect;

(9) Update T by removing edges (vj , vk) and (x, y), and adding vertex mj,k,p,h and

edges (mj,k,p,h, x), (mj,k,p,h, y), (mj,k,p,h, vk);

(10) ENDIF

(11) ENDFOR

(12) ENDFOR

(13) ENDFOR

(14) RETURN T

Lemma 4. PROCEDURE 1 returns a tree T with all original tree-edge intersections resolved (i.e., edges

of T do not cross each other).

Proof. First, T contains no tree-edge intersections. This is because, in steps (3)-(13) of PROCEDURE 1,

each tree-edge intersection, with vj as the second smallest layer index among the layer indices of all four

end-vertices of the two edges giving the intersection, has been eliminated or converted to an imaginary

point. Second, one can easily check that each vertex in T has the father except the root. Therefore, T is

still a tree. ut

12

Fig. 5. A running example for PROCEDURE 1.

In addition, there are two other kinds of intersections remaining: the intersection between an edge in

E(T) (T -edge) and an edge in E(G) \ E(T) (non-T -edge), and intersection between two non-T -edges.

First we handle intersections between T -edges and non-T -edges. They are resolved the same way as in

Section 4. Here, we rephrase the rule. Assume (u,w) is a T -edge, (s, t) is a non-T -edge. Add a null point,

say o, at the point where (u, w) and (s, t) intersect. Remove edge (u,w) from T and add vertex o and edges

(u, o), (o, w) into T . After resolving all intersections of this kind, T becomes a subgraph of Gp. Note that

it is possible that T does not span yet all elements of V (Gp). Let name this T as Tsub.

Now, we deal with intersections between two non-Tsub-edges. This is more complicated than it was in

Section 4 for restricted UDGs. We will grow Tsub to a spanning tree Tspan for Gp (extension Tspan of Tsub

will cover all elements of V (Gp)). We use a procedure similar to one of building a shortest path tree from

a set of vertices. We assign to each vertex in Tsub a weight according to the following formula. In formula,

if v is an imaginary point or a null point, we assume v is at the intersection between edges (a, b) and (c, d)

of G.

weight(v) =

0, if v is a real vertex;

min{|av|, |bv|, |cv|, |dv|}, if v is an imaginary or a null point.

To build our spanning tree for Gp, we use PROCEDURE 2. At the beginning, for any v ∈ V (Gp)\V (Tsub),

distance[v] = ∞ and father of v is undefined.

PROCEDURE 2. Build a spanning tree for Gp from Tsub

Input: A tree T = Tsub;

Output: A tree Tspan as a spanning tree for Gp.

Method: /* Break ties arbitrarily */

(1) FOR each i in V (T) DO

13

(2) FOR each neighbor j ∈ V (Gp)\V (T) of i DO

(3) tmp := weight[i] + |ij|;
(4) IF tmp < distance[j] DO

(5) distance[j] := tmp;

(6) father[j] := i;

(7) ENDIF

(8) ENDFOR

(9) ENDFOR

(10) Q := V (Gp)\V (T);

(11) WHILE Q is not empty DO

(12) u :=node in Q with smallest distance[·];
(13) remove u from Q and add u into T ;

(14) FOR each neighbor v ∈ Q of u DO

(15) tmp := distance[u] + |uv|;
(16) IF tmp < distance[v] DO

(17) distance[v] := tmp;

(18) father[v] := u;

(19) ENDIF

(20) ENDFOR

(21) ENDWHILE

(22) RETURN Tspan := T .

It is easy to check that Tspan is a spanning tree of the planar graph Gp.

5.2 Finding a balanced 2×shortest-paths—3-hop-neighborhood separator for G

Now we can apply Theorem 1 to Gp and Tspan by letting the weight of each real vertex be 1 and the weight

of each imaginary or null point be 0, and get a balanced separator S of Gp. Assume that S is the union

of paths P1 = PTspan(r, x) and P2 = PTspan(r, y). There are three kinds of elements on P1 and P2: real

vertices, imaginary points and null points. Generally, each imaginary point or null point is adjacent to at

most four elements in Gp, and each element in P1 or P2 has the previous element and the next element,

except for the root r (it has only the next element) and elements x and y (they have only the previous

element). Let u be the last real or imaginary point in P1 (or P2). We name all null points after u in P1 (or

P2) as the tail null points. For any element in P1 or P2, there are two possible relations between itself, its

previous element and its next element:

14

– the element, its previous element and its next element are on the same line, which means its previous

element and its next element are on the same edge of G (according to our general assumption that no

two edges of G are on the same line);

– the element, its previous element and its next element are not on the same line, which means its previous

element and itself are on one edge of G, and its next element and itself are on another edge of G.

Using paths P1 = (x0 = r, x1, . . . , xk−1, xk = x) and P2 = (y0 = r, y1, . . . , yl−1, yl = y) of Gp (of Tspan),

We will find the corresponding balanced separator for G using the following steps:

(1) We skip all null points in P1 and P2. Let the resulting paths be P ′1 and P ′2, respectively.

(2) We skip in P ′1 and P ′2 each imaginary point whose previous element and next element are on the same

edge of Torig. For example, let (xf , xi, xj) be a fragment of path P ′1 or P ′2, where xi is an imaginary

point and {xf , xi, xj} are collinear, then (xf , xi, xj) will be replaced with (xf , xj). Let the resulting

paths be P ′′1 and P ′′2 , respectively.

(3) Replace each remaining imaginary point m in P ′′1 and P ′′2 with two vertices: b(m) followed by c(m) (see

end of Section 3 for these notations). For example, let (xf , xi, xj) be a fragment of path P ′′1 or P ′′2 , where

xi is an imaginary point and xf is closest to the root r among {xf , xi, xj}. Then, (xf , xi, xj) will be

replaced with (xf , b(xi), c(xi), xj). Let the resulting paths be P ′′′1 and P ′′′2 , respectively. By Lemma 3,

the edge (b(xi), c(xi)) exists in G. It is easy to check that P ′′′1 and P ′′′2 are valid paths in G.

In what follows we will prove that P ′′′1 and P ′′′2 are 2×shortest paths of G. We define 2×shortest paths

of G as follows.

Definition 1. A path P of G is a 2×shortest path iff for any two vertices x,y in P , dP (x, y) ≤ 2dG(x, y).

We will need the following lemma.

Lemma 5. For any element v ∈ P ′′1 , dP ′′1 (v, r) = dTorig (v, r) = dG(v, r) if v is a real vertex, and dP ′′1 (v, r) =

dTorig (c(v), r) = dTorig (b(v), r) = dG(c(v), r) = dG(b(v), r) if v is an imaginary point.

Proof. P ′′1 contains real vertices and imaginary points but no null points. For two adjacent elements x and

y in P ′′1 , where x is y’s previous vertex, there are four possible cases.

– x is a real vertex and y is a real vertex: We immediately have dTorig (x, r) = dTorig (y, r) − 1 by the

construction of Torig.

– x is an imaginary point and y is an imaginary point: We have dTorig (c(x), r) = dTorig (c(y), r) − 1 by

PROCEDURE 1. One can also refer to Figure 7 (as an example), where x = vi and y = vi+1.

15

– x is an imaginary point and y is a real vertex: In this case, y can only be d(x) but not b(x). If y is b(x),

x should be removed in step (2) because it is collinear with its previous and next elements. Thus, we

have dTorig (c(x), r) = dTorig (y, r)− 1.

– x is a real vertex and y is an imaginary point: In this case, x can only be a(y) and we have dTorig (x, r) =

dTorig
(c(y), r)− 1 by Lemma 3.

Note also that, for any real vertex v, dTorig
(v, r) = dG(v, r) because Torig is a layering tree, and, for any

imaginary point m, dTorig
(c(m), r) = dTorig

(b(m), r) = dTorig
(d(m), r)− 1 according to Lemma 3.

Now, we can show that the lemma is correct by mathematical induction. For the root r and its next

element v in P ′′1 , the above first or last case applies and the lemma is true. Suppose the lemma is true for

the subpath of P ′′1 from r to vi. Then, it is easy to check that it is also true for the subpath of P ′′1 from r

to vi+1, by applying the above four cases. ut

Clearly, similar statement is true for path P ′′2 . Now we are ready to prove that P ′′′1 and P ′′′2 are 2×shortest

paths of G.

Theorem 2. P ′′′1 and P ′′′2 are 2×shortest paths in G.

Proof. We will show the proof only for path P ′′′1 . Since each imaginary point in P ′′1 is replaced by two

vertices in step (3), for any two vertices u and w in P ′′′1 , we have dP ′′′1
(u,w) ≤ 2dP ′′1 (f(u), f(w)), where f(·)

is defined as follows: for a real vertex v in P ′′1 , since it is still available in P ′′′1 , f(v) = v; for an imaginary

point m in P ′′1 , since it is replaced by real vertices c(m) and b(m) in P ′′′1 , f(c(m)) = m and f(b(m)) = m.

By Lemma 5, we have dP ′′1 (f(u), f(w)) = |dP ′′1 (f(u), r)− dP ′′1 (f(w), r)| = |dG(u, r)− dG(w, r)|. By the

triangle inequality, dG(u, r)− dG(w, r) ≤ dG(u,w). Combining all this, we get dP ′′′1
(u, w) ≤ 2dG(u,w). ut

Finally, we have the following separator theorem for an UDG G.

Theorem 3. The union of N3
G[P ′′′1] and N3

G[P ′′′2], where P ′′′1 and P ′′′2 are 2×shortest paths of G described

above, is a balanced separator for G with 2/3-split, i.e., removal of N3
G[P ′′′1] ∪ N3

G[P ′′′2] from G leaves no

connected component with more than 2/3n vertices.

Proof. We know that the union of P1 and P2 is a balanced separator (with 2/3-split) for Gp = (Vp, Ep).

Recall that Gp is the planar graph obtained from G by turning each edge intersection in G = (V,E) into

a graph vertex in Gp. Therefore, according to our general assumption, for any edge ep ∈ Ep, there exists

one and only one edge e ∈ E such that e covers ep. We say e covers ep if ep ⊆ e as geometric segments.

The removal of P1 and P2 from Gp will result in removing a set of elements and a set of edges (say E′
p,

E′
p ⊆ Ep) from Gp. Meanwhile, the removal of N3

G[P ′′′1] and N3
G[P ′′′2] from G will also result in removing a

set of vertices and a set of edges (say E′, E′ ⊆ E) from G. We have the following claim.

16

Claim (1). If for any edge e′p ∈ E′
p there exists an edge e′ ∈ E′ that covers e′p, then the union of N3

G[P ′′′1]

and N3
G[P ′′′2] is a balanced separator for G with 2/3-split.

Proof. Since erasing edges E′
p from Gp results in no connected component of Gp with more than 2/3n real

vertices, and any edge in E′
p is covered by an edge in E′, erasing edges E′ from G will also result in no

connected component of G with more than 2/3n vertices. 2(Claim)

In what follows, we will prove that for any edge e′p ∈ E′
p there exists an edge e′ ∈ E′ that covers e′p.

We can classify edges in E′
p into four classes: class A is all edges for which at least one end is a real

vertex from P ′′′1 or P ′′′2 ; class B is all edges in E′
p\A for which at least one end is an imaginary point from

P ′′1 or P ′′2 ; class C is all edges in E′
p\(A

⋃
B) for which at least one end is an imaginary point from P ′1 or

P ′2; class D is all edges in E′
p\(A

⋃
B

⋃
C) (all remaining edges). One can conclude that each edge in D

has at least one end as a null point from P1 or P2.

It is easy to check with Lemma 1 that edges in A, B and C are covered by edges in E′. If edge e ∈ D has

an end as a null point on the edge between two real vertices in P ′′′1 or P ′′′2 , then one can infer, by Lemma 1,

that e must be covered by an edge in E′, too. Any other edge e ∈ D has an end which is a tail null point

in P1 or P2 (see PROCEDURE 2).

To facilitate our discussion, for a tail null point o corresponding to an intersection between two non-Tsub-

edges, assume the two edges are (r1(o), r2(o)) and (r3(o), r4(o)) from E(G). We know that {r1(o), r2(o),

r3(o), r4(o)} ⊆ V (Tsub).

Claim (2). If u is the last real or imaginary point in P1 (or P2), then for any tail null point o (at the intersec-

tion between edges (r1(o), r2(o)) and (r3(o), r4(o))) in P1 (or P2), we have {r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G[u]

if u is a real vertex, and {r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G[c(u)] if u is an imaginary point.

Proof. Suppose w is the last Tsub element in P1. w could be a real vertex, an imaginary point or a null

point. There are four cases (see Figure 6).

(1): w = u and u is a real vertex. Then we claim |ur1(o)| ≤ 1, |ur2(o)| ≤ 1, |ur3(o)| ≤ 1, |ur4(o)| ≤ 1. This

claim can be proved by observing that the length lTspan(u, o) (and, hence, |uo|) is not larger than |r1(o)o|,
|r2(o)o|, |r3(o)o| and |r4(o)o|, according to PROCEDURE 2. Since |r1(o)r2(o)| = |r1(o)o|+ |r2(o)o| ≤ 1

and |r3(o)r4(o)| = |r3(o)o|+ |r4(o)o| ≤ 1, we have |ur1(o)| ≤ 1, |ur2(o)| ≤ 1, |ur3(o)| ≤ 1, |ur4(o)| ≤ 1.

Therefore, {r1(o), r2(o), r3(o), r4(o)} ⊆ N1
G[u].

(2): w = u and u is an imaginary point (at the intersection of edges (a(u), b(u)) and (c(u), d(u)) in G). Then,

similarly as in case (1), we have that at least one of a(u),b(u),c(u) and d(u) is within unit distance

17

Fig. 6. Illustrations to the second claim in the proof of Theorem 3.

from r1(o), r2(o), r3(o), r4(o). In addition, we know {a(u), b(u), c(u), d(u)} ⊆ N2
G[c(u)] by Lemma 1.

Therefore, {r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G[c(u)].

(3): w is a null point (at the intersection between edges (r1(w), r2(w)) and (r3(w), r4(w)) in G) and u is a

real vertex. Since w is the last Tsub element in P1 and u is the last real vertex or imaginary point in

P1, it is easy to see that u and w are on the same edge of G. Then, similarly as in case (2), we have

that at least one of r1(w), r2(w), r3(w) and r4(w) is within unit distance from r1(o), r2(o), r3(o), r4(o)

and {r1(w), r2(w), r3(w), r4(w)} ⊆ N2
G[u]. Therefore, {r1(o), r2(o), r3(o), r4(o)} ⊆ N3

G[u].

(4): w is a null point (at the intersection between edges (r1(w), r2(w)) and (r3(w), r4(w)) in G) and u is an

imaginary point. Since w is the last Tsub element in P1 and u is the last real or imaginary point in P1,

it is easy to see that u and w are on the same edge of G. Then, similarly as in case (2), we have that

at least one of r1(w), r2(w), r3(w) and r4(w) is within unit distance from r1(o), r2(o), r3(o), r4(o) and

{r1(w), r2(w), r3(w), r4(w)} ⊆ N2
G[c(u)]. Therefore, {r1(o), r2(o), r3(o), r4(o)} ⊆ N3

G[c(u)]. 2(Claim)

Thus, for any edge e′p ∈ E′
p there exists an edge e′ ∈ E′ that covers e′p. Hence, the theorem is proved. ut

Theorem 2 and Theorem 3 tell us that there exist two paths P ′′′1 and P ′′′2 in G such that they are

2×shortest paths and the union of N3
G[P ′′′1] and N3

G[P ′′′2] is a balanced separator for G.

18

5.3 Finding a balanced shortest-paths—3-hop-neighborhood separator for G

In this section, we will improve the result of Section 5.2. We will show that any UDG G has two shortest

paths P ′′′1 and P ′′′2 such that the union of N3
G[P ′′′1] and N3

G[P ′′′2] forms a balanced separator for G. Recall

that, by a shortest path we mean a hop-shortest path.

Let P1, P2, P ′1, P ′2, P ′′1 and P ′′2 be the paths defined in Section 5.2. Analogs of paths P ′′′1 and P ′′′2

of Section 5.2 will be obtained from P ′′1 and P ′′2 in a more careful way (than in Section 5.2). We use

PROCEDURE 3 for this.

PROCEDURE 3. Handle imaginary points

Input: Path P ∈ {P ′′1 , P ′′2 } (containing still some imaginary points).

Output: Path P as a shortest path of G, with all imaginary points resolved.

Method: /* Break ties arbitrarily. */ /* The first vertex in P is the root r, a real vertex.*/

(1) Let [v1, · · · , vk] be the imaginary points in P in the order from r;

(2) FOR i = 1 to k DO

(3) IF vertex c(vi) is adjacent to prevP (vi) (c(vi) is always adjacent to nextP (vi), as it will be shown later.)

(4) Replace vi with c(vi) in P ;

(5) ELSE (It implies that vertex b(vi) is adjacent to both prevP (vi) and nextP (vi), as it will be shown later.)

(6) Replace vi with b(vi) in P ;

(7) ENDIF

(8) ENDFOR

(9) RETURN P

We call PROCEDURE 3 for both P ′′1 and P ′′2 . Let the resulting paths be P ′′′1 and P ′′′2 , respectively. We

have the following lemma.

Lemma 6. In PROCEDURE 3, when an imaginary point vi is replaced by v′i (v′i is either c(vi) or b(vi))

in current P , we have |prevP (vi)v′i| ≤ 1, |v′inextP (vi)| ≤ 1 and |v′id(vi)| ≤ 1.

Proof. We will show the proof only for path P ′′1 . According to the construction of path P ′′1 from P ′1 (see

step (2) in Section 5.2), if vi is an imaginary point in P ′′1 , then prevP ′′1 (vi), vi and nextP ′′1 (vi) cannot be

collinear. For an imaginary point vi in P ′′1 , its previous element in P ′′1 is either a real vertex or an imaginary

point. For the first imaginary point in P ′′1 , its previous element is a real vertex. We prove the lemma by

mathematical induction.

19

Let v1 be the first imaginary point in P ′′1 . Assume it is replaced by v′1 in P . We need to show that

|prevP (v1)v′1| ≤ 1, |v′1nextP (v1)| ≤ 1 and |v′1d(v1)| ≤ 1.

According to our general assumption (no two intersecting edges are on the same line), we conclude

prevP (v1) is a(v1). In addition, nextP (v1) must lie on segment (v1, d(v1)). It cannot lie on segment (v1, b(v1))

since prevP (v1), v1 and nextP (v1) are not collinear. If c(v1) is chosen as v′1, we know |prevP (v1)v′1| ≤ 1 by

PROCEDURE 3, and |v′1d(v1)| ≤ 1 because (c(v1), d(v1)) is an edge in G. In addition, |v′1nextP (v1)| ≤ 1

holds because (v′1, d(v1)) is an edge in G and nextP (v1) lies on segment (v1, d(v1)). If b(v1) is chosen

as v′1, |prevP (v1)v′1| ≤ 1 must hold because (prevP (v1), b(v1)) is an edge in G. |v′1nextP (v1)| ≤ 1 still

holds because, by PROCEDURE 3, |a(v1)c(v1)| > 1 and, by Lemma 1, |v′1d(v1)| ≤ 1, which implies

|b(v1)nextP (v1)| ≤ 1. The basis for induction is proved.

Now let assume that the lemma is true for i < k, i.e., when an imaginary point vi is replaced with v′i in

P (v′i is either c(vi) or b(vi)), |prevP (vi)v′i| ≤ 1, |v′inextP (vi)| ≤ 1 and |v′id(vi)| ≤ 1 hold. We need to prove

that the lemma is also true for i + 1.

Assume c(vi+1) is chosen as v′i+1. According to PROCEDURE 3, |prevP (vi+1)v′i+1| ≤ 1. In addition,

nextP (vi+1) must lie on segment (vi+1, d(vi+1)). Since (c(vi+1), d(vi+1)) is an edge in G and nextP (vi+1)

lies on (vi+1, d(vi+1)), we have |v′i+1nextP (vi+1)| ≤ 1 and |v′i+1d(vi+1)| ≤ 1.

Assume now that b(vi+1) is chosen as v′i+1. There are two cases to consider.

(1): prevP ′′1 (vi+1) is a real vertex. According to our general assumption (no two intersecting edges are

on the same line), we conclude prevP (vi+1) is a(vi+1). Therefore, |prevP (vi+1)v′i+1| ≤ 1 because

(a(vi+1), b(vi+1)) is an edge in G. By PROCEDURE 3, |prevP (vi+1)c(vi+1)| > 1. Then, by Lemma 1,

we have |v′i+1d(vi+1)| ≤ 1, which implies |v′i+1nextP (vi+1)| ≤ 1 because nextP (vi+1) lies on segment

(vi+1, d(vi+1)).

(2): prevP ′′1 (vi+1) is an imaginary point. Let prevP ′′1 (vi+1) be vi. The case is illustrated on Figure 7. As

we discussed before, vi+1 is on the segment (vi, d(vi)). If c(vi)(≡ a(vi+1)) is chosen as v′i, with sim-

ilar arguments as in the case (1), we conclude that |prevP (vi+1)v′i+1| ≤ 1, |v′i+1d(vi+1)| ≤ 1 and

|v′i+1nextP (vi+1)| ≤ 1. If b(vi) is chosen as v′i, by mathematical induction, we know |v′id(vi)| ≤ 1, where

d(vi) ≡ b(vi+1). By PROCEDURE 3, |v′ic(vi+1)| > 1. If edges (b(vi), b(vi+1)) and (c(vi+1), d(vi+1)) of

G intersect, then, by Lemma 1, we have |v′i+1d(vi+1)| ≤ 1, which also implies |v′i+1nextP (vi+1)| ≤ 1.

So, it remains to prove that (b(vi), b(vi+1)) and (c(vi+1), d(vi+1)) intersect in G. Assume they do

not intersect. Then, either c(vi+1) or d(vi+1) is inside 4vib(vi)b(vi+1), or edges (b(vi), a(vi)) and

(c(vi+1), d(vi+1)) intersect. If c(vi+1) is inside 4vib(vi)b(vi+1), then |b(vi)c(vi+1)| ≤ 1 must hold, con-

tradicting |v′ic(vi+1)| > 1. If d(vi+1) is inside 4vib(vi)b(vi+1), then (d(vi+1), b(vi)) must be an edge

20

in G, i.e., dG(r, d(vi+1)) ≤ dG(r, b(vi)) + 1, implying L(d(vi+1)) ≤ L(b(vi)) + 1. On the other hand,

by Lemma 3, L(d(vi+1)) = L(c(vi+1)) + 1 = L(b(vi+1)) + 1 = L(d(vi)) + 1 = L(b(vi)) + 2, and a

contradiction arises. Similarly, if edges (b(vi), a(vi)) and (c(vi+1), d(vi+1)) intersect, then, by Lemma 1,

a(vi) must be adjacent with d(vi+1) (since c(vi+1) and b(vi) are not adjacent), contradicting with

L(d(vi+1)) = L(b(vi)) + 2 = L(a(vi)) + 3.

Thus, the lemma is true for i + 1, too. This completes the entire proof. ut

Fig. 7. An illustration to the proof of Lemma 6.

Combining Lemma 5 and Lemma 6, we obtain the following theorem.

Theorem 4. P ′′′1 and P ′′′2 are shortest paths in G.

Now, for the paths P ′′′1 and P ′′′2 , a similar to Theorem 3 result holds.

Theorem 5. The union of N3
G[P ′′′1] and N3

G[P ′′′2], where P ′′′1 and P ′′′2 are shortest paths of G described

above, is a balanced separator for G with 2/3-split, i.e., removal of N3
G[P ′′′1] ∪ N3

G[P ′′′2] from G leaves no

connected component with more than 2/3n vertices.

Proof. The proof is almost identical to the proof of Theorem 3. Only for cases (2) and (4) in the proof of

Claim (2), we need to make some additions to guarantee {r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G[b(u)] if u is an

imaginary point.

In case (2), we need to mention that, for an imaginary point u, both {a(u), b(u), c(u), d(u)} ⊆ N2
G[c(u)]

and {a(u), b(u), c(u), d(u)} ⊆ N2
G[b(u)] hold. Therefore, {r1(o), r2(o), r3(o), r4(o)} ⊆ N3

G[c(u)] and {r1(o),

r2(o), r3(o), r4(o)} ⊆ N3
G[b(u)].

21

In case (4), we need to add the following. If u is replaced with c(u)(≡ r1(w)) in PROCEDURE 3, Claim

(2) still holds because {r1(w), r2(w), r3(w), r4(w)} ⊆ N2
G[r1(w)]. If u is replaced with b(u) in PROCEDURE

3, by Lemma 6, b(u) is adjacent to d(u)(≡ r2(w)). We also know that b(u) is adjacent to c(u)(≡ r1(w)),

by Lemma 3. If edge (r3(w), r4(w)) intersects (b(u), a(u)) or (b(u), d(u)), then, by Lemma 1, we also have

{r3(w), r4(w)} ⊆ N2
G[b(u)]. If (r3(w), r4(w)) intersects neither (b(u), a(u)) nor (b(u), d(u)), then r3(w) is

inside 4ub(u)d(u), implying that |r3(w)b(u)| ≤ 1, i.e., r3(w) ∈ NG[b(u)] and r4(w) ∈ N2
G[b(u)]. Therefore,

again {r1(o), r2(o), r3(o), r4(o)} ⊆ N3
G[b(u)]. ut

6 Application of balanced separators for UDGs

In this section, we show how one can use the above balanced separator theorem for UDGs to develop for

them a compact and low delay routing labeling scheme. For this, we combine strategies used in [5, 6, 13].

First, we prove the following important lemma. Let G = (V, E) be an unit disk graph and S = N3
G[P1]∪

N3
G[P2] be a balanced separator of G, where P1 and P2 are (hop-)shortest paths in G. Construct for G two

Breadth First Search trees (BFS-trees) T1 and T2 as follows. T1 is a BFS-tree of G rooted (started) at path

P1, i.e., T1 := BFS−tree(G, P1). T2 is a BFS-tree of G rooted at path P2, i.e., T2 := BFS−tree(G, P2).

Both trees are (hop-)shortest path trees, rooted at P1 and P2, respectively.

Fig. 8. An illustration to the proof of Lemma 7.

Lemma 7. Let x, y be two arbitrary vertices of G and P (x, y) be a (hop-)shortest path between x and y in

G. If P (x, y) ∩ S 6= ∅, then dT1(x, y) ≤ 3dG(x, y) + 12 or dT2(x, y) ≤ 3dG(x, y) + 12.

Proof. Without loss of generality, assume P (x, y) intersects N3
G[P1] in G. Let b ∈ N3

G[P1] ∩ P (x, y). Let

also a ∈ N3
G[P1] be a vertex such that dT1(x, a) is minimum and c ∈ N3

G[P1] be a vertex such that dT1(y, c)

22

is minimum. Fig. 8(a) is an illustration, where the central darker curve is P1 and the area between two

lighter curves represents N3
G[P1].

Since T1 is a (hop-)shortest path tree rooted at P1, we conclude dG(x, a) ≤ dG(x, b) and dG(c, y) ≤
dG(b, y). By the triangle inequality, we know that dG(a, c) ≤ dG(a, x) + dG(x, b) + dG(b, y) + dG(y, c) ≤
2dG(b, x) + 2dG(y, b) = 2dG(x, y).

Let c′ be the vertex on P1 that is closest to c (equivalently, to y) in T1, let a′ be the vertex on P1 that

is closest to a (equivalently, to x) in T1 (see Fig. 8(b)). Since P1 is a (hop-)shortest path of G, we have

dT1(a′, c′) = dG(a′, c′) ≤ dG(a, c) + dG(a, a′) + dG(c, c′) = dG(a, c) + 6.

Now, dT1(x, y) ≤ dT1(x, a′) + dT1(a′, c′) + dT1(c′, y) = dT1(x, a) + 3 + dT1(a′, c′) + dT1(c, y) + 3 =

dG(x, a) + dG(c, y) + dG(a, c) + 12 ≤ dG(x, b) + dG(b, y) + 2dG(x, y) + 12 = 3dG(x, y) + 12. ut

One can construct for an unit disk graph G a (rooted) balanced decomposition tree BT (G) as follows.

Find a balanced separator S = N3
G[P1]∪N3

G[P2] for G, which exists according to Theorem 5. If S contains

all vertices of G, then BT (G) is a one node tree. Otherwise, let G1, G2, . . . , Gp be the connected components

of the graph G \ S obtained from G by removing vertices of S. For each graph Gi (i = 1, . . . , p), which is

also an UDG, construct a balanced decomposition tree BT (Gi) recursively, and build BT (G) by taking S

to be the root and connecting the root of each tree BT (Gi) as a child of S. For a node X of BT (G), denote

by G(↓X) the (connected) subgraph of G induced by vertices
⋃{Y : Y is a descendent of X in BT (G)}

(here we assume that X is a descendent of itself). We know that X is a balanced separator of G(↓X).

It is easy to see that a balanced decomposition tree BT (G) of an n-vertex m-edge UDG G has depth at

most log3/2 n. Moreover, a balanced separator (mentioned above) can be found in O(C + m) time, where

C is the number of crossings in G, the tree BT (G) can be constructed in O((C + m) log n) total time.

Consider now two arbitrary vertices x and y of G and let S(x) and S(y) be the nodes of BT (G)

containing x and y, respectively. Let also NCABT (G)(S(x), S(y)) be the nearest common ancestor of nodes

S(x) and S(y) in BT (G) and (X0, X1, . . . , Xt) be the path of BT (G) connecting the root X0 of BT (G)

with NCABT (G) (S(x), S(y)) = Xt (in other words, X0, X1, . . . , Xt are the common ancestors of S(x) and

S(y)). Then, any path PG
x,y, connecting vertices x and y in G, contains a vertex from X0 ∪X1 ∪ · · · ∪Xt.

Let SPG
x,y be a (hop-)shortest path of G connecting vertices x and y, and let Xi be the node of the path

(X0, X1, . . . , Xt) with the smallest index such that SPG
x,y ∩Xi 6= ∅ in G. Then, the following lemma holds.

Lemma 8. [6] We have dG(x, y) = dG′(x, y), where G′ := G(↓Xi).

23

For unit disk graph G′ = G(↓Xi) with balanced separator Xi = N3
G′ [P1′]∪N3

G′ [P2′], consider BFS-trees

T1′ := BFS − tree(G′, P1′) and T2′ := BFS − tree(G′, P2′). Since SPG
x,y ∩Xi 6= ∅, by Lemma 7, there is

a tree T ′ ∈ {T1′, T2′} which has the following distance property with respect to those vertices x and y.

Lemma 9. For those vertices x, y of G(↓Xi), there exists a tree T ′ ∈ {T1′, T2′} such that dT ′(x, y) ≤
3dG′(x, y) + 12 = 3dG(x, y) + 12.

Let now Bi
1, . . . , B

i
pi

be the nodes at depth i of the tree BT (G). Denote Gi
j := G(↓Bi

j), and let Bi
j =

N3
Gi

j
[P1i

j] ∪ N3
Gi

j
[P2i

j] be the corresponding balanced separator of Gi
j (i = 0, 1, ..., depth(BT (G)), j =

1, 2, . . . , pi). For each subgraph Gi
j := G(↓Bi

j) of G (i = 0, 1, ..., depth(BT (G)), j = 1, 2, . . . , pi), denote by

T i
j := {T1i

j , T2i
j} two BFS-trees of graph Gi

j , rooted at paths P1i
j and P2i

j . Thus, for each Gi
j , we construct

two BFS-trees. We call them local subtrees of G. Lemma 9 implies

Lemma 10. Let G be an unit disk graph, BT (G) be its balanced decomposition tree and LT (G) = {T ∈
T i

j : i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi} be its set of local subtrees. Then, for any two vertices x

and y of G, there exists a local subtree T ′ ∈ T i′
j′ ⊆ LT (G) such that dT ′(x, y) ≤ 3dG(x, y) + 12.

Let T i
j := {T1i

j , T2i
j} be two BFS-trees of graph Gi

j , rooted at paths P1i
j and P2i

j , respectively. We

arbitrarily extend forest {T1i
1, T1i

2, . . . , T1i
pi
} ({T2i

1, T2i
2, . . . , T2i

pi
}) to a spanning tree T1i (respectively,

T2i) of the graph G. Thus, we obtain two spanning trees of G for each level i (i = 0, 1, . . . , depth(BT (G)))

of the decomposition tree BT (G). Totally, this will result into at most 2×depth(BT (G))+2 spanning trees

T (G) := {T1i, T2i : i = 0, 1, . . . , depth(BT (G))} of the original graph G. Thus, from Lemma 10, we have

the following theorem.

Theorem 6. Any unit disk graph G with n vertices and m edges admits a system T (G) of at most

2 log3/2 n + 2 collective tree (3, 12)-spanners, i.e., for any two vertices x and y in G, there exists a span-

ning tree T ∈ T (G) with dT (x, y) ≤ 3dG(x, y) + 12. Moreover, such a system T (G) can be constructed in

O((C + m) log n) time, where C is the number of crossings in G.

Let H be a spanning subgraph of G obtained by taking the union of all spanning trees from T (G). Clearly,

H has at most 2(n−1)(log3/2 n+1) edges and, for any two vertices x and y of G, dH(x, y) ≤ 3dG(x, y)+12.

Thus, we have the following corollary.

Corollary 1. Any unit disk graph G with n vertices admits a hop (3, 12)-spanner with at most 2(n −
1)(log3/2 n + 1) edges.

24

6.1 Extracting an appropriate tree from T (G) and approximating distances

Now we will show that one can assign O(log2 n) bit labels to vertices of G such that, for any pair of vertices

x and y, a tree T in T (G) with dT (x, y) ≤ 3dG(x, y) + 12 can be identified in only O(log n) time by merely

inspecting the labels of x and y, without using any other information about the graph. Additionally, a value

d̂(x, y) with dG(x, y) ≤ d̂(x, y) ≤ 3dG(x, y) + 12 can also be computed in O(log n) time from these labels of

x and y.

Associate with each vertex x of G a 5×(depth(BT (G))+1) array Ax such that, for each level i of BT (G),

Ax[1, i] = j, Ax[2, i] = dT1i
j
(x, x′1), Ax[3, i] = dT1i

j
(x′1, r), Ax[4, i] = dT2i

j
(x, x′2), Ax[5, i] = dT2i

j
(x′2, r), if

there exist local subtrees T1i
j and T2i

j in LT (G) containing vertex x, and Ax[1, i] = nil, Ax[2, i] = Ax[3, i] =

Ax[4, i] = Ax[5, i] = ∞, otherwise (i.e., the depth in BT (G) of node S(x) containing x is smaller than i).

Here x′1 is a vertex from P1i
j minimizing dT1i

j
(x, x′1), x′2 is a vertex from P2i

j minimizing dT2i
j
(x, x′2), r is

the root end (common end) of paths P1i
j and P2i

j . Evidently, each label Ax (x ∈ V) can be encoded using

O(log2 n) bits and a computation of all labels Ax, x ∈ V , can be performed together with the construction

of system T (G).

Given labels Ax, Ay of vertices x and y, the following procedure will return in O(log n) time an index

k ∈ {0, 1, . . . , depth(BT (G))} and a number q ∈ {1, 2} such that dT (x, y) ≤ 3dG(x, y) + 12 will hold for

T = T1k, if q = 1, and for T = T2k, if q = 2.

set k1 := 0, k2 := 0;

set minsum1 := Ax[2, 0] + Ay[2, 0] + |Ax[3, 0]−Ay[3, 0]|;
set minsum2 := Ax[4, 0] + Ay[4, 0] + |Ax[5, 0]−Ay[5, 0]|;
set i := 1;

while (Ax[1, i] = Ay[1, i] 6= nil) and (i ≤ log3/2 n) do

if Ax[2, i] + Ay[2, i] + |Ax[3, i]−Ay[3, i]| < minsum1

then set k1 := i and minsum1 := Ax[2, i] + Ay[2, i] + |Ax[3, i]−Ay[3, i]|;
if Ax[4, i] + Ay[4, i] + |Ax[5, i]−Ay[5, i]| < minsum2

then set k2 := i and minsum2 := Ax[4, i] + Ay[4, i] + |Ax[5, i]−Ay[5, i]|;
i := i + 1;

enddo

if minsum1 ≤ minsum2 then set k = k1 and q = 1;

else set k = k2 and q = 2;

return k, q, j := Ax[1, k] and d̂(x, y) := min{minsum1, minsum2}.

This procedure simply finds, among all local subtrees containing both x and y, a subtree for which the

sum Ax[2, i] + Ay[2, i] + |Ax[3, i]−Ay[3, i]| (or Ax[4, i] + Ay[4, i] + |Ax[5, i]−Ay[5, i]|) is minimum.

25

Assume, without loss of generality, that the procedure above returned q = 1. Below we show that indeed

dT1k(x, y) ≤ d̂(x, y) ≤ 3dG(x, y) + 12. First note that d̂(x, y) = dT1k
j
(x, x′1) + dT1k

j
(y, y′1) + |dT1k

j
(x′1, r) −

dT1k
j
(y′1, r)| = dT1k

j
(x, x′1) + dT1k

j
(y, y′1) + dT1k

j
(x′1, y

′
1) is an upper bound on dT1k

j
(x, y), by the triangle

inequality (where x′1 ∈ P1k
j , y′1 ∈ P1k

j with minimum dT1k
j
(x, x′1), dT1k

j
(y, y′1); r is the root end of P1k

j).

Let S(x) and S(y) be the nodes of BT (G) containing vertices x and y, respectively, and let (B0, B1
j1

, . . . ,

Bt
jt

) be the path of BT (G) connecting the root B0 of BT (G) with NCABT (G)(S(x), S(y)) = Bt
jt

. Since,

among local subtrees T10, T20, T11
j1

, T21
j1

, . . . , T1t
jt

, T2t
jt

, the subtree T1k
j has minimum sum dT1k

j
(x, x′1)+

dT1k
j
(y, y′1) + |dT1k

j
(x′1, r) − dT1k

j
(y′1, r)| = dT1k

j
(x, x′1) + dT1k

j
(y, y′1) + dT1k

j
(x′1, y

′
1), by Lemma 9 and by

the proof of Lemma 7 (see the last two lines), we conclude dT1k
j
(x, y) ≤ d̂(x, y) ≤ 3dG(x, y) + 12, i.e.,

dT1k(x, y) ≤ d̂(x, y) ≤ 3dG(x, y) + 12 as T1k
j is a subtree of tree T1k.

Thus, we have the following theorem.

Theorem 7. The family of n-vertex unit disk graphs admits an O(log2 n) bit (3, 12)-approximate distance

labeling scheme with O(log n) time distance decoder.

6.2 Routing labeling scheme with bounded hop route-stretch

Existence of collective tree spanners established in Theorem 6 allows us to construct a compact and low

delay routing labeling scheme for UDGs. We simply reduce the original problem of routing in UDGs to the

problem of routing in trees.

We will need the following result from [9, 26].

Theorem 8. [9, 26] There is a function labeling in O(n) total time the vertices of an n-vertex tree T with

labels of up to O(log n) bits such that given two labels L(v), L(u) of two vertices v, u of T , it is possible to

determine in constant time the port number, at v, of the first edge on the path in T from v to u, by merely

inspecting the labels of v and u.

Let now G be an UDG and let T (G) = {T 1, T 2, . . . , Tµ} (µ ≤ O(log n)) be a system of µ collective tree

(3, 12)-spanners of G. We can preprocess each tree T i using the O(n) algorithm from [26] and assign to

each vertex v of G a tree-label Li(v) of size O(log n) bits associated with the tree T i. Then, we can form

a label L(v) of v of size O(log2 n) bits by concatenating the µ tree-labels. We store in L(v) also the string

Av of length O(log2 n) bits described in Section 6.1. Thus,

L(v) := Av ◦ L1(v) ◦ . . . ◦ Lµ(v).

26

Now assume that a vertex v wants to send a message to a vertex u. Given the labels L(v) and L(u),

v first uses their substrings Av and Au to find in O(log n) time an index i such that for tree T i ∈ T (G),

dT i(v, u) ≤ 3dG(v, u)+ 12 holds. Then, v extracts from L(u) the substring Li(u) and forms a header of the

message H(u) := i ◦ Li(u). Now, the initiated message with the header H(u) = i ◦ Li(u) is routed to the

destination using the tree T i: when the message arrives at an intermediate vertex x, vertex x using own

substring Li(x) and the string Li(u) from the header makes a constant time routing decision.

Thus, the following result is true.

Theorem 9. The family of n-vertex unit disk graphs admits an O(log2 n) bit routing labeling scheme. The

scheme has hop (3, 12)-route-stretch. Once computed by the sender in O(log n) time, headers never change,

and the routing decision is made in constant time per vertex.

6.3 Extension to routing labeling scheme with bounded length route-stretch

In this section, we show that our results on hop-distance and hop route-stretch can be extended to analogous

results on length-distance and length route-stretch.

It is known (see [2, 17, 18, 20]) that, for UDGs, a constant hop route-stretch implies a constant length

route-stretch and a constant power route-stretch. In particular, our routing labeling scheme with hop

(3,12)-route stretch, according to [2] (see Proposition 1), will have length (6,15)-route stretch.

Proposition 1. [2] Let G be an UDG and x, y be two arbitrary vertices of G. Then, lG(x, y) ≤ dG(x, y) ≤
2lG(x, y) + 1.

Below, we show that using our approach a slightly better length route-stretch can be achieved.

First, we prove the following important lemma, which is similar to Lemma 7. Let G = (V, E) be an unit

disk graph and S = N3
G[P1] ∪N3

G[P2] be a balanced separator of G, where P1 and P2 are (hop-)shortest

paths in G. Denote by G(S) a subgraph of G induced by vertices S ⊆ V . Construct for G′ = G(N3
G[P1])

and G′′ = G(N3
G[P2]) Breadth First Search trees (BFS-trees) TP1 and TP2 as follows. TP1 is a BFS-tree of

G′ rooted (started) at path P1, i.e., TP1 := BFS − tree(G′, P1). TP2 is a BFS-tree of G rooted at path

P2, i.e., TP2 := BFS − tree(G′′, P2).

Construct also for G two (length-)shortest path trees (LSP-trees) T1 and T2 as follows. T1 is a LSP-tree

of G rooted (started) at TP1, i.e., T1 := LSP − tree(G,TP1). T2 is a LSP-tree of G rooted at TP2, i.e.,

T2 := LSP − tree(G,TP2).

Lemma 11. Let x, y be two arbitrary vertices of G and P (x, y) be a (length-)shortest path between x and

y in G. If P (x, y) ∩ S 6= ∅, then lT1(x, y) ≤ 5lG(x, y) + 13 or lT2(x, y) ≤ 5lG(x, y) + 13.

27

Proof. Without loss of generality, assume P (x, y) intersects N3
G[P1] in G. Let b ∈ N3

G[P1] ∩ P (x, y). Let

also a ∈ N3
G[P1] be a vertex such that lT1(x, a) is minimum and c ∈ N3

G[P1] be a vertex such that lT1(y, c)

is minimum. Fig. 8(a) can also serve as an illustration here.

Since T1 is a (length-)shortest path tree rooted at TP1, we conclude lG(x, a) ≤ lG(x, b) and lG(c, y) ≤
lG(b, y). By the triangle inequality, we know that lG(a, c) ≤ lG(a, x) + lG(x, b) + lG(b, y) + lG(y, c) ≤
2lG(b, x) + 2lG(y, b) = 2lG(x, y).

Let c′ be the vertex on P1 that is closest to c in TP1, let a′ be the vertex on P1 that is closest

to a in TP1 (see Fig. 8(b)). Since P1 is a (hop-)shortest path of G, we have dTP1(a
′, c′) = dG(a′, c′) ≤

dG(a, c) + dG(a, a′) + dG(c, c′) = dG(a, c) + 6.

Now, using the triangle inequality and Proposition 1, we get lT1(x, y) ≤ lT1(x, a′) + lT1(a′, c′) +

lT1(c′, y) ≤ lT1(x, a)+3+lT1(a′, c′)+lT1(c, y)+3 ≤ lG(x, a)+lG(c, y)+dTP1(a
′, c′)+6 ≤ lG(x, a)+lG(c, y)+

dG(a, c) + 12 ≤ lG(x, a) + lG(c, y) + 2lG(a, c) + 13 ≤ lG(x, b) + lG(b, y) + 4lG(x, y) + 13 = 5lG(x, y) + 13. ut

Using Lemma 11 and similar arguments as before, we obtain the following results on length-distance

and length route-stretch.

Theorem 10. Any unit disk graph G with n vertices and m edges admits a system T (G) of at most

2 log3/2 n + 2 collective tree length (5, 13)-spanners, i.e., for any two vertices x and y in G, there exists a

spanning tree T ∈ T (G) with lT (x, y) ≤ 5lG(x, y) + 13. Moreover, such a system T (G) can be constructed

in O((C + m) log n) time, where C is the number of crossings in G.

Corollary 2. Any unit disk graph G with n vertices admits a length (5, 13)-spanner with at most 2(n −
1)(log3/2 n + 1) edges.

Theorem 11. The family of n-vertex unit disk graphs admits an O(log2 n) bit (5, 13)-approximate length-

distance labeling scheme with O(log n) time distance decoder.

Theorem 12. The family of n-vertex unit disk graphs admits an O(log2 n) bit routing labeling scheme.

The scheme has length (5, 13)-route-stretch. Once computed by the sender in O(log n) time, headers never

change, and the routing decision is made in constant time per vertex.

7 Conclusion

In this paper, we showed that every unit disk graph G has a balanced separator of form N3
G[P1]∪N3

G[P2],

where P1 and P2 are hop-shortest paths of G. Using this separator theorem, we developed for unit disk

28

graphs routing labeling schemes with O(log2n) bit labels and hop (3,12)-route-stretch and length (5,13)-

route-stretch.

It is interesting to know if those stretch factors can be improved and if every unit disk graph G admits

a balanced separator of form N1
G[P1] ∪N1

G[P2], where P1 and P2 are (hop- or length-) shortest paths of

G.

References

1. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized independent set problem

on disk graphs. Journal of Algorithms 52, 134-151 (2004)

2. Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., Frieder, O.: Geometric Spanners for Wireless Ad Hoc Networks.

IEEE Transactions on Parallel and Distributed Systems 14, 408–421 (2003)

3. Clark, B.N., Colbourn, C.J.: Unit Disk Graphs. Discrete Mathematics 86, 165-177 (1990)

4. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks.

Proceedings of the 3rd International Workshop on Discrete algorithms and Methods for Mobile Computing and

Communications, ACM Press, pp.48–55 (1999)

5. Dragan, F.F., Yan, C., Corneil, D.G.: Collective Tree Spanners and Routing in AT-free Related Graphs. Journal

of Graph Algorithms and Applications 10, no.2, 97-122 (2006)

6. Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM J. Discrete Math 20, 241–260

(2006)

7. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C. T., Culler, D., Shenker, S., Stoica, I.: Beacon vector routing:

Scalable point-to-point routing in wireless sensornets. Proceedings of the Second USENIX/ACM Syposium on

Networked Systems Design and Implementation (NSDI 2005) (2005)

8. Fürer, M., Kasiviswanathan, S.P.: Spanners for Geometric Intersection Graphs. Workshop on Algorithms and

Data Structures, pp. 312-324 (2007)

9. Fraigniaud, P., Gavoille, C.: Routing in Trees. ICALP 2001, 757–772 (2001)

10. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanner for routing in mobile networks.

Proceedings of the 2nd ACM international symposium on mobile ad hoc networking & computing, October

04-05, 2001, Long Beach, CA, USA

11. Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph metric and its applications.

Proceedings of the thirty-fifth Annual ACM Symposium on Theory of Computing (STOC’03), pp. 483-492

(2003)

12. Giordano, S., Stojmenovic, I.: Position based routing algorithms for ad hoc networks: A taxonomy. In X. Cheng,

X. Huang, and D. Du, editors, Ad Hoc Wireless Networking, pages 103–136. Kluwer (2004)

13. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez Dispenser (Or, Routing Issues in MPLS). 42nd IEEE

Symposium on Foundations of Computer Science (FOCS’01), pp.148–157 (2001)

29

14. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. Proceedings of the 6th

ACM/IEEE MobiCom., ACM, pp. 243–254 (2000)

15. Kleinberg, R.: Geographic routing using hyperbolic space. In INFOCOM 2007, pp. 1902–1909 (2007)

16. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory and practice. Pro-

ceedings of the 22nd Annual Symposium on Principles of Distributed Computing, ACM Press, pp. 63–72 (2003)

17. Li, X.-Y.: Topology Control in Wireless Ad Hoc Networks. Book Chapter of ”Ad Hoc Networking”, IEEE Press,

edited by Stefano Basagni, Marco Conti, Silvia Giordano, and Ivan Stojmenovic (2003)

18. Li, X.-Y.: Applications of Computational Geomety in Wireless Ad Hoc Networks. Book Chapter of ”Ad Hoc

Wireless Networking”, Kluwer, edited by XiuZhen Cheng, Xiao Huang, and Ding-Zhu Du (2003)

19. Li, X.-Y., Calinescu, G., Wan, P.-J.: Distributed Construction of a Planar Spanner and Routing for Ad Hoc

Wireless Networks. INFOCOM (2002)

20. Li, X.-Y., Wan, P.-J., Wang, Y.: Power efficient and sparse spanner for wireless ad hoc networks. IEEE Int.

Conf. on Computer Communications and Networks (ICCCN 2001), pp. 564-567 (2001)

21. Li, X.-Y., Wang, Y.: Geometrical Spanner for Wireless Ad Hoc Networks. Handbook of Approximation Algo-

rithms and Metaheuristics (Editor: Teofilo F. Gonzalez), Chapman & Hall/Crc (2006)

22. Lipton, R.J., Tarjan, R.E.: A Separator Theorem for Planar Graphs. SIAM Journal on Applied Mathematics

36, 177-189, (1979).

23. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Math. Appl.,

SIAM, Philadelphia (2000).

24. Rao, A., Papadimitriou, C., Shenker, S., Stoica, I.: Geographical routing without location information. Pro-

ceedings of MobiCom 2003, pp. 96–108 (2003)

25. Thorup, M.: Compact Oracles for Reachability and Approximate Distances in Planar Digraphs. In 42nd Annual

Symposium on Foundations of Computer Science (FOCS), pp. 242-251 (2001)

26. Thorup, M., Zwick, U.: Compact routing schemes. Proceedings of 13th Ann. ACM Symp. on Par. Alg. and Arch

(SPAA 2001), pp. 1-10 (2001)

27. Yan, C.: Approximating Distances in Complicated Graphs by Distances in Simple Graphs With

Applications. PhD Dissertation, Kent State University, 2007, http://www.ohiolink.edu/etd/send-

pdf.cgi/Yan%20Chenyu.pdf?kent1184639623

30

