Finite Automata With \(\varepsilon \)Transitions

- Allow \(\varepsilon \) to be a label on arcs.
- Nothing else changes: acceptance of \(w \) is still the existence of a path from the start state to an accepting state with label \(w \).
- But \(\varepsilon \) can appear on arcs, and means the empty string (i.e., no visible contribution to \(w \)).
- 001 is accepted by the path \(q, s, r, q, r, s \), with label \(0\varepsilon01\varepsilon = 001 \).

Elimination of \(\varepsilon \)Transitions

- \(\varepsilon \) transitions are a convenience, but do not increase the power of FA’s. To eliminate \(\varepsilon \) transitions:
 1. Compute the transitive closure of the \(\varepsilon \) arcs only.
 2. If a state \(p \) can reach state \(q \) by \(\varepsilon \) arcs, and there is a transition from \(q \) to \(r \) on input \(a \) (not \(\varepsilon \)), then add a transition from \(p \) to \(r \) on input \(a \).
 3. Make state \(p \) an accepting state if \(p \) can reach some accepting state \(q \) by \(\varepsilon \) arcs.
 4. Remove all \(\varepsilon \) transitions.
We have proved by construction that

Theorem. Every NFA has an equivalent DFA.

Definition. A language is regular if some DFA recognizes it.

Corollary. A language is regular if and only if some NFA recognizes it.

We have seen that for any NFA there exists an equivalent DFA. Hence

A language is regular if and only if some NFA recognizes it.

We will show today that regular languages are closed under regular operations.

Regular Operations (again)

- Let L_1 and L_2 be languages. We defined the regular operations **union**, **concatenation**, and **star** as follows.

 - **Union:** $L_1 \cup L_2 = \{ w : w \in L_1 \text{ or } w \in L_2 \}$.
 - **Concatenation:** $L_1 \cdot L_2 = \{ vw : w \in L_1 \text{ and } v \in L_2 \}$.
 - **Star:** $L_1^* = \{ w_1 w_2 \ldots w_k : k \geq 0 \text{ and each } w_i \in L_1 \}$.

- Example: Let the alphabet Σ be the standard 26 letters {a,b,…,z}.
 - If $L_1=$\{good, bad\} and $L_2=$\{boy, girl\}, then

 - $L_1 \cup L_2 =$\{good, bad, boy, girl\}.
 - $L_1 \cdot L_2 =$\{goodboy, badboy, goodgirl, badgirl\}.
 - $L_1^* =$\{ε, good, bad, goodgood, badgood, badbad, goodbad, goodgoodgood, goodgoodbad, goodbadbad, …\}
Th.1 The class of regular languages is closed under the union operation.

- We have regular languages L_1 and L_2 and want to prove that $L_1 \cup L_2$ is regular.
- The idea is to take two NFAs N_1 and N_2 for L_1 and L_2, and combine them into one new NFA N.
- N must accept its input if either N_1 or N_2 accepts this input.
- N will have a new state that branches to the start states of the old machines N_1, N_2 with ε arrows.
- In this way N non-deterministically guesses which of the two machines accepts the input.
- If one of them accepts the input then N will accept it, too.

$$N_1 = (Q_1, \Sigma, \delta_1, q_{10}, F_1) \text{ recognizes } L_1$$

$$N_2 = (Q_2, \Sigma, \delta_2, q_{20}, F_2) \text{ recognizes } L_2$$

$$Q = (Q_1 \cup Q_2 \cup \{q_0\}, \delta, q_0, F) \text{ is the start state}$$

$$\delta(q_0, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

$$N = (Q, \Sigma, \delta, q_0, F) \text{ recognizes } L_1 \cup L_2$$

Th.2 The class of regular languages is closed under the concatenation operation.

- We have regular languages L_1 and L_2 and want to prove that $L_1 \cdot L_2$ is regular.
- The idea is to take two NFAs N_1 and N_2 for L_1 and L_2, and combine them into a new NFA N.
- N accepts when the input can be split into two parts, the first accepted by N_1 and the second by N_2.
- We can think of N as non-deterministically guessing where to make the split.

$$N_1 = (Q_1, \Sigma, \delta_1, q_{10}, F_1) \text{ recognizes } L_1$$

$$N_2 = (Q_2, \Sigma, \delta_2, q_{20}, F_2) \text{ recognizes } L_2$$

$$Q = (Q_1 \cup Q_2, \delta, q_{10}, F) \text{ is the set of final states}$$

$$q_{10} \text{ is the start state}$$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1, q \notin F_1 \\ \delta_1(q, a) & q \in F_1, a \neq \varepsilon \\ \delta_2(q, a) \cup \{q_2\} & q \in F_1, a = \varepsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

$$N = (Q, \Sigma, \delta, q_{10}, F) \text{ recognizes } L_1 \cdot L_2$$
Th.3 The class of regular languages is closed under the star operation.

- We have regular language L_1 and want to prove that L_1^* is regular.
- We take an NFA N_1 for L_1, and modify it to recognize L_1^*.
- The resulting NFA N accepts its input if it can be broken into several pieces and N_1 accepts each piece.
- N is like N_1 with additional ε arrows returning to the start state from the accept state.
- In addition we must modify N so that it accepts ε, which always is a member of L_1^*.

$N_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ recognizes L_1

$N = (Q, \Sigma, \delta, q_0, F)$ recognizes L_1^*

$Q = \{q_0\} \cup Q_1$

$F = \{q_0\} \cup F_1$

q_0 is the start state

$\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1, q \notin F_1 \\
\delta(q, a) & q \in F_1, a \neq \varepsilon \\
\delta(q, a) \cup \{q_0\} & q \in F_1, a = \varepsilon \\
\{q_0\} & q = q_0, a = \varepsilon \\
\emptyset & q = q_0, a \neq \varepsilon
\end{cases}$