CHAPTER 1
Regular Languages

Contents

• Finite Automata (FA or DFA)
 • definitions, examples, designing, regular operations

• Non-deterministic Finite Automata (NFA)
 • definitions, equivalence of NFAs and DFAs, closure under regular operations

• Regular expressions
 • definitions, equivalence with finite automata

• Non-regular Languages
 • the pumping lemma for regular languages

Non-determinism

• So far in our discussion, every step of a computations follows in a unique way from the preceding step.
 • When the machine is in a given state and reads the next input symbol, we know what the next state will be – it is determined. We call this deterministic computation.
 • In a non-deterministic machine, several choices may exist for the next state at any point.

A deterministic FA (DFA) M_1

A non-deterministic FA (NFA) N_1

• Non-determinism is a generalization of determinism, so every DFA is automatically a NFA.

 • The difference: - every state of a DFA has exactly one exiting arrow for each symbol
 - in a NFA a state may have 0, 1, or many exiting arrows for each symbol
 - a NFA may have arrows with the label ε
How does an NFA compute?

- After reading the symbol, the machine splits into multiple copies of itself and follows all the possibilities in parallel.
- Each copy takes one of the possible ways to proceed and continues as before.
- If there are subsequent choices, the machine splits again.
- If the next input symbol doesn’t appear on any of the arrows exiting the state occupied by a copy of the machine, that copy dies.
- If any one of these copies of the machine is in an accept state at the end of the input, the NFA accepts the input string.
- If a state with an \(\varepsilon \) symbol on an exiting arrow is encountered, the machine (w/o reading any input) splits into multiple copies, one following each of the exiting arrow with \(\varepsilon \) and one staying at current state.

A non-deterministic FA (NFA) \(N_1 \) (Run for inputs 11, 101)

Non-determinism may be viewed as a kind of parallel computation wherein several “processes” can be running concurrently.

Tree of Possibilities

- A way to think of a non-deterministic computation is as a **tree of possibilities**.

 - The root corresponds to the start of the computation
 - Every branching point in the tree corresponds to a point in the computation at which the machine has multiple choices
 - The machine accepts if at least one of the computation branches ends in an accept state.

NFA \(N_1 \) (input is 010110)
NFA vs. DFA

- NFAs are useful in several aspects.
 - Every NFA can be converted into an equivalent DFA (construction later).
 - Constructing NFAs is sometimes easier than directly constructing DFAs.
 - An NFA may be much smaller than its deterministic counterpart.
 - Its functioning may be easier to understand.
 - We will use non-determinism in more powerful computational models.

Example.

\[
\begin{array}{c}
q_1 \\
 q_2 \\
 q_3 \\
 q_4 \\
\end{array}
\]

\[
\begin{array}{c}
q_0 \\
 q_1 \\
 q_2 \\
 q_3 \\
\end{array}
\]

They recognize the same language \(A = \{ \text{all strings over \{0,1\} containing a 1 in the third position from the end} \} \)

Formal Definition of NFAs

- A non-deterministic finite automaton (NFA) is specified by a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where
 - \(Q\) is a finite set of states,
 - \(\Sigma\) is a finite alphabet,
 - \(\delta: Q \times \Sigma \rightarrow 2^Q\) is the transition function,
 - \(q_0 \in Q\) is the initial state,
 - \(F \subseteq Q\) is the set of final states.

For NFA \(N_1 \) we have

\[
Q = \{ q_1, q_2, q_3, q_4 \}
\]

\[
\Sigma = \{ 0, 1 \}
\]

\[
q_0 = q_1
\]

\[
F = \{ q_4 \}
\]

\[
\delta:
\begin{array}{c|c|c|c}
 & 0 & 1 & \varepsilon \\
\hline
q_1 & \{ q_1 \} & \{ q_1, q_2 \} & \emptyset \\
q_2 & \{ q_3 \} & \emptyset & \{ q_3 \} \\
q_3 & \emptyset & \{ q_4 \} & \emptyset \\
q_4 & \{ q_4 \} & \{ q_4 \} & \emptyset \\
\end{array}
\]

\[
\begin{array}{c}
q_1 \\
 q_2 \\
 q_3 \\
 q_4 \\
\end{array}
\]

\[
\begin{array}{c}
q_0 \\
 q_1 \\
 q_2 \\
 q_3 \\
\end{array}
\]

Automata & Formal Languages, Feodor F. Dragan, Kent State University
Acceptance of Strings and the Language of NFA

• Let \(N = (Q, \Sigma, \delta, q_0, F) \) be a NFA.

• \(N \) accepts \(w \) if we can write \(w \) as \(w = w_1w_2\ldots w_n \), where each \(w_i \) is a member of \(\Sigma \), and a sequence of states \(r_0, r_1, r_2, \ldots, r_n \) exists in \(Q \) with the following three conditions:

 1. \(r_0 = q_0 \),
 2. \(r_{i+1} \in \delta(r_i, w_{i+1}) \) for \(i = 0, \ldots, n-1 \), and
 3. \(r_n \in F \).

• If \(L \) is a set of strings that \(N \) accepts, we say that \(L \) is the language of \(N \) and write \(L = L(N) \).

• We say \(N \) recognizes \(L \) or \(N \) accepts \(L \).

In this example, \(N_4 \) recognizes the strings \(a, \ baba, \ baa \), but doesn’t accept the strings \(b, \ bb, \ babba \).

Subset Construction

• For every NFA there is an equivalent (accepts the same language) DFA.

• But the DFA can have exponentially many states.

• Let \(N = (Q, \Sigma, \delta, q_0, F) \) be an NFA.

• The equivalent DFA constructed by the subset construction is \(D = (Q_D, \Sigma, \delta_D, q_{0D}, F_D) \).

• For \(R \subseteq Q_N \), we define \(E(R) = \{ q : q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \} \).

• Then,

 1. \(Q_D = P(Q_N) \) (= the set of subsets of \(Q_N \)),
 2. For \(R \subseteq Q_D \) and \(a \in \Sigma \) let \(\delta_D(R, a) = E(\bigcup_{r \in R} \delta_N(r, a)) \),
 3. \(q_{0D} = E(\{ q_0 \}) \),
 4. \(F_D = \{ R \subseteq Q_D : R \text{ contains an accept state of } N \} \).
We have proved by construction that

Theorem. Every NFA has an equivalent DFA.

Corollary. A language is regular if and only if some NFA recognizes it.

We have seen that for any NFA there exists an equivalent DFA. Hence

A language is regular if and only if some NFA recognizes it.

We will show today that regular languages are closed under regular operations.

Regular Operations (again)

- Let L_1 and L_2 be languages. We defined the regular operations **union, concatenation,** and **star** as follows.
 - **Union:** $L_1 \cup L_2 = \{ w : w \in L_1 \text{ or } w \in L_2 \}$.
 - **Concatenation:** $L_1 \circ L_2 = \{ wv : w \in L_1 \text{ and } v \in L_2 \}$.
 - **Star:** $L_1^* = \{ w_1 w_2 \ldots w_k : k \geq 0 \text{ and each } w_i \in L_1 \}$.

- Example: Let the alphabet Σ be the standard 26 letters \{a,b,…,z\}.
 - If $L_1=$\{good, bad\} and $L_2=$\{boy, girl\}, then
 - $L_1 \cup L_2 = \{ \text{good, bad, boy, girl} \}$.
 - $L_1 \circ L_2 = \{ \text{goodboy, badboy, goodgirl, badgirl} \}$.
 - $L_1^* = \{ \varepsilon, \text{good, bad, goodgood, badgood, badbad, goodbad, goodgoodgood, goodgoodbad, goodbadbad, …} \}$.
Th.1 The class of regular languages is closed under the union operation.

- We have regular languages L_1 and L_2 and want to prove that $L_1 \cup L_2$ is regular.
- The idea is to take two NFAs N_1 and N_2 for L_1 and L_2, and combine them into one new NFA N.
- N must accept its input if either N_1 or N_2 accepts this input.
- N will have a new state that branches to the start states of the old machines N_1, N_2 with ε arrows.
- In this way N non-deterministically guesses which of the two machines accepts the input.
- If one of them accepts the input then N will accept it, too.

$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes L_1

$N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes L_2

$N = (Q, \Sigma, \delta, q_0, F)$ recognizes $L_1 \cup L_2$

\[
\delta(q,a) = \begin{cases}
\delta_1(q,a) & q \in Q_1 \\
\delta_2(q,a) & q \in Q_2 \\
\{(q_1, q_2) & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases}
\]

Th.2 The class of regular languages is closed under the concatenation operation.

- We have regular languages L_1 and L_2 and want to prove that $L_1 \circ L_2$ is regular.
- The idea is to take two NFAs N_1 and N_2 for L_1 and L_2, and combine them into a new NFA N.
- N accepts when the input can be split into two parts, the first accepted by N_1 and the second by N_2.
- We can think of N as non-deterministically guessing where to make the split.

$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes L_1

$N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes L_2

$Q = Q_1 \cup Q_2$

$F = F_1 \cup F_2$

q_0 is the start state

q_1 is the final state

$N = (Q, \Sigma, \delta, q_0, F)$ recognizes $L_1 \circ L_2$

\[
\delta(q,a) = \begin{cases}
\delta_1(q,a) & q \in Q_1 \text{ and } a \in \Sigma \\
\delta_2(q,a) & q \in Q_2 \text{ and } a \in \Sigma \\
\delta_1(q,a) \cup \delta_2(q,a) & q \in F_1, a \neq \varepsilon \\
\delta_1(q,a) \cup \delta_2(q,a) & q \in Q_0, a \neq \varepsilon \\
\delta_1(q,a) \cup \delta_2(q,a) & q \in F_1, a = \varepsilon \\
\delta_1(q,a) \cup \delta_2(q,a) & q \in Q_0
\end{cases}
\]
The class of regular languages is closed under the star operation.

- We have regular language \(L_1 \) and want to prove that \(L_1^* \) is regular.
- We take an NFA \(N_1 \) for \(L_1 \), and modify it to recognize \(L_1^* \).
- The resulting NFA \(N \) accepts its input if it can be broken into several pieces and \(N_1 \) accepts each piece.
- \(N \) is like \(N_1 \) with additional \(\varepsilon \) arrows returning to the start state from the accept state.
- In addition we must modify \(N \) so that it accepts \(\varepsilon \), which always is a member of \(L_1^* \).

\[
N_1 = (Q_1, \Sigma, \delta_1, q_0, F_1) \text{ recognizes } L_1
\]

\[
N = (Q, \Sigma, \delta, q_0, F) \text{ recognizes } L_1^*
\]

\[
\begin{align*}
Q &= \{q_0\} \cup Q_1 \\
F &= \{q_0\} \cup F_1 \\
q_0 &\text{ is the start state}
\end{align*}
\]

\[
\delta(q, a) =
\begin{cases}
\delta_1(q, a) & q \in Q_1, q \in F_1 \\
\delta_1(q, a) & q \in F_1, a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_1\} & q \in F_1, a = \varepsilon \\
\{q_1\} & q = q_0, a = \varepsilon \\
\emptyset & q = q_0, a \neq \varepsilon
\end{cases}
\]

Automata & Formal Languages, Fedor F. Dragan, Kent State University