
Automata & Formal Languages, Feodor F. Dragan, Kent State University 1

CHAPTER 1

Regular Languages

Contents

• Finite Automata (FA or DFA)

• definitions, examples, designing, regular operations

• Non-deterministic Finite Automata (NFA)

• definitions, equivalence of NFAs and DFAs, closure under

regular operations

• Regular expressions

• definitions, equivalence with finite automata

• Non-regular Languages

• the pumping lemma for regular languages

Automata & Formal Languages, Feodor F. Dragan, Kent State University 2

Non-determinism

• So far in our discussion, every step of a computations follows in a unique
way from the preceding step.

• When the machine is in a given state and reads the next input symbol,
we know what the next state will be – it is determined. We call this
deterministic computation.

• In a non-deterministic machine, several choices may exist for the next state
at any point.

q1q0

0 0

q2

0, 1 1

1

1NA deterministic FA (DFA) A non-deterministic FA (NFA)

q4q1
10,

q2

0, 1

1

q3

0, 1

ε

1M

• Non-determinism is a generalization of determinism, so every DFA is automatically a NFA.

• The difference: - every state of a DFA has exactly one exiting arrow for each symbol

- in a NFA a state may have 0, 1, or many exiting arrows for each symbol

- a NFA may have arrows with the label ε

Automata & Formal Languages, Feodor F. Dragan, Kent State University 3

How does an NFA compute?

• After reading the symbol, the machine splits into multiple copies of itself
and follows all the possibilities in parallel.

• Each copy takes one of the possible ways to proceed and continues as
before.

• If there are subsequent choices, the machine splits again.

• If the next input symbol doesn’t appear on any of the arrows exiting the state
occupied by a copy of the machine, that copy dies.

• If any one of these copies of the machine is in an accept state at the end of
the input, the NFA accepts the input string.

• If a state with an symbol on an exiting arrow is encountered, the machine
(w/o reading any input) splits into multiple copies, one following each of the
exiting arrow with and one staying at current state.ε

ε

1N

q4q1
10,

q2

0, 1

1

q3

0, 1

ε

Non-determinism may be viewed

as a kind of parallel computation

wherein several “processes” can be

running concurrently.

A non-deterministic FA (NFA) (Run for inputs 11, 101)

Automata & Formal Languages, Feodor F. Dragan, Kent State University 4

Tree of Possibilities

• A way to think of a non-deterministic computation is as a tree of
possibilities.

• The root corresponds to the start of the computation

• Every branching point in the tree corresponds to a point in the
computation at which the machine has multiple choices

• The machine accepts if at least one of the computation branches
ends in an accept state.

1N

q4q1
10,

q2

0, 1

1

q3

0, 1

ε

NFA (input is 010110)

q1

q1

q1 q3

q4

q4

q4

q3

q2

q1

q2q1 q3

q4

q4

q1

q1

q3

q2 q3

symbol read

0

1

0

1

1

0

start

Automata & Formal Languages, Feodor F. Dragan, Kent State University 5

NFA vs. DFA
• NFAs are useful in several aspects.

• Every NFA can be converted into an equivalent DFA (construction later).

• Constructing NFAs is sometimes easier than directly constructing DFAs.

• An NFA may be much smaller than its deterministic counterpart.

• Its functioning may be easier to understand.

• We will use non-determinism in more powerful computational models.

• Example.

2N

q4q1 0,10,1
q2

0,1

1
q3

NFA

They recognize the same language A={all strings over

{0,1} containing a 1 in the third position from the end}

q110q000

1
0

0

0
q010

q111q001
11

1

1

q011

0

q100

1
0

q101

1
0

0

1

0

DFA 2M

Automata & Formal Languages, Feodor F. Dragan, Kent State University 6

Formal Definition of NFAs

• A non-deterministic finite automaton (NFA) is specified by a 5-
tuple , where

is a finite set of states,

is a finite alphabet,

is the transition function,

is the initial state,

is the set of final states.

• For NFA we have

),,,,(0 FqQ δΣ

)(: QQ Ρ→Σ× εδ

QF ⊆

Qq ∈0

Σ
Q

}4{qF =

10 qq =

}1,0{=Σ

}4,3,2,1{ qqqqQ =

Is a collection of all subsets of Q

}{εε UΣ=Σ

1N

q4q1
10,

q2

0, 1

1

q3

0, 1

ε

NFA

1N

0 1

q1 {q1} {q1,q2}

ε

:δ
q2 {q3} {q3}
q3 {q4}
q4 {q4} {q4} ∅

∅

∅
∅

∅

Automata & Formal Languages, Feodor F. Dragan, Kent State University 7

Acceptance of Strings and the Language of NFA

• Let N= be a NFA

• N accepts w if we can write w as , where each
is a member of and a sequence of states exists in
Q with the following three conditions:

for and

q1

q2 q3

a
4N

),,,,(0 FqQ δΣ

,1,...,0),(.2 11 −=∈ ++ niwrr iii δ

Frn ∈.3

,.1 00 qr =

εΣ
nwwww ,...,, 21=

nrrrr ,...,,, 210

• If L is a set of strings that N accepts, we say that L is the language
of N and write L=L(N).

• We say N recognizes L or N accepts L.

• In this example, recognizes the strings
a, baba, baa,

but doesn’t accept the strings
b, bb, babba.

b a

a,b

ε

iw

4N

Automata & Formal Languages, Feodor F. Dragan, Kent State University 8

Subset Construction

• For every NFA there is an equivalent (accepts the same language) DFA.

• But the DFA can have exponentially many states.

• Let N= be an NFA.

• The equivalent DFA constructed by the subset construction is

• For , we define

E(R)={ q: q can be reached from R by traveling along 0 or more arrows}.

• Then,

),,,,(0 NNN FqQ δΣ

).,,,,(0 DDDD FqQD δΣ=

NQR ⊆

ε

),(.1 QPQ ND
= (= the set of subsets of),NQ

2. For and let Σ∈aDQR ∈)),,((),(arEaR NRrD δδ ∈= U

}),({.3 00 qEq D =

}.:{.4 NRQRF DD ∈= contains an accept state of

Automata & Formal Languages, Feodor F. Dragan, Kent State University 9

Example And The Theorem

a
{1} {2} {1,2}

{3} {1,3} {2,3} {1,2,3}1

2 3

a

4N

b a

a,b

ε

We have proved by construction that

Theorem. Every NFA has an equivalent DFA.

Corollary. A language is regular if and only if some NFA recognizes it.

∅
b

a,b

ab
a,b

a

b

a

b
a

b

b

a

simplifying

{2}

{3}{1,3}

{2,3} {1,2,3}

∅

a,b

a

b

a

ba

b

a

b

b a

4D

−

4D

Automata & Formal Languages, Feodor F. Dragan, Kent State University 10

Regular Operations (again)
• Let L1 and L2 be languages. We defined the regular operations

union, concatenation, and star as follows.

• Union:

• Concatenation:
• Star:

• Example: Let the alphabet be the standard 26 letters {a,b,…,z}.
• If L1={good, bad} and L2= {boy, girl}, then

}.10:...{1

}.21:{21

}.21:{21

21

*
LweachandkwwwL

LvandLwwvLL

LworLwwLL

ik ∈≥=

∈∈=

∈∈=∪

o

Σ

=

=

=∪

*1

21

21

L

LL

LL

o

{good, bad, boy, girl}.

{goodboy, badboy, goodgirl, badgirl}.

{ , good, bad, goodgood, badgood, badbad, goodbad,
goodgoodgood, goodgoodbad, goodbadbad, …}

ε

We have seen that for any NFA there exists an equivalent DFA. Hence

A language is regular if and only if some NFA recognizes it.

We will show today that regular languages are closed under regular
operations.

Automata & Formal Languages, Feodor F. Dragan, Kent State University 11

Th.1 The class of regular languages is closed under the

union operation.

),,,,(1 1111 FqQN δΣ=

ε

U• We have regular languages L1 and L2 and want to prove that L1 L2 is regular.

• The idea is to take two NFAs N1 and N2 for L1 and L2, and combine them into
one new NFA N.

• N must accept its input if either N1 or N2 accepts this input

• N will have a new state that branches to the start states of the old machines N1, N2
with arrows

• In this way N non-deterministically guesses which of the two machines accepts the
input

• If one of them accepts the input then N will accept it, too

),,,,(2 2222 FqQN δΣ=

ε

ε

recognizes L1

recognizes L2

),,,,(0 FqQN δΣ= recognizes L1 L2U

≠=∅

==

∈

∈

=

=

=

ε

ε

δ

δ

δ

aandqq

aandqqqq

Qqaq

Qqaq

aq

statestarttheisq

FFF

QQqQ

0

021

22

11

0

21

210

},{

),(

),(

),(

}{

U

UU

εΣ∈

∈

a

Qq

Automata & Formal Languages, Feodor F. Dragan, Kent State University 12

Th.2 The class of regular languages is closed under the

concatenation operation.

),,,,(1 1111 FqQN δΣ=

o• We have regular languages L1 and L2 and want to prove that L1 L2 is regular.

• The idea is to take two NFAs N1 and N2 for L1 and L2, and combine them into a
new NFA N.

• N accepts when the input can be split into two parts, the first accepted by N1 and
the second by N2

• We can think of N as non-deterministically guessing where to make the split

),,,,(2 2222 FqQN δΣ=

ε

ε

recognizes L1 recognizes L2

),,,,(21 FqQN δΣ= recognizes L1 L2o

state

starttheisq

statesfinal

ofsettheisF

QQQ

1

2

21 U=

∈

=∈∪

≠∈

∉∈

=

12

121

11

111

),(

,}{),(

,),(

,),(

),(

Qqaq

aFqqaq

aFqaq

FqQqaq

aq

δ

εδ

εδ

δ

δ

εΣ∈

∈

a

Qq

Automata & Formal Languages, Feodor F. Dragan, Kent State University 13

Th.3 The class of regular languages is closed under the

star operation.

),,,,(1 1111 FqQN δΣ=

ε

• We have regular language L1 and want to prove that L1* is regular.

• We take an NFA N1 for L1, and modify it to recognize L1*.

• The resulting NFA N accepts its input if it can be broken into several pieces and
N1 accepts each piece.

• N is like N1 with additional arrows returning to the start state from the accept
state.

• In addition we must modify N so that it accepts , which always is a member of
L1*.

ε
ε

recognizes L1

),,,,(0 FqQN δΣ= recognizes L1*

≠=∅

==

=∈∪

≠∈

∉∈

=

=

=

ε

ε

εδ

εδ

δ

δ

aqq

aqqq

aFqqaq

aFqaq

FqQqaq

aq

statestarttheisq

FqF

QqQ

,

,}{

,}{),(

,),(

,),(

),(

}{

}{

0

01

111

11

111

0

10

10

U

U

εΣ∈

∈

a

Qq

ε

ε

