CHAPTER 1
Regular Languages

Contents

• Finite Automata (FA or DFA)
 • definitions, examples, designing, regular operations

• Non-deterministic Finite Automata (NFA)
 • definitions, equivalence of NFAs and DFAs, closure under regular operations

• Regular expressions
 • definitions, equivalence with finite automata

• Non-regular Languages
 • the pumping lemma for regular languages
Non-determinism

• So far in our discussion, every step of a computations follows in a unique way from the preceding step.
 • When the machine is in a given state and reads the next input symbol, we know what the next state will be – it is determined. We call this deterministic computation.
 • In a non-deterministic machine, several choices may exist for the next state at any point.

A deterministic FA (DFA) M_1

A non-deterministic FA (NFA) N_1

• Non-determinism is a generalization of determinism, so every DFA is automatically a NFA.
 • The difference: - every state of a DFA has exactly one exiting arrow for each symbol
 - in a NFA a state may have 0, 1, or many exiting arrows for each symbol
 - a NFA may have arrows with the label ϵ
How does an NFA compute?

• After reading the symbol, the machine splits into multiple copies of itself and follows all the possibilities in parallel.

• Each copy takes one of the possible ways to proceed and continues as before.

• If there are subsequent choices, the machine splits again.

• If the next input symbol doesn’t appear on any of the arrows exiting the state occupied by a copy of the machine, that copy dies.

• If any one of these copies of the machine is in an accept state at the end of the input, the NFA accepts the input string.

• If a state with an ε symbol on an exiting arrow is encountered, the machine (w/o reading any input) splits into multiple copies, one following each of the exiting arrow with ε and one staying at current state.

Non-determinism may be viewed as a kind of parallel computation wherein several “processes” can be running concurrently.

A non-deterministic FA (NFA) N_1 (Run for inputs 11, 101)
Tree of Possibilities

- A way to think of a non-deterministic computation is as a **tree of possibilities**.
 - The root corresponds to the start of the computation
 - Every branching point in the tree corresponds to a point in the computation at which the machine has multiple choices
 - The machine accepts if at least one of the computation branches ends in an accept state.

Given NFA N_1 (input is 010110):

- The starting state is q_1.
- From q_1, with input 0, transition to q_2.
- From q_2, with input 1, transition to q_3.
- From q_3, with input ϵ, stay in q_3.
- From q_3, with input 1, transition to q_4.
- From q_4, with input 0, stay in q_4.
- From q_4, with input 1, transition to q_4.

The machine accepts if at least one of the computation branches ends in an accept state.
NFA vs. DFA

- NFAs are useful in several aspects.
 - Every NFA can be converted into an equivalent DFA (construction later).
 - Constructing NFAs is sometimes easier than directly constructing DFAs.
 - An NFA may be much smaller than its deterministic counterpart.
 - Its functioning may be easier to understand.
 - We will use non-determinism in more powerful computational models.
- Example.

NFA N_2

DFA M_2

They recognize the same language $A = \{\text{all strings over } \{0,1\} \text{ containing a 1 in the third position from the end}\}$
Formal Definition of NFAs

- A non-deterministic finite automaton (NFA) is specified by a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where
 - \(Q\) is a finite set of states,
 - \(\Sigma\) is a finite alphabet,
 - \(\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function,
 - \(q_0 \in Q\) is the initial state,
 - \(F \subseteq Q\) is the set of final states.

- For NFA \(N_1\) we have

\[
Q = \{q_1, q_2, q_3, q_4\} \\
\Sigma = \{0, 1\} \\
q_0 = q_1 \\
F = \{q_4\}
\]

\[
\delta : \\
\begin{array}{c|ccc}
& 0 & 1 & \varepsilon \\
\hline
q_1 & \{q_1\} & \{q_1, q_2\} & \emptyset \\
q_2 & \{q_3\} & \emptyset & \{q_3\} \\
q_3 & \emptyset & \{q_4\} & \emptyset \\
q_4 & \{q_4\} & \{q_4\} & \emptyset \\
\end{array}
\]
Acceptance of Strings and the Language of NFA

• Let $N = (Q, \Sigma, \delta, q_0, F)$ be a NFA

• N accepts w if we can write w as $w = w_1, w_2, ..., w_n$, where each w_i is a member of Σ and a sequence of states $r_0, r_1, r_2, ..., r_n$ exists in Q with the following three conditions:

1. $r_0 = q_0$,
2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for $i = 0, ..., n-1$, and
3. $r_n \in F$

• If L is a set of strings that N accepts, we say that L is the language of N and write $L = L(N)$.

• We say N recognizes L or N accepts L.

• In this example, N_4 recognizes the strings $a, baba, baa$, but doesn’t accept the strings $b, bb, babba$.

Automata & Formal Languages, Feodor F. Dragan, Kent State University
 Subset Construction

- For every NFA there is an equivalent (accepts the same language) DFA.
- But the DFA can have exponentially many states.
- Let $N= (Q_N, \Sigma, \delta_N, q_0, F_N)$ be an NFA.
- The equivalent DFA constructed by the subset construction is
 $$D = (Q_D, \Sigma, \delta_D, q_{0D}, F_D).$$
- For $R \subseteq Q_N$, we define
 $$E(R) = \{ q : q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}.$$
- Then,
 1. $Q_D = P(Q_N), \ (= \text{ the set of subsets of } Q_N),$
 2. For $R \in Q_D$ and $a \in \Sigma$ let $\delta_D(R, a) = E(\bigcup_{r \in R} \delta_N(r, a)),$
 3. $q_{0D} = E(\{q_0\}),$
 4. $F_D = \{ R \in Q_D : R \text{ contains an accept state of } N \}.$
We have proved by construction that

Theorem. Every NFA has an equivalent DFA.

Corollary. A language is regular if and only if some NFA recognizes it.
We have seen that for any NFA there exists an equivalent DFA. Hence

A language is regular if and only if some NFA recognizes it.

We will show today that regular languages are closed under regular operations.

Regular Operations (again)

- Let L_1 and L_2 be languages. We defined the regular operations **union**, **concatenation**, and **star** as follows.
 - **Union:** $L_1 \cup L_2 = \{ w : w \in L_1 \text{ or } w \in L_2 \}$.
 - **Concatenation:** $L_1 \circ L_2 = \{ wv : w \in L_1 \text{ and } v \in L_2 \}$.
 - **Star:** $L_1^* = \{ w_1w_2\ldots w_k : k \geq 0 \text{ and each } w_i \in L_1 \}$.

- Example: Let the alphabet Σ be the standard 26 letters \{a,b,...,z\}.
 - If $L_1=$\{good, bad\} and $L_2=$ \{boy, girl\}, then

$$L_1 \cup L_2 = \{ \text{good, bad, boy, girl} \}.$$
$$L_1 \circ L_2 = \{ \text{goodboy, badboy, goodgirl, badgirl} \}.$$
$$L_1^* = \{ \varepsilon, \text{good, bad, goodgood, badgood, badbad, goodbad, goodgoodgood, goodgoodbad, goodbadbad, \ldots} \}$$
Th.1 The class of regular languages is closed under the union operation.

- We have regular languages L_1 and L_2 and want to prove that $L_1 \cup L_2$ is regular.
- The idea is to take two NFAs N_1 and N_2 for L_1 and L_2, and combine them into one new NFA N.
- N must accept its input if either N_1 or N_2 accepts this input
- N will have a new state that branches to the start states of the old machines N_1, N_2 with ε arrows
- In this way N non-deterministically guesses which of the two machines accepts the input
- If one of them accepts the input then N will accept it, too

\[
N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \quad \text{recognizes } L_1
\]
\[
Q = \{q_0\} \cup Q_1 \cup Q_2
\]
\[
F = F_1 \cup F_2
\]
\[
q_0 \text{ is the start state}
\]
\[
N = (Q, \Sigma, \delta, q_0, F) \quad \text{recognizes } L_1 \cup L_2
\]
\[
\delta(q,a) = \begin{cases}
\delta_1(q,a) & q \in Q_1 \\
\delta_2(q,a) & q \in Q_2 \\
\{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases}
\]

\[
N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \quad \text{recognizes } L_2
\]
Th. 2 The class of regular languages is closed under the concatenation operation.

- We have regular languages \(L1 \) and \(L2 \) and want to prove that \(L1 \circ L2 \) is regular.
- The idea is to take two NFAs \(N1 \) and \(N2 \) for \(L1 \) and \(L2 \), and combine them into a new NFA \(N \).
- \(N \) accepts when the input can be split into two parts, the first accepted by \(N1 \) and the second by \(N2 \).
- We can think of \(N \) as non-deterministically guessing where to make the split.

\[
N1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \text{ recognizes } L1 \quad \quad N2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \text{ recognizes } L2
\]

\[
Q = Q_1 \cup Q_2 \quad F_2 \text{ is the set of final states} \quad \quad q_1 \text{ is the start state}
\]

\[
N = (Q, \Sigma, \delta, q_1, F_2) \text{ recognizes } L1 \circ L2
\]

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1, q \notin F_1 \\
\delta_1(q, a) & q \in F_1, a \neq \epsilon \\
\delta_1(q, a) \cup \{q_2\} & q \in F_1, a = \epsilon \\
\delta_2(q, a) & q \in Q_1
\end{cases}
\]
Th.3 The class of regular languages is closed under the star operation.

- We have regular language L_1 and want to prove that L_1^* is regular.
- We take an NFA N_1 for L_1, and modify it to recognize L_1^*.
- The resulting NFA N accepts its input if it can be broken into several pieces and N_1 accepts each piece.
- N is like N_1 with additional ε arrows returning to the start state from the accept state.
- In addition we must modify N so that it accepts ε, which always is a member of L_1^*.