CHAPTER 1
 Regular Languages

Contents

- Finite Automata (FA or DFA)
- definitions, examples, designing, regular operations
- Non-deterministic Finite Automata (NFA)
- definitions, equivalence of NFAs and DFAs, closure under regular operations
- Regular expressions
- definitions, equivalence with finite automata
- Non-regular Languages
- the pumping lemma for regular languages

Non-determinism

- So far in our discussion, every step of a computations follows in a unique way from the preceding step.
- When the machine is in a given state and reads the next input symbol, we know what the next state will be - it is determined. We call this deterministic computation.
- In a non-deterministic machine, several choices may exist for the next state at any point.

A deterministic FA (DFA) M_{1}

A non-deterministic FA (NFA) $\quad N_{1}$

- Non-determinism is a generalization of determinism, so every DFA is automatically a NFA.
- The difference: - every state of a DFA has exactly one exiting arrow for each symbol
- in a NFA a state may have 0,1 , or many exiting arrows for each symbol
- a NFA may have arrows with the label $\boldsymbol{\varepsilon}$

How does an NFA compute?

- After reading the symbol, the machine splits into multiple copies of itself and follows all the possibilities in parallel.
- Each copy takes one of the possible ways to proceed and continues as before.
- If there are subsequent choices, the machine splits again.
- If the next input symbol doesn't appear on any of the arrows exiting the state occupied by a copy of the machine, that copy dies.
- If any one of these copies of the machine is in an accept state at the end of the input, the NFA accepts the input string.
- If a state with an ε symbol on an exiting arrow is encountered, the machine (w/o reading any input) splits into multiple copies, one following each of the exiting arrow with $\mathcal{\varepsilon}$ and one staying at current state.

Non-determinism may be viewed as a kind of parallel computation wherein several "processes" can be running concurrently.

A non-deterministic FA (NFA) N_{1} (Run for inputs 11, 101)

Tree of Possibilities

- A way to think of a non-deterministic computation is as a tree of possibilities.
- The root corresponds to the start of the computation
- Every branching point in the tree corresponds to a point in the computation at which the machine has multiple choices
- The machine accepts if at least one of the computation branches ends in an accept state.

NFA N_{1} (input is 010110)

NFA vs. DFA

- NFAs are useful in several aspects.
- Every NFA can be converted into an equivalent DFA (construction later).
- Constructing NFAs is sometimes easier than directly constructing DFAs.
- An NFA may be much smaller than its deterministic counterpart.
- Its functioning may be easier to understand.
- We will use non-determinism in more powerful computational models.
- Example.

NFA N_{2}

They recognize the same language $A=\{$ all strings over $\{0,1\}$ containing a 1 in the third position from the end $\}$

Formal Definition of NFAs

- A non-deterministic finite automaton (NFA) is specified by a 5 tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

Q	is a finite set of states,
\sum^{Q}	is a finite alphabet,
$\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathrm{P}(Q)$	is the transition function,
$q_{0} \in Q$	is a collection of all subsets of Q
$F \subseteq Q$	is the set of final states.

- For NFA N_{1} we have
$Q=\{q 1, q 2, q 3, q 4\}$

$\boldsymbol{\delta}:$| | 0 | 1 | ε |
| :---: | :---: | :---: | :---: |
| | $q 1$ | $\{q 1\}$ | $\{q 1, q 2\}$ |
| | \varnothing | | |
| | $q 2$ | $\{q\}$ | \varnothing |
| | $q 3$ | \varnothing | |
| | $q 4$ | $\{q 4\}$ | |
| | $q 4$ | $\{q 4\}$ | \varnothing |
| $\{q 4\}$ | \varnothing | | |

$\Sigma=\{0,1\}$
$q_{0}=q 1$
$F=\{q 4\}$

NFA N_{1}

Acceptance of Strings and the Language of NFA

- Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA
- N accepts w if we can write w as $w=w_{1}, w_{2}, \ldots, w_{n}$, where each w_{i} is a member of Σ_{ε} and a sequence of states $r_{0}, r_{1}, r_{2}, \ldots, r_{n} \quad$ exists in Q with the following three conditions:

1. $r_{0}=q_{0}$,
2. $r_{i+1} \in \delta\left(r_{i}, w_{i+1}\right) \quad$ for $i=0, \ldots, n-1$, and
3. $r_{n} \in F$

- If L is a set of strings that N accepts, we say that L is the language of N and write $L=L(N)$.
- We say N recognizes L or N accepts L.
- In this example, N_{4} recognizes the strings a, baba, baa,
but doesn't accept the strings
$b, b b, b a b b a$.

Subset Construction

- For every NFA there is an equivalent (accepts the same language) DFA.
- But the DFA can have exponentially many states.
- Let $\mathrm{N}=\left(Q_{N}, \Sigma, \delta_{N}, q_{0}, F_{N}\right)$ be an NFA.
- The equivalent DFA constructed by the subset construction is

$$
D=\left(Q_{D}, \Sigma, \delta_{D}, q_{0 D}, F_{D}\right)
$$

- For $R \subseteq Q_{N}$, we define $E(R)=\{q: q$ can be reached from R by traveling along 0 or more ε arrows $\}$.
- Then,

1. $Q_{D}=P\left(Q_{N}\right),\left(=\right.$ the set of subsets of $\left.Q_{N}\right)$,
2. For $R \in Q_{D}$ and $a \in \Sigma$ let $\delta_{D}(R, a)=E\left(\bigcup_{r \in R} \delta_{N}(r, a)\right)$,
3. $q_{0 D}=E\left(\left\{q_{0}\right\}\right)$,
4. $\quad F_{D}=\left\{R \in Q_{D}: R\right.$ contains an accept state of $\left.N\right\}$.

Example And The Theorem

Theorem. Every NFA has an equivalent DFA.
Corollary. A language is regular if and only if some NFA recognizes it.

We have seen that for any NFA there exists an equivalent DFA. Hence

A language is regular if and only if some NFA recognizes it.

We will show today that regular languages are closed under regular operations.

Regular Operations (again)

- Let L1 and L2 be languages. We defined the regular operations union, concatenation, and star as follows.
- Union: $L 1 \cup L 2=\{w: w \in L 1$ or $w \in L 2\}$.
- Concatenation: $L 1 \circ L 2=\{w v: w \in L 1$ and $v \in L 2\}$.
- Star: $L 1^{*}=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0\right.$ and each $\left.w_{i} \in L 1\right\}$.
- Example: Let the alphabet Σ be the standard 26 letters $\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$. - If $\mathrm{L} 1=\{$ good, bad $\}$ and $\mathrm{L} 2=\{$ boy, girl $\}$, then
$L 1 \cup L 2=\{$ good, bad, boy, girl $\}$.
$L 1 \circ L 2=\{$ goodboy, badboy, goodgirl, badgirl $\}$.
$L 1^{*}=\quad \begin{aligned} & \{\boldsymbol{\varepsilon}, \text { good, bad, goodgood, badgood, badbad, goodbad, }, \\ & \text { goodgoodgood, goodgoodbad, goodbadbad, }, \ldots\}\end{aligned}$

Th. 1 The class of regular languages is closed under the union operation.

- We have regular languages $L 1$ and $L 2$ and want to prove that $L 1 \bigcup L 2$ is regular.
- The idea is to take two NFAs N1 and N2 for $L 1$ and $L 2$, and combine them into one new NFA N.
- N must accept its input if either $N 1$ or $N 2$ accepts this input
- N will have a new state that branches to the start states of the old machines N1, N2 with ε arrows
- In this way N non-deterministically guesses which of the two machines accepts the input
- If one of them accepts the input then N will accept it, too

Th. 2 The class of regular languages is closed under the concatenation operation.

- We have regular languages $L 1$ and $L 2$ and want to prove that $L 1 \circ L 2$ is regular.
- The idea is to take two NFAs N1 and $N 2$ for $L 1$ and $L 2$, and combine them into a new NFA N.
- N accepts when the input can be split into two parts, the first accepted by N1 and the second by $N 2$
- We can think of N as non-deterministically guessing where to make the split

Th. 3 The class of regular languages is closed under the star operation.

- We have regular language $L 1$ and want to prove that $L 1 *$ is regular.
- We take an NFA N1 for $L 1$, and modify it to recognize $L 1$ *.
- The resulting NFA N accepts its input if it can be broken into several pieces and $N 1$ accepts each piece.
- N is like $N 1$ with additional \mathcal{E} arrows returning to the start state from the accept state.
\cdot In addition we must modify N so that it accepts $\boldsymbol{\varepsilon}$, which always is a member of LI*.

