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CHAPTER  1

Regular Languages

Contents

• Finite Automata (FA or DFA)

• definitions, examples, designing, regular operations

• Non-deterministic Finite Automata (NFA)

• definitions, equivalence of NFAs and DFAs, closure under 

regular operations

• Regular expressions

• definitions, equivalence with finite automata

• Non-regular Languages

• the pumping lemma for regular languages
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Non-determinism

• So far in our discussion, every step of a computations follows in a unique 
way from the preceding step.

• When the machine is in a given state and reads the next input symbol, 
we know what the next state will be – it is determined. We call this 
deterministic computation. 

• In a non-deterministic machine, several choices may exist for the next state 
at any point.
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• Non-determinism is a generalization of determinism, so every DFA is automatically a NFA.

• The difference: - every state of a DFA has exactly one exiting arrow for each symbol 

- in a NFA a state may have 0, 1, or many exiting arrows for each symbol

- a NFA may have arrows with the label ε
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How does an NFA compute?

• After reading the symbol, the machine splits into multiple copies of itself 
and follows all the possibilities in parallel.

• Each copy takes one of the possible ways to proceed and continues as 
before.

• If there are subsequent choices, the machine splits again.

• If the next input symbol doesn’t appear on any of the arrows exiting the state 
occupied by a copy of the machine, that copy dies.

• If any one of these copies of the machine is in an accept state at the end of 
the input, the NFA accepts the input string.

• If a state with an     symbol on an exiting arrow is encountered, the machine 
(w/o reading any input) splits into multiple copies, one following each of the 
exiting arrow with       and one staying at current state.ε
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Non-determinism may be viewed 

as a kind of parallel computation 

wherein several “processes” can be 

running concurrently. 

A non-deterministic FA (NFA) (Run for inputs 11,  101)
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Tree of Possibilities

• A way to think of a non-deterministic computation is as a tree of
possibilities.

• The root corresponds to the start of the computation

• Every branching point in the tree corresponds to a point in the 
computation at which the machine has multiple choices

• The machine accepts if at least one of the computation branches 
ends in an accept state. 
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NFA vs. DFA
• NFAs are useful in several aspects.

• Every NFA can be converted into an equivalent DFA (construction later).

• Constructing NFAs is sometimes easier than directly constructing DFAs.

• An NFA may be much smaller than its deterministic counterpart.

• Its functioning may be easier to understand. 

• We will use non-determinism in  more powerful computational models.

• Example. 
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Formal Definition of NFAs

• A non-deterministic finite automaton (NFA) is specified by a 5-
tuple    ,   where

is a finite set of states,

is a finite alphabet,

is the transition function,

is the initial state, 

is the set of final states.

• For NFA       we have 
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Acceptance of Strings and the Language of NFA

• Let N= be a NFA 

• N accepts w if we can write w as                         , where each                   
is a member of       and a sequence of states                          exists in 
Q with the following three conditions: 

for                       and

q1

q2 q3

a
4N

),,,,( 0 FqQ δΣ

,1,...,0),(.2 11 −=∈ ++ niwrr iii δ

Frn ∈.3

,.1 00 qr =

εΣ
nwwww ,...,, 21=

nrrrr ,...,,, 210

• If L is a set of strings that N accepts, we say that L is the language 
of N and write L=L(N).

• We say N recognizes L or N accepts L.

• In this example,       recognizes the strings  
a, baba, baa,

but doesn’t accept the strings 
b, bb, babba. 
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Subset Construction

• For every NFA there is an equivalent (accepts the same language) DFA.

• But the DFA can have exponentially many states.

• Let N=                                  be an NFA.

• The equivalent DFA constructed by the subset construction is 

• For              , we define 

E(R)={ q: q can be reached from R by traveling along 0 or more     arrows}.

• Then, 
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Example And The Theorem
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We have proved by construction that 

Theorem. Every NFA has an equivalent DFA.

Corollary. A language is regular if and only if some NFA recognizes it.
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Regular Operations (again)
• Let L1 and L2 be languages. We defined the regular operations 

union, concatenation, and star as follows.

• Union:

• Concatenation:
• Star: 

• Example: Let the alphabet       be the standard 26 letters {a,b,…,z}.
• If L1={good, bad} and L2= {boy, girl}, then
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{good, bad, boy, girl}.

{goodboy, badboy, goodgirl, badgirl}.

{     , good, bad, goodgood, badgood, badbad, goodbad, 
goodgoodgood, goodgoodbad, goodbadbad, …}

ε

We have seen that for any NFA there exists an equivalent DFA. Hence

A language is regular if and only if some NFA recognizes it.

We will show today that regular languages are closed under regular 
operations. 
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Th.1 The class of regular languages is closed under the 

union operation.

),,,,(1 1111 FqQN δΣ=

ε

U• We have regular languages L1 and L2 and want to prove that L1     L2 is regular. 

• The idea is to take two NFAs N1 and N2 for L1 and L2, and combine them into 
one new NFA N. 

• N must accept its input if either N1 or N2 accepts this input

• N will have a new state that branches to the start states of the old machines N1, N2
with     arrows

• In this way N non-deterministically guesses which of the two machines accepts the 
input

• If one of them accepts the input then N will accept it, too 
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Th.2 The class of regular languages is closed under the 

concatenation operation.

),,,,(1 1111 FqQN δΣ=

o• We have regular languages L1 and L2 and want to prove that L1  L2 is regular. 

• The idea is to take two NFAs N1 and N2 for L1 and L2, and combine them into a 
new NFA N. 

• N accepts when the input can be split into two parts, the first accepted by N1 and 
the second by N2

• We can think of N as non-deterministically guessing where to make the split

),,,,(2 2222 FqQN δΣ=

ε

ε

recognizes L1 recognizes L2

),,,,( 21 FqQN δΣ= recognizes L1  L2o

state

starttheisq

statesfinal

ofsettheisF

QQQ

1

2

21 U=









∈

=∈∪

≠∈

∉∈

=

12

121

11

111

),(

,}{),(

,),(

,),(

),(

Qqaq

aFqqaq

aFqaq

FqQqaq

aq

δ

εδ

εδ

δ

δ

εΣ∈

∈

a

Qq



Automata & Formal Languages, Feodor F. Dragan, Kent State University 13

Th.3 The class of regular languages is closed under the 

star operation.

),,,,(1 1111 FqQN δΣ=

ε

• We have regular language L1 and want to prove that L1* is regular. 

• We take an NFA N1 for L1, and modify it to recognize L1*. 

• The resulting NFA N accepts its input if it can be broken into several pieces and 
N1 accepts each piece. 

• N is like N1 with additional    arrows returning to the start state from the accept 
state. 

• In addition we must modify N so that it accepts   , which always is a member of 
L1*.
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