Finite Automata With ε Transitions

• Allow ε to be a label on arcs.

• Nothing else changes: acceptance of w is still the existence of a path from the start state to an accepting state with label w.

• But ε can appear on arcs, and means the empty string (i.e., no visible contribution to w).

• 001 is accepted by the path q, s, r, q, r, s, with label $0\varepsilon01\varepsilon = 001$.

![Finite Automata Diagram]
Elimination of ε Transitions

- ε transitions are a convenience, but do not increase the power of FA's. To eliminate ε transitions:

1. Compute the transitive closure of the ε arcs only.

2. If a state p can reach state q by ε arcs, and there is a transition from q to r on input a (not ε), then add a transition from p to r on input a.

3. Make state p an accepting state if p can reach some accepting state q by ε arcs.

4. Remove all ε transitions.

Theory of Computation, Feodor F. Dragan, Kent State University
We have proved by construction that

Theorem. Every NFA has an equivalent DFA.

Definition. A language is regular if some DFA recognizes it.

Corollary. A language is regular if and only if some NFA recognizes it.
We have seen that for any NFA there exists an equivalent DFA. Hence

A language is regular if and only if some NFA recognizes it.

We will show today that regular languages are closed under regular operations.

Regular Operations (again)

- Let L_1 and L_2 be languages. We defined the regular operations *union*, *concatenation*, and *star* as follows.
 - **Union:** $L_1 \cup L_2 = \{w : w \in L_1 \text{ or } w \in L_2\}$.
 - **Concatenation:** $L_1 \circ L_2 = \{wv : w \in L_1 \text{ and } v \in L_2\}$.
 - **Star:** $L_1^* = \{w_1w_2...w_k : k \geq 0 \text{ and each } w_i \in L_1\}$.

- Example: Let the alphabet Σ be the standard 26 letters $\{a,b,\ldots,z\}$.
 - If $L_1 = \{\text{good, bad}\}$ and $L_2 = \{\text{boy, girl}\}$, then

 $L_1 \cup L_2 = \{\text{good, bad, boy, girl}\}$.

 $L_1 \circ L_2 = \{\text{goodboy, badboy, goodgirl, badgirl}\}$.

 $L_1^* = \{\varepsilon, \text{good, bad, goodgood, badgood, badbad, goodbad, goodgoodbad, goodgoodgood, goodgoodgoodbad, goodbadbad, }\ldots\}$
Th.1 The class of regular languages is closed under the union operation.

- We have regular languages L_1 and L_2 and want to prove that $L_1 \cup L_2$ is regular.
- The idea is to take two NFAs N_1 and N_2 for L_1 and L_2, and combine them into one new NFA N.
- N must accept its input if either N_1 or N_2 accepts this input.
- N will have a new state that branches to the start states of the old machines N_1, N_2 with ε arrows.
- In this way N non-deterministically guesses which of the two machines accepts the input.
- If one of them accepts the input then N will accept it, too.

$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes L_1

$Q = \{q_0\} \cup Q_1 \cup Q_2$

$F = F_1 \cup F_2$

q_0 is the start state

$\delta(q,a) = \begin{cases}
\delta_1(q,a) & q \in Q_1 \\
\delta_2(q,a) & q \in Q_2 \\
\{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases}$

$N = (Q, \Sigma, \delta, q_0, F)$ recognizes $L_1 \cup L_2$

$N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes L_2
Th.2 The class of regular languages is closed under the concatenation operation.

- We have regular languages $L1$ and $L2$ and want to prove that $L1 \circ L2$ is regular.
- The idea is to take two NFAs $N1$ and $N2$ for $L1$ and $L2$, and combine them into a new NFA N.
- N accepts when the input can be split into two parts, the first accepted by $N1$ and the second by $N2$.
- We can think of N as non-deterministically guessing where to make the split.

\[
N1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \text{ recognizes } L1
\]

\[
N2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \text{ recognizes } L2
\]

\[
Q = Q_1 \cup Q_2
\]

$q \in Q$

$a \in \Sigma$

F_2 is the set of final states

q_1 is the start state

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1, q \notin F_1 \\
\delta_1(q, a) & q \in F_1, a \neq \epsilon \\
\delta_1(q, a) \cup \{q_2\} & q \in F_1, a = \epsilon \\
\delta_2(q, a) & q \in Q_1
\end{cases}
\]

\[
N = (Q, \Sigma, \delta, q_1, F_2) \text{ recognizes } L1 \circ L2
\]
Th.3 The class of regular languages is closed under the star operation.

- We have regular language L_1 and want to prove that L_1^* is regular.
- We take an NFA N_1 for L_1, and modify it to recognize L_1^*.
- The resulting NFA N accepts its input if it can be broken into several pieces and N_1 accepts each piece.
- N is like N_1 with additional ε arrows returning to the start state from the accept state.
- In addition we must modify N so that it accepts ε, which always is a member of L_1^*.

$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes L_1

$Q = \{q_0\} \cup Q_1$
$F = \{q_0\} \cup F_1$
q_0 is the start state

$\delta(q,a) = \begin{cases}
\delta_1(q,a) & q \in Q_1, q \notin F_1 \\
\delta_1(q,a) & q \in F_1, a \neq \varepsilon \\
\delta_1(q,a) \cup \{q_1\} & q \in F_1, a = \varepsilon \\
\{q_1\} & q = q_0, a = \varepsilon \\
\emptyset & q = q_0, a \neq \varepsilon
\end{cases}$

$N = (Q, \Sigma, \delta, q_0, F)$ recognizes L_1^*