Regular expressions: definition

- An algebraic equivalent to finite automata.
- We can build complex languages from simple languages using operations on languages.
- Let $\Sigma = \{a_1, \ldots, a_n\}$ be an alphabet. The simple languages over Σ are
 - the empty language \emptyset, which contains no word.
 - for every symbol $a \in \Sigma$, the language $\{a\}$, which contains only the one-letter word "a".
- The regular operations on languages are \cup (union), \circ (concatenation), and * (iteration).
- An expression that applies regular operations to simple languages is called a regular expression (and the resulting language is a regular language; we will see later why...).
- $L(E)$ is the language defined by the regular expression E.

Formally, R is a regular expression if R is

1. a for some a in the alphabet Σ (stands for a language $\{a\}$),
2. ε, standing for a language $\{\varepsilon\}$,
3. \emptyset, standing for the empty language,
4. $(R_1 \cup R_2)$, where R_1, R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1, R_2 are regular expressions,
6. (R_1^*), where R_1 is a regular expression.

Notations

- When writing regular expressions, we use the following conventions:
 - For simple languages of the form $\{a\}$, we write a (omitting braces).
 - Parentheses are omitted according to the rule that iteration binds stronger than concatenation, which binds stronger than union.
 - The concatenation symbol \circ is often omitted.
 - We write Σ for $a_1 \cup \ldots \cup a_n$.
 - We write ε for \emptyset (which is the language that contains only the empty word).
- For example, $01^* \cup \varepsilon$ stands for the expression $\{(\emptyset \circ (\{1\}^*)) \cup (\emptyset^*)\}$.

Examples of expressions

- $\Sigma * 00 \Sigma * \ldots$ the language of all words that contain the substring 000
- $(\Sigma \Sigma)^* \ldots$ the language of all words with an even number of letters
- $0^* 1^* 0^* \ldots$ the language of all words that contain an even number of 1’s

Note that concatenating the empty set to any set yields the empty set; $1^* \emptyset = \emptyset$
Equivalence with Finite Automata

- Regular expressions and finite automata are equivalent in their descriptive power.
- Any regular expression can be converted into a finite automaton that recognizes the language it describes, and vice versa.
- We will prove the following result

Theorem. A language is recognizable by a FA if and only if some regular expression describes it.

- This theorem has two directions. We state each direction as a separate lemma.

Lemma 1. If a language is described by a regular expression, then it is recognizable by a FA.

- We have a regular expression R describing some language A.
- We show how to convert R into an NFA recognizing A.
- We proved before that if an NFA recognizes A then a DFA recognizes A.
- To convert R into an NFA N, we consider the six cases in the formal definition of regular expression.

Proof of Lemma 1 (6 cases)

1. $R = a$ for some a in Σ. Then $L(R) = \{a\}$, hence

 $$N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$$
 $$\delta(q_1, a) = \{q_2\}$$
 $$\delta(r, b) = \emptyset$$ for $r \neq q_1$ or $b \neq a$.

2. $R = \epsilon$. Then $L(R) = \{\epsilon\}$, hence

 $$N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$$
 $$\delta(r, b) = \emptyset$$ for any r and b.

3. $R = \emptyset$. Then $L(R) = \emptyset$, hence

 $$N = (\{q\}, \Sigma, \delta, q, \emptyset)$$
 $$\delta(r, b) = \emptyset$$ for any r and b.

4. $R = R_1 \cup R_2$.
5. $R = R_1 \circ R_2$.
6. $R = R_1^*$.

- in these cases we use the constructions given in the proofs that the class of regular languages is closed under the regular operations.
- We construct the NFA for R from NFAs for R_1, R_2, and the appropriate closure construction.
Example 1

Building an NFA from the regular expression \((ab \cup a)^*\)

Example 2

Building an NFA from the regular expression \((a \cup b)^* aba\)
Equivalence with Finite Automata

• We are working on the proof of the following result

Theorem. A language is regular if and only if some regular expression describes it.

• We have proved

Lemma 1. If a language is described by a regular expression, then it is regular.
 • For given regular expression \(R \) describing some language \(A \), we have shown how to convert \(R \) into an NFA recognizing \(A \).
 • Now we will prove the other direction

Lemma 2. If a language is regular then it is described by a regular expression.
 • For a given regular language \(A \), we need to write a regular expression \(R \), describing \(A \).
 • Since \(A \) is regular, it is accepted by a DFA.
 • We will describe a procedure for converting DFAs into equivalent regular expressions.
 • We will define a new type of finite automaton, *generalized* NFA (GNFA).
 • and show how to convert DFAs into GNFAs and then GNFAs into regular expression.

Generalized Non-deterministic Finite Automata

• *Generalized non-deterministic finite automata* are simply NFAs wherein the transition arrows may have any regular expressions as labels, instead of only members of the alphabet or \(\varepsilon \).

\[
\begin{align*}
&\text{Q}_{\text{start}} \xrightarrow{ab^*} a^* \xrightarrow{(aa)^*} b^* \xrightarrow{ab} \xrightarrow{ab \cup ba} \text{Q}_{\text{accept}}
\end{align*}
\]

For convenience we require that GNFAs always have a form that meets the following conditions.

• the start state has arrows going to every other state but no ingoing arrows.
• there is only one accepting state. It has ingoing arrows from every other state but no outgoing arrows.
• moreover, the start state is not the same as the accept state.
• except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself.
Formal definition of GNFAs

- A GNFA is a 5-tuple \((Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})\), where
 1. \(Q\) is the finite set of states,
 2. \(\Sigma\) is the input alphabet,
 3. \(\delta : (Q - \{q_{\text{accept}}\}) \times (Q - \{q_{\text{start}}\}) \rightarrow \mathbb{R}\) is the transition function,
 4. \(q_{\text{start}}\) is the start state, and
 5. \(q_{\text{accept}}\) is the accept state.

- A GNFA accepts a string \(w \in \Sigma^*\) if \(w = w_1, w_2, \ldots, w_n\), where each \(w_i\) is in \(\Sigma^*\) and a sequence of states \(r_0, r_1, r_2, \ldots, r_n\) exists such that
 1. \(r_0 = q_{\text{start}}, r_n = q_{\text{accept}}\)
 2. For each \(i\), we have \(w_i \in L(R_i)\), where \(R_i = \delta(r_{i-1}, r_i)\); in other words, \(R_i\) is the expression on the arrow from \(r_{i-1}\) to \(r_i\).

From DFAs to GNFAs

- Add a new state with an \(\epsilon\) arrow to the old start state, a new accept state with \(\epsilon\) arrows from the old accept states.
- If any arrows have multiple labels (or if there are multiple arrows going between the same two states in the same direction) replace each with a single arrow whose label is the union of the previous labels.
- Add arrows labeled \(\varnothing\) between states that had no arrows.

From GNFAs to Regular Expressions.

Convert(G)

1. Let \(k\) be the number of states of GNFA \(G\).
2. If \(k=2\), then \(G\) must consist of a start state, an accept state, and a single arrow connecting them and labeled with a regular expression \(R\). Return the expression \(R\).
3. If \(k>2\), select any state \(q \in Q\) different from start and accept states and let \(G'\) be the GNFA \((Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})\), where
 \[Q' = Q - \{q\}\],
 And for any \(q_i \in Q' - \{q_{\text{accept}}\}\) and any \(q_j \in Q' - \{q_{\text{start}}\}\) let
 \[\delta'(q_i, q_j) = (R_i)(R_j)^* (R_i) \cup (R_j),\]
 \[\text{for } R_i = \delta(q_i, q_j), R_j = \delta(q_i, q_j), R_3 = \delta(q_i, q_j), R_4 = \delta(q_i, q_j).\]
4. Compute \(\text{Convert}(G')\) and return this value.

Claim. For any GNFA \(G\), \(G'\) is equivalent to \(G\).
Proof of Claim.

Claim. For any GNFA G, G' is equivalent to G.

- We show that G and G' recognize the same language.
- Suppose G accepts an input w
 - then there exists a sequence of states $s.t.$

 \[q_{\text{start}} \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow \ldots \rightarrow q_{\text{accept}}, \]

 \[w_i \in L(R_i), \quad w = w_1 w_2 \ldots w_k \]
 - if none of them is q_r, then G' accepts w
 since each of the new regular expressions labeling arrows of G' contains the old reg. expression as a part of union
 - if q_r does appear, removing each sequence of consecutive q_r states forms an accepting path in G'.
 the states q_i and q_j bracketing a sequence have a new regular expression on the arrow between them that describes all strings taking q_i to q_j via q_r on G'.
- So, G' accepts w.
- Suppose G' accepts w
 - as each arrow between any states q_i and q_j in G' describes the collection of strings taking q_i to q_j in G, either directly or via q_r, G must also accept w.