Regular expressions: definition

• An algebraic equivalent to finite automata.

• We can build complex languages from simple languages using operations on languages.

• Let $\Sigma = \{a_1, \ldots, a_n\}$ be an alphabet. The simple languages over Σ are
 • the empty language \emptyset, which contains no word.
 • for every symbol $a \in \Sigma$, the language $\{a\}$, which contains only the one-letter word “a”.

• The regular operations on languages are \cup (union), \circ (concatenation), and \ast (iteration).

• An expression that applies regular operations to simple languages is called a regular expression (and the resulting language is a regular language; we will see later why…).

• $L(E)$ is the language defined by the regular expression E.

Formally, R is a regular expression if R is

1. a for some a in the alphabet Σ (stands for a language $\{a\}$),
2. ε, standing for a language $\{\varepsilon\}$,
3. \emptyset, standing for the empty language,
4. $(R_1 \cup R_2)$, where R_1, R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1, R_2 are regular expressions,
6. (R_1^\ast), where R_1 is a regular expression.
Notations

• When writing regular expressions, we use the following conventions:
 • For simple languages of the form \{a\}, we write a (omitting braces).
 • Parentheses are omitted according to the rule that iteration binds stronger than concatenation, which binds stronger than union.
 • The concatenation symbol \circ is often omitted.
 • We write \Sigma for \bigcup_{i=1}^{n} a_i.
 • We write \epsilon for \emptyset^* (which is the language that contains only the empty word).
• For example, \text{01}^* \cup \epsilon \text{ stands for the expression } \{0\circ \{1\}^* \} \cup (\emptyset^*).

Examples of expressions

\Sigma^*000\Sigma^* \ldots \text{the language of all words that contain the substring 000}

(\Sigma \Sigma)^* \ldots \text{the language of all words with an even number of letters}

(0^*10^*1)^*0^* \ldots \text{the language of all words that contain an even number of 1’s}

Note that concatenating the empty set to any set yields the empty set; \text{1}^*\emptyset = \emptyset.
Equivalence with Finite Automata

• Regular expressions and finite automata are equivalent in their descriptive power.

• Any regular expression can be converted into a finite automaton that recognizes the language it describes, and vice versa.

• We will prove the following result

Theorem. A language is recognizable by a FA if and only if some regular expression describes it.

• This theorem has two directions. We state each direction as a separate lemma.

Lemma 1. If a language is described by a regular expression, then it is recognizable by a FA.

 • We have a regular expression R describing some language A.
 • We show how to convert R into an NFA recognizing A.
 • We proved before that if an NFA recognizes A then a DFA recognizes A.
 • To convert R into an NFA N, we consider the six cases in the formal definition of regular expression.
Proof of Lemma 1 (6 cases)

1. \(R = a \) for some \(a \) in \(\Sigma \). Then \(L(R) = \{ a \} \), hence

\[
N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})
\]

\[
\delta(q_1, a) = \{q_2\}
\]

\[
\delta(r, b) = \emptyset \quad \text{for} \ r \neq q_1 \text{ or } b \neq a.
\]

2. \(R = \varepsilon \). Then \(L(R) = \{ \varepsilon \} \), hence

\[
N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})
\]

\[
\delta(r, b) = \emptyset \quad \text{for any } r \text{ and } b.
\]

3. \(R = \emptyset \). Then \(L(R) = \emptyset \), hence

\[
N = (\{q\}, \Sigma, \delta, q, \emptyset)
\]

\[
\delta(r, b) = \emptyset \quad \text{for any } r \text{ and } b.
\]

4. \(R = R_1 \cup R_2 \).

5. \(R = R_1 \circ R_2 \).

6. \(R = R_1^* \).

• in these cases we use the constructions given in the proofs that the class of regular languages is closed under the regular operations.

• We construct the NFA for \(R \) from NFAs for \(R_1, R_2 \) and the appropriate closure construction.
Example 1

Building an NFA from the regular expression \((ab \cup a)^*\)
Example 2

Building an NFA from the regular expression \((a \cup b)^*aba\)
Equivalence with Finite Automata

• We are working on the proof of the following result

Theorem. A language is regular if and only if some regular expression describes it.

• We have proved

Lemma 1. If a language is described by a regular expression, then it is regular.

 • For given regular expression R, describing some language A, we have shown how to convert R into an NFA recognizing A.

• Now we will prove the other direction

Lemma 2. If a language is regular then it is described by a regular expression.

 • For a given regular language A, we need to write a regular expression R, describing A.

 • Since A is regular, it is accepted by a DFA.

 • We will describe a procedure for converting DFAs into equivalent regular expressions.

 • We will define a new type of finite automaton, *generalized* NFA (GNFA).

 • and show how to convert DFAs into GNFAs and then GNFAs into regular expressions.
Generalized Non-deterministic Finite Automata

• **Generalized non-deterministic finite automata** are simply NFAs wherein the transition arrows may have any regular expressions as labels, instead of only members of the alphabet or ε.

• For convenience we require that GNFAs always have a form that meets the following conditions.

 • the start state has arrows going to every other state but no ingoing arrows.

 • there is only one accepting state. It has ingoing arrows from every other state but no outgoing arrows.

 • moreover, the start state is not the same as the accept state.

 • except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself.
Formal definition of GNFAs

• A GNFA is a 5-tuple \((Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})\), where
 1. \(Q\) is the finite set of states,
 2. \(\Sigma\) is the input alphabet,
 3. \(\delta : (Q - \{q_{\text{accept}}\}) \times (Q - \{q_{\text{start}}\}) \rightarrow \mathbb{R}\) is the transition function,
 4. \(q_{\text{start}}\) is the start state, and
 5. \(q_{\text{accept}}\) is the accept state.

• A GNFA accepts a string \(w\) in \(\Sigma^*\) if \(w = w_1, w_2, \ldots, w_n\), where each \(w_i\) is in \(\Sigma^*\) and a sequence of states \(r_0, r_1, r_2, \ldots, r_n\) exists such that
 1. \(r_0 = q_{\text{start}}, r_n = q_{\text{accept}}\)
 2. For each \(i\), we have \(w_i \in L(R_i)\), where \(R_i = \delta(r_{i-1}, r_i)\); in other words, \(R_i\) is the expression on the arrow from \(r_{i-1}\) to \(r_i\).

From DFAs to GNFAs

• add a new state with an \(\varepsilon\) arrow to the old start state, a new accept state with \(\varepsilon\) arrows from the old accept states.
• if any arrows have multiple labels (or if there are multiple arrows going between the same two states in the same direction) replace each with a single arrow whose label is the union of the previous labels.
• add arrows labeled \(\emptyset\) between states that had no arrows.
From GNFAs to Regular Expressions.

Convert(G)

1. Let k be the number of states of GNFA G.

2. If k=2, then G must consist of a start state, an accept state, and a single arrow connecting them and labeled with a regular expression R. Return the expression R.

3. If k>2, select any state \(q_r \in Q \) different from start and accept states and let G’ be the GNFA \((Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})\), where

\[Q' = Q - \{ q_r \}, \]

And for any \(q_i \in Q' - \{ q_{\text{accept}} \} \) and any \(q_j \in Q' - \{ q_{\text{start}} \} \) let

\[\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4), \]

for \(R_1 = \delta(q_i, q_r), R_2 = \delta(q_r, q_r), R_3 = \delta(q_r, q_j), R_4 = \delta(q_i, q_j) \).

4. Compute Convert(G’) and return this value.

Claim. For any GNFA G, G’ is equivalent to G.
Proof of Claim.

Claim. For any GNFA G, G' is equivalent to G.

- We show that G and G' recognize the same language
- Suppose G accepts an input w
 - then there exists a sequence of states s.t.
 $$q_{\text{start}} \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow ... \rightarrow q_{\text{accept}},$$
 $$w_i \in L(R_i), \quad w = w_1 w_2 ... w_k$$
 - if none of them is q_r, then G' accepts w
 since each of the new regular expressions labeling arrows of G' contains the old reg. expression as a part of union
 - if q_r does appear, removing each sequence of consecutive q_r states forms an accepting path in G'.
 the states q_i and q_j bracketing a sequence have a new regular expression on the arrow between them that describes all strings taking q_i to q_j via q_r on G
 - So, G' accepts w.
- Suppose G' accepts w
 - as each arrow between any states q_i and q_j in G' describes the collection of strings taking q_i to q_j in G, either directly or via q_r, G must also accept w.
Example

\[s \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{a} 1 \xrightarrow{\varepsilon} 2 \xrightarrow{b} 3 \xrightarrow{a} 3 \xrightarrow{b} 1 \xrightarrow{a} 2 \xrightarrow{\varepsilon} 3 \xrightarrow{\varepsilon} s \]

\[a(aa \cup b)^* \]

\[a(aa \cup b)^*ab \cup b \]

\[(ba \cup a)(aa \cup b)^* \cup \varepsilon \]

\[(ba \cup a)(aa \cup b)^*ab \cup bb \]

\[(a(aa \cup b)^*ab \cup b)((ba \cup a)(aa \cup b)^*ab \cup bb)^*((ba \cup a)(aa \cup b)^* \cup \varepsilon) \cup a(aa \cup b)^* \]