CHAPTER 1 Regular Languages

Contents

- Finite Automata (FA or DFA)
 - definitions, examples, designing, regular operations
- Non-deterministic Finite Automata (NFA)
 - definitions, equivalence of NFAs and DFAs, closure under regular operations
- Regular expressions
 - definitions, equivalence with finite automata
- Non-regular Languages
 - the pumping lemma for regular languages

Regular expressions: definition

- An algebraic equivalent to finite automata.
- We can build complex languages from simple languages using operations on languages.
- Let $\Sigma = \{a_1, ..., a_n\}$ be an alphabet. The simple languages over Σ are
 - the empty language \emptyset , which contains no word.
 - for every symbol $a \in \Sigma$, the language $\{a\}$, which contains only the one-letter word "a".
- The regular operations on languages are ∪ (union), ∘ (concatenation), and * (iteration).
- An expression that applies regular operations to simple languages is called a *regular expression* (and the resulting language is a regular language; we will see later why...).
- L(E) is the language defined by the regular expression E.

Formally, R is a regular expression if R is

- 1. a for some a in the alphabet Σ (stands for a language $\{a\}$),
- 2. ε , standing for a language $\{\varepsilon\}$,
- 3. \emptyset , standing for the empty language,
- 4. $(R_1 \cup R_2)$, where R_1, R_2 are regular expressions,
- 5. $(R_1 \circ R_2)$, where R_1, R_2 are regular expressions,
- 6. (R_1^*) , where R_1 is a regular expression.

Notations

- When writing regular expressions, we use the following conventions:
 - For simple languages of the form $\{a\}$, we write a (omitting braces).
 - Parentheses are omitted according to the rule that iteration binds stronger than concatenation, which binds stronger than union.
 - The concatenation symbol is often omitted.
 - We write Σ for $a_1 \cup ... \cup a_n$.
 - We write \mathcal{E} for \emptyset^* (which is the language that contains only the empty word).
- For example, $01^* \cup \varepsilon$ stands for the expression $(\{0\} \circ (\{1\}^*)) \cup (\emptyset^*)$.

Examples of expressions

```
\Sigma^*000\Sigma^* ... the language of all words that contain the substring 000
```

```
(\Sigma\Sigma)^* ... the language of all words with an even number of letters
```

(0*10*1)*0* ... the language of all words that contain an even number of 1's

Note that concatenating the empty set to any set yields the empty set; $1*\emptyset = \emptyset$

Equivalence with Finite Automata

- Regular expressions and finite automata are equivalent in their descriptive power.
- Any regular expression can be converted into a finite automaton that recognizes the language it describes, and vice versa.
- We will prove the following result

Theorem. A language is recognizable by a FA if and only if some regular expression describes it.

• This theorem has two directions. We state each direction as a separate lemma.

Lemma 1. If a language is described by a regular expression, then it is recognizable by a FA.

- We have a regular expression R describing some language A.
- We show how to convert R into an NFA recognizing A.
- We proved before that if an NFA recognizes A then a DFA recognizes A.
- To convert R into an NFA N, we consider the six cases in the formal definition of regular expression.

Proof of Lemma 1 (6 cases)

1. R = a for some a in Σ . Then $L(R) = \{a\}$, hence

$$N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$$

$$\delta(q_1, a) = \{q_2\}$$

$$\delta(r, b) = \emptyset \quad \text{for } r \neq q_1 \text{ or } b \neq a.$$

2. $R = \varepsilon$. Then $L(R) = {\varepsilon}$, hence

$$N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$$

 $\delta(r,b) = \emptyset$ for any r and b .

3. $R = \emptyset$. Then $L(R) = \emptyset$, hence

$$N = (\{q\}, \Sigma, \delta, q, \emptyset)$$

 $\delta(r,b) = \emptyset$ for any r and b .

- $4. \quad R = R_1 \cup R_2.$
- $5. \quad R = R_1 \circ R_2.$
- 6. $R = R_1^*$.

- in these cases we use the constructions given in the proofs that the class of regular languages is closed under the regular operations.
- We construct the NFA for R from NFAs for R_1 , R_2 and the appropriate closure construction.

Example 1

 \boldsymbol{a} bab $ab \cup a$ ${\cal E}$ ${\cal E}$ $(ab \cup a)^*$

Building an NFA from the regular expression $(ab \cup a)^*$

Example 2

$$a \longrightarrow a$$

Building an NFA from the regular expression $(a \cup b)*aba$

Equivalence with Finite Automata

•We are working on the proof of the following result

Theorem. A language is regular if and only if some regular expression describes it.

• We have proved

Lemma 1. If a language is described by a regular expression, then it is regular.

- For given regular expression R, describing some language A, we have shown how to convert R into an NFA recognizing A.
- Now we will prove the other direction

Lemma 2. If a language is regular then it is described by a regular expression.

- For a given regular language A, we need to write a regular expression R, describing A.
- Since A is regular, it is accepted by a DFA.
- We will describe a procedure for converting DFAs into equivalent regular expressions.
- We will define a new type of finite automaton, generalized NFA (GNFA).
- and show how to convert DFAs into GNFAs and then GNFAs into regular expression.

Generalized Non-deterministic Finite Automata

• Generalized non-deterministic finite automata are simply NFAs wherein the transition arrows may have any regular expressions as labels, instead of only members of the alphabet or ε .

- •For convenience we require that GNFAs always have a form that meets the following conditions.
 - the start state has arrows going to every other state but no ingoing arrows.
 - there is only one accepting state. It has ingoing arrows from every other state but no outgoing arrows.
 - moreover, the start state is not the same as the accept state.
 - except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself.

Formal definition of GNFAs

- A GNFA is a 5-tuple $(Q, \Sigma, \delta, q_{start}, q_{accept})$, where
 - 1. Q is the finite set of states,
 - 2. Σ is the input alphabet,
 - 3. $\delta: (Q \{q_{accept}\}) \times (Q \{q_{start}\}) \rightarrow \mathbb{R}$ is the transition function,
 - 4. q_{start} is the start state, and
 - 5. q_{accept} is the accept state.
- A GNFA accepts a string w in $\sum *$ if $w = w_1, w_2, ..., w_n$, where each w_i is in $\sum *$ and a sequence of states $r_0, r_1, r_2, ..., r_n$ exists such that
 - $1. \quad r_0 = q_{start}, r_n = q_{accept}$
 - 2. For each i, we have $w_i \in L(R_i)$, where $R_i = \delta(r_{i-1}, r_i)$; in other words, R_i is the expression on the arrow from r_{i-1} to r_i .

From DFAs to GNFAs

- add a new state with an \mathcal{E} arrow to the old start state, a new accept state with \mathcal{E} arrows from the old accept states.
- if any arrows have multiple labels (or if there are multiple arrows going between the same two states in the same direction) replace each with a single arrow whose label is the union of the previous labels.
- add arrows labeled \(\infty \) between states that had no arrows.

From GNFAs to Regular Expressions.

Convert(G)

- 1. Let k be the number of states of GNFA G.
- 2. If k=2, then G must consist of a start state, an accept state, and a single arrow connecting them and labeled with a regular expression R. Return the expression R.
- 3. If k>2, select any state $q_r \in Q$ different from start and accept states and let G' be the GNFA $(Q', \Sigma, \delta', q_{start}, q_{accept})$, where

$$Q' = Q - \{q_r\},$$

And for any $q_i \in Q' - \{q_{accept}\}$ and any $q_j \in Q' - \{q_{start}\}$ let

$$\delta'(q_i, q_j) = (R_1)(R_2) * (R_3) \cup (R_4),$$

for
$$R_1 = \delta(q_i, q_r), R_2 = \delta(q_r, q_r), R_3 = \delta(q_r, q_j), R_4 = \delta(q_i, q_j).$$

4. Compute Covert(G') and return this value.

Proof of Claim.

Claim. For any GNFA G, G' is equivalent to G.

- We show that G and G' recognize the same language
- Suppose G accepts an input w
 - then there exists a sequence of states s.t.

$$q_{start} \xrightarrow{R_1} q_1 \xrightarrow{R_2} q_2 \xrightarrow{R_3} q_3 \xrightarrow{R_4} \dots \xrightarrow{R_k} q_{accept},$$

$$w_i \in L(R_i), \ w = w_1 \ w_2 \dots w_k$$

- if none of them is q_r , then G accepts w since each of the new regular expressions labeling arrows of G contains the old reg. expression as a part of union
- if q_r does appear, removing each sequence of consecutive q_r states forms an accepting path in G'.

 the states q_i and q_j bracketing a sequence have a new regular expression on the arrow between them that describes all strings taking q_i to q_j via q_r on G
- So, G' accepts w.
- Suppose G' accepts w
 - as each arrow between any states q_i and q_j in G' describes the collection of strings taking q_i to q_j in G, either directly or via q_r , G must also accept

 $\frac{(a(aa \cup b)*ab \cup b)((ba \cup a)(aa \cup b)*ab \cup bb)*((ba \cup a)(aa \cup b)*\cup \mathcal{E}) \cup a(aa \cup b)*}{(aa \cup b)*ab \cup bb}$