CHAPTER 1
Regular Languages

Contents

• Finite Automata (FA or DFA)
 • definitions, examples, designing, regular operations

• Non-deterministic Finite Automata (NFA)
 • definitions, equivalence of NFAs and DFAs, closure under regular operations

• Regular expressions
 • definitions, equivalence with finite automata

• Non-regular Languages
 • the pumping lemma for regular languages

Non-regular Languages

• To understand the power of finite automata we must also understand their limitation.

• We will show that certain languages cannot be recognized by any finite automaton.

• Try to build an automaton that recognizes the language

\[L = \{0^n1^n : n = m\} \] .

• The automaton starts by seeing 0 inputs.
• It has to remember the exact number of 0 inputs, since it will later check that number against the number of 1 inputs.
• But the number of 0 inputs can be arbitrary large.
• Intuitively, no finite number of states can remember the exact number of 0 inputs.
• We conclude that this language is not regular.

• The Pumping Lemma for regular languages formalize this argument.
Pumping Lemma

Lemma. For any regular language L, there exists a number $p \geq 1$ such that for every word $w \in L$ with at least p letters there exist x, y, z with $w = xyz$ and $|y| > 0$ and $|xy| \leq p$ such that for every number $i \geq 0$, $xy^iz \in L$.

• We call p the pumping number of L, and xyz the pumping decomposition of w.

Proof

• Consider a regular language L.
 • L is accepted by some finite automaton M.
 • Let p be the number of states of M.
 • Now consider a word in L with at least p letters.
 • Then w is accepted by M along some path that contains a loop.
 • We can construct other paths of M by going through the loop 0, 1, 2, ... times.
 • These paths also accept words in L.
 • In other words, any accepting word w of length at least p can be "pumped" to find infinitely many other accepted words.

How to prove that a language is not regular?

• Suppose we want to prove that a language L is not regular.
• We can do this by showing that the pumping lemma does not hold for L; that is, we prove the negation of the pumping lemma:
 for any number $p \geq 1$
 there exists a word $w \in L$ with at least p letters such that
 for all x, y, z with $w = xyz$ and $|y| > 0$ and $|xy| \leq p$
 there exists a number $i \geq 0$ such that $xy^iz \notin L$.

• We have to consider all possibilities for the pumping number p,
 • all possibilities for the pumping decomposition x, y, z (often by case analysis).
 • But we are free to choose a single word w,
 • and a single iteration number i.
 • Choosing a suitable w is usually the crux of the proof (one needs a bit of creative thinking)
 • For i, we can typically choose $i=0$ or $i=2$.

• Example: $L = \{0^n1^n : n = m\}$ is not regular.
• Choose any pumping number p (we know only that $p \geq 1$). Choose $w = a^p1^p$.
• Consider any pumping decomposition $w = xyz$ ($|y| > 0$ and $|xy| \leq p$).
• Hence $x = 0^r$ and $y = 0^s$ and $z = 0^{p-r-s}1^p$, for $b \geq 1$.
• Choose $i=2$. Since $b \geq 1$, $xy^iz = 0^{p+2s}1^p$ is not in L.

More Examples

Example 2: \(L_x = \{xx: x \in \{0,1\}^*\} \) is not regular.

- Choose any pumping number \(p \) (we know only that \(p \geq 1 \)).
- Choose \(w = 10^p10^p \).
- Consider any pumping decomposition \(w = xyz \) (\(|y| > 0 \) and \(|xy| \leq p \)).
- There are two possibilities;
 a) \(x = 10^p \) and \(y = 0^p \) and \(z = 0^{p-r}10^p \), for \(b \geq 1 \).
 b) \(x = \epsilon \) and \(y = 10^p \) and \(z = 0^{p-r}10^p \).
- Choose \(i = 2 \). We need to show that \(xy^2z \) is not in \(L_x \).
 a) \(xy^2z = 10^{p+1}10^p \), which is not in \(L_x \), since \(b \geq 1 \).
 b) \(xy^2z = 10^p10^p10^p \), which is not in \(L_x \), since it contains three 1’s.

Example 3: \(L_3 = \{1^n: n \geq 0\} \) is not regular.

- Choose any pumping number \(p \) (we know only that \(p \geq 1 \)).
- Choose \(w = 1^p \).
- Consider any pumping decomposition \(w = xyz \) (\(|y| > 0 \) and \(|xy| \leq p \)).
- Hence, \(x = 1^r \) and \(y = 1^b \) and \(z = 1^{r-a-b} \), for \(b \geq 1 \) and \(a+b \leq p \).
- Choose \(i = 2 \). We need to show that \(xy^2z = 1^{p+b} \) is not in \(L_3 \), i.e., \(p^2 + b \) is not a square.
- Indeed, \(b \geq 1 \Rightarrow p^2 + b > p^2 \). \(a+b \leq p \Rightarrow p^2 + b \leq p^2 + p < (p+1)^2 \).

Proving (non)regularity.

- To prove that a language \(L \) is regular, there are essentially two options:
 1. Find a finite automaton (or regular expression) that defines \(L \).
 2. Show that \(L \) can be built from simpler regular languages using operations that are known to preserve regularity (i.e., \(\cup, \cap, \cdot, \ast \)).

- To prove that a language \(L \) is not regular, there are again two options:
 1. Show that the negation of the pumping lemma holds for \(L \).
 2. Show that a language that is known to be non-regular can be built from \(L \) and languages that are known to be regular using operations that are known to preserve regularity.

- Example (of the second proof technique):
 \(L_4 = \{w \in \{0,1\}^*: w \) contains the same number of 1’s and 0’s\} is not regular, since \(L = L_4 \cap \{01\ast\} \) (if \(L_4 \) were regular, then \(L \) would also be regular, which contradicts the first example).