CHAPTER 1
Regular Languages

Contents

• Finite Automata (FA or DFA)
 • definitions, examples, designing, regular operations

• Non-deterministic Finite Automata (NFA)
 • definitions, equivalence of NFAs and DFAs, closure under regular operations

• Regular expressions
 • definitions, equivalence with finite automata

• Non-regular Languages
 • the pumping lemma for regular languages
Non-regular Languages

• To understand the power of finite automata we must also understand their limitation.

• We will show that certain languages cannot be recognized by any finite automaton.

• Try to build an automaton that recognizes the language

$$L = \{0^n1^n : n = m\}.$$

• The automaton starts by seeing 0 inputs.
• It has to remember the exact number of 0 inputs, since it will later check that number against the number of 1 inputs.
• But the number of 0 inputs can be arbitrary large.
• Intuitively, no finite number of states can remember the exact number of 0 inputs.
• We conclude that this language is not regular.

• The *Pumping Lemma* for regular languages formalize this argument.
Pumping Lemma

Lemma. For any regular language L,

there exists a number $p \geq 1$ such that

for every word $w \in L$ with at least p letters

there exist x, y, z with $w = xyz$ and $|y| > 0$ and $|xy| \leq p$ such that

for every number $i \geq 0$, $xy^iz \in L$.

• We call p the **pumping number** of L, and xyz the **pumping decomposition** of w.

Proof

• Consider a regular language L.
• L is accepted by some finite automaton M.
• Let p be the number of states of M.
• Now consider a word in L with at least p letters.
• Then w is accepted by M along some path that contains a loop.
• We can construct other paths of M by going through the loop $0,1,2, \ldots$ times.
• These paths also accept words in L.
• In other words, any accepting word w of length at least p can be “pumped” to find infinitely many other accepted words.
How to prove that a language is not regular?

• Suppose we want to prove that a language L is not regular.

• We can do this by showing that the pumping lemma does not hold for L; that is, we prove the negation of the pumping lemma:

 for any number $p \geq 1$
 there exists a word $w \in L$ with at least p letters such that
 for all x, y, z with $w = xyz$ and $|y| \geq 0$ and $|xy| \leq p$
 there exists a number $i \geq 0$ such that $xy^iz \not\in L$.

• We have to consider all possibilities for the pumping number p,
• all possibilities for the pumping decomposition x,y,z (often by case analysis).
• But we are free to choose a single word w,
• and a single iteration number i.
• Choosing a suitable w is usually the crux of the proof (one needs a bit of creative thinking)
• For i, we can typically choose $i=0$ or $i=2$.

• Example: $L = \{0^m1^n : n = m\}$ is not regular.
• Choose any pumping number p (we know only that $p \geq 1$). Choose $w = 0^p1^p$.
• Consider any pumping decomposition $w = xyz$ ($|y| \geq 0$ and $|xy| \leq p$).
• Hence $x = 0^a$ and $y = 0^b$ and $z = 0^{p-a-b}1^p$, for $b \geq 1$.
• Choose $i=2$. Since $b \geq 1$, $xy^2z = 0^{p+b}1^p$ is not in L.
More Examples

Example 2: \(L_2 = \{xx : x \in \{0,1\}^*\} \) is not regular.

- Choose any pumping number \(p \) (we know only that \(p \geq 1 \)).
- Choose \(w = 10^p10^p \).
- Consider any pumping decomposition \(w = xyz \) (\(|y| > 0\) and \(|xy| \leq p\)).
- There are two possibilities;
 a) \(x = 10^a \) and \(y = 0^b \) and \(z = 0^{p-a-b}10^p \), for \(b \geq 1 \).
 b) \(x = \varepsilon \) and \(y = 10^b \) and \(z = 0^{p-b}10^p \).
- Choose \(i=2 \). We need to show that \(xy^2z \) is not in \(L_2 \).
 a) \(xy^2z = 10^{p+b}10^p \), which is not in \(L_2 \), since \(b \geq 1 \)
 b) \(xy^2z = 10^b10^p10^p \), which is not in \(L_2 \), since it contains three 1’s.

Example 3: \(L_3 = \{1^{n^2} : n \geq 0\} \) is not regular.

- Choose any pumping number \(p \) (we know only that \(p \geq 1 \)).
- Choose \(w = 1^{p^2} \).
- Consider any pumping decomposition \(w = xyz \) (\(|y| > 0\) and \(|xy| \leq p\)).
- Hence, \(x = 1^a \) and \(y = 1^b \) and \(z = 1^{p^2-a-b} \), for \(b \geq 1 \) and \(a + b \leq p \).
- Choose \(i=2 \). We need to show that \(xy^2z = 1^{p^2+b} \) is not in \(L_3 \), i.e., \(p^2 + b \) is not a square.
- Indeed, \(b \geq 1 \Rightarrow p^2 + b > p^2 \). \(a + b \leq p \Rightarrow p^2 + b \leq p^2 + p < (p + 1)^2 \).
Proving (non)regularity.

To prove that a language L is regular, there are essentially two options:

1. Find a finite automaton (or regular expression) that defines L.
2. Show that L can be built from simpler regular languages using operations that are known to preserve regularity \textit{(i.e., \cup, \cap, \circ, \ast)}.

To prove that a language L is not regular, there are again two options:

1. Show that the negation of the pumping lemma holds for L.
2. Show that a language that is known to be non-regular can be built from L and languages that are known to be regular using operations that are known to preserve regularity.

Example (of the second proof technique):

$L_4 = \{w \in \{0,1\}^*: w \text{ contains the same number of } 1\text{'s and } 0\text{'s} \}$ is not regular, since $L = L_4 \cap (0^*1^*)$ (if L_4 were regular, then L would also be regular, which contradicts the first example).