CHAPTER 1 Regular Languages

Contents

- Finite Automata (FA or DFA)
 - definitions, examples, designing, regular operations
- Non-deterministic Finite Automata (NFA)
 - definitions, equivalence of NFAs and DFAs, closure under regular operations
- Regular expressions
 - definitions, equivalence with finite automata
- Non-regular Languages
 - the pumping lemma for regular languages

Theory of Computation, Feodor F. Dragan, Kent State University

Non-regular Languages

• To understand the power of finite automata we must also understand their limitation.

• We will show that certain languages cannot be recognized by any finite automaton.

• Try to build an automaton that recognizes the language

 $L = \{0^m 1^n : n = m\}.$

- The automaton starts by seeing 0 inputs.
- It has to remember the exact number of 0 inputs, since it will later check that number against the number of 1 inputs.
- But the number of 0 inputs can be arbitrary large.
- Intuitively, no finite number of states can remember the exact number of 0 inputs.
- We conclude that this language is not regular.
- The *Pumping Lemma* for regular languages formalize this argument.

Pumping Lemma

Lemma. For any regular language *L*, there exists a number $p \ge 1$ such that for every word $w \in L$ with at least *p* letters there exist *x*, *y*, *z* with w = xyz and |y| > 0 and $|xy| \le p$ such that for every number $i \ge 0$, $xy^i z \in L$.

• We call *p* the pumping number of *L*, and *xyz* the pumping decomposition of *w*.

Proof

- Consider a regular language *L*.
- *L* is accepted by some finite automaton *M*.
- Let *p* be the number of states of *M*.
- Now consider a word in *L* with at least *p* letters.
- Then w is accepted by M along some path that contains a loop.
- We can construct other paths of *M* by going through the loop 0,1,2, ... times.
- These paths also accept words in *L*.
- In other words, any accepting word w of length at least p can be "pumped " to find infinitely many other accepted words.

How to prove that a language is not regular?

• Suppose we want to prove that a language *L* is not regular.

• We can do this by showing that the pumping lemma does not hold for *L*; that is, we prove the negation of the pumping lemma:

for any number $p \ge 1$ there exists a word $w \in L$ with at least p letters such that for all x, y, z with w = xyz and |y| > 0 and $|xy| \le p$ there exists a number $i \ge 0$ such that $xy^i z \notin L$.

- •We have to consider all possibilities for the pumping number *p*,
- all possibilities for the pumping decomposition *x*, *y*, *z* (often by case analysis).
- But we are free to choose a single word w,
- and a single iteration number *i*.
- Choosing a suitable w is usually the crux of the proof (one needs a bit of creative thinking)
- For *i*, we can typically choose i=0 or i=2.
- *Example:* $L = \{0^m 1^n : n = m\}$ is not regular.
- Choose any pumping number p (we know only that $p \ge 1$). Choose $w = o^p 1^p$.
- Consider any pumping decomposition w = xyz (|y| > 0 and $|xy| \le p$).
- Hence $x = 0^a$ and $y = 0^b$ and $z = 0^{p-a-b}1^p$, for $b \ge 1$.
- Choose i=2. Since $b \ge 1$, $xy^2 z = 0^{p+b} 1^p$ is not in *L*.

More Examples

Example 2: $L_2 = \{xx: x \in \{0,1\}^*\}$ is not regular.

- Choose any pumping number p (we know only that $p \ge 1$).
- Choose $W = 10^p 10^p$.
- Consider any pumping decomposition w = xyz (|y| > 0 and $|xy| \le p$).
- There are two possibilities;

a)
$$x = 10^{a}$$
 and $y = 0^{b}$ and $z = 0^{p-a-b}10^{p}$, for $b \ge 1$.

b)
$$x = \varepsilon$$
 and $y = 10^{b}$ and $z = 0^{p-b}10^{p}$

• Choose i=2. We need to show that xy^2z is not in L_2 .

a)
$$xy^2 z = 10^{p+b} 10^p$$
, which is not in L_2 , since $b \ge 1$

b) $xy^2 z = 10^b 10^p 10^p$, which is not in L_2 , since it contains three 1's.

Example 3: $L_3 = \{1^{n^2} : n \ge 0\}$ is not regular.

- Choose any pumping number p (we know only that $p \ge 1$).
- Choose $w = 1^{p^2}$.
- Consider any pumping decomposition w = xyz (|y| > 0 and $|xy| \le p$).
- Hence, $x = 1^a$ and $y = 1^b$ and $z = 1^{p^2 a b}$, for $b \ge 1$ and $a + b \le p$. • Choose i=2. We need to show that $xy^2z = 1^{p^2 + b}$ is not in L_3 , i.e., $p^2 + b$ is not a
- Choose i=2. We need to show that $xy^2 z = 1^{p^2+b}$ is not in L_3 , i.e., $p^2 + b$ is not a square.
- Indeed, $b \ge 1 \Rightarrow p^2 + b > p^2$. $a + b \le p \Rightarrow p^2 + b \le p^2 + p < (p+1)^2$.

Proving (non)regularity.

- To prove that a language L is regular, there are essentially two options:
 - 1. Find a finite automaton (or regular expression) that defines *L*.
 - 2. Show that *L* can be built from simpler regular languages using operations that are known to preserve regularity $(i.e., \cup, \cap, \circ, *)$.
- To prove that a language L is not regular, there are again two options:
 - 1. Show that the negation of the pumping lemma holds for *L*.
 - 2. Show that a language that is known to be non-regular can be built from *L* and languages that are known to be regular using operations that are known to preserve regularity.
- Example (of the second proof technique):

 $L_4 = \{w \in \{0,1\}^* : w \text{ contains the same number of 1's and 0's} \text{ is not regular,} \\ \text{since } L = L_4 \cap (0^*1^*) \quad (\text{if } L_4 \text{ were regular, then } L \text{ would also be regular,} \\ \text{which contradicts the first example).} \\ \text{Theory of Computation, Feodor F. Dragan, Kent State University} \end{cases}$