
1

Theory of Computation, Feodor F. Dragan, Kent State University 1

CHAPTER 2

Context-Free Languages

Contents

• Context-Free Grammars

• definitions, examples, designing, ambiguity, Chomsky normal form

• Pushdown Automata

• definitions, examples, equivalence with context-free grammars

• Non-Context-Free Languages

• the pumping lemma for context-free languages

Theory of Computation, Feodor F. Dragan, Kent State University 2

Context-Free Grammars: an overview

• Context-free grammars is a more powerful method of describing
languages.

• Such grammars can describe certain features that have a recursive
structure which makes them useful in a variety of applications.

• The collection of languages associated with context-free grammars
are called the context-free languages.

• They include all the regular languages and many additional
languages.

• We will give a formal definition of context-free grammars and
study the properties of context-free languages.

• We will also introduce pushdown automata, a class of machines
recognizing the context-free languages.

2

Theory of Computation, Feodor F. Dragan, Kent State University 30 0 0 1 1 1

Context-Free Grammars
• Consider the following example of a context-free grammar, call it G1.

• A grammar consists of a collection of substitution rules, also called
productions.

• Each rule appears as a line in the grammar and comprises a symbol
and a string, separated by an arrow.

• The symbol is called a variable (capital letters; A,B). The string consists of variables and
other symbols called terminals (lowercase letters, numbers, or special symbols; 0,1,).

• One variable is designated the start variable. (usually, the variable on the left-hand side of
the topmost rule; A).

• We use grammars to describe a language by generating each string of that
language.

• For example, grammar G1 generates the string 000111

• The sequence of substitutions to obtain a string is called a derivation.

• A derivation of string 000111 in grammar G1 is

(this can be shown also by a parse tree)

• All strings generated in this way constitute the language

of the grammar G1, L(G1).

• It is clear that L(G1) is

ε

ε→

→

→

B

BA

AA 10

000111111000111000110010 ⇒⇒⇒⇒⇒ BAAAA
A

A

A

A

B

ε
}.:10{ mnnm

=

Theory of Computation, Feodor F. Dragan, Kent State University 4

Context-Free Grammars (cont.)
• Any language that can be generated by some context-free grammar is called a
context-free language (CFL)

• For convenience when presenting a context-free grammar, we abbreviate several
rules with the same left-hand variable, such as A�0A1 and A�B, into a single line
A� 0A1 | B, using the symbol “|” as an “or”.

• Example of a context-free grammar called G2, which describes a fragment of the
English language:

withPREP

seeslikestouchesVERB

flowergirlboyNOUN

theaARTICLE

PHRASENOUNVERBVERBVERBCMPLX

NOUNARTICLENOUNCMPLX

NOUNCMPLXPREPPHRASEPREP

PHRASEPREPVERBCMPLXVERBCMPLXPHRASEVERB

PHRASEPREPNOUNCMPLXNOUNCMPLXPHRASENOUN

PHRASEVERBPHRASENOUNSENTENCE

→><

→><

→><

→><

>−<><><→>−<

><><→>−<

>−<><→>−<

>−><−<>−<→>−<

>−><−<>−<→>−<

>−><−<→><

||

||

|

|

|

|

• Strings in L(G2) include the following three examples

• Each of these strings has a derivation in grammar G2. The following is a derivation of the

first string on the list

boythelikesflowerawithgirla

floweraseesboythe

seesboya

seesboyaVERBboyaVERBCMPLXboyaPHRASEVERBboya

PHRASEVERBNOUNaPHRASEVERBNOUNARTICLE

PHRASEVERBNOUNCMPLXPHRASEVERBPHRASENOUNSENTENCE

⇒><⇒>−<⇒>−<

⇒>−><<⇒>−><<><⇒

>−<>−<⇒>−><−<⇒><

3

Theory of Computation, Feodor F. Dragan, Kent State University 5

Formal Definition of a Context-Free Grammar
• A context-free grammar is a 4-tuple , where

is a finite set called variables,

is a finite set (=alphabet), disjoint from V, called the terminals,

is a finite set of rules, with each rule being a variable and a string
of variables and terminals, and

is the start variable.

• If u, v, and w are strings of variables and terminals, and A� w is a
rule of the grammar, we say that uAv yields uwv, writing

• Write if u=v or if a sequence exists for and

• The language of the grammar is

• Hence, for G1: V={A,B}, S=A, and R is the collection of those three rules.

for G2: V={<SENTENCE>,<NOUN-PHRASE>,<VERB-PHRASE>,<PREP-PHRASE>,

<CMPLX-NOUN>,<CMPLX-VERB>,<ARTICLE>,<NOUN>,<VERB>,

<PREP>},

• Example: G3=({S},{(,)},R,S). The set of rules is

L(G3) is the language of all strings of properly nested parentheses.

),,,(SRV Σ

VS ∈

R

Σ

V

.uwvuAv⇒

vu ⇒∗

....21 vuuuu k ⇒⇒⇒⇒⇒

kuuu ,...,, 21
0≥k

∗ }.:{ * wSw ⇒Σ∈

},,1,0{ ε=Σ

}."",,...,,,{ zcba=Σ

.||)(εSSSS →

Theory of Computation, Feodor F. Dragan, Kent State University 6

Designing Context-Free Grammars

• The design of context-free grammars requires creativity (no simple universal
methods).

• The following techniques will be helpful, singly or in combination, when you
are faced with the problem of constructing a CFG.

a) Many CFGs are the union of simpler CFGs. If you must construct a CFG
for a CFL that you can break into simpler pieces, do so and then construct
individual grammars for each piece. These individual grammars can be
easily combined into a grammar for the original language by putting all
their rules together and then adding the new rule
where the variables are the start variables for the individual grammars.
Solving several simpler problems is often easier than solving one
complicated problem.

To get a grammar for

first construct two grammars

and then add the rule to give the grammar

}0:01{}0:10{ ≥∪≥ nn nnnn

},0:01{|01

}0:10{|10

22

11

≥→

≥→

nforSS

andnforSS
nn

nn

ε

ε

21 | SSS →

;| 21 SSS → εε |01;|10 2211 SSSS →→

,|...|| 21 kSSSS →

iS

4

Theory of Computation, Feodor F. Dragan, Kent State University 7

Designing Context-Free Grammars (cont.)

b) Constructing a CFG for a language that happens to be regular is easy if you
can construct a DFA for that language. You can convert any DFA into an
equivalent CFG as follows:

• Make a variable for each state of the DFA.

• Add rule to the CRG if there is an arc from to with
label a.

• Add the rule if is an accept state of the DFA.

• Make the start variable of the grammar, where is the start state
of the machine.

Verify on your own that the resulting CFG generates the same language that
the DFA recognizes.

q1q0

0 0

q2

0, 1 1

1

112

211

100

1|0

|0|1

1|0

RRR

RRR

RRR

→

→

→

ε

={w: w contains at least one 1 and an even number of 0s follow the last 1}

ji aRR → iq jq

ε→iR iq

0R 0q

iqiR

• Thus, any regular language is a CFL.

Theory of Computation, Feodor F. Dragan, Kent State University 8

Designing Context-Free Grammars (cont.)

c) Use the rule of the form if context-free languages contain strings
with two substrings that are ‘linked’ in the sense that a machine for such a
language would need to remember an unbounded amount of information about
one of the substrings to verify that it corresponds properly to the other
substring.

this situation occurs in the language

c) In more complex languages, the strings may contain certain structures that
appear recursively as part of other (or the same) structures.

this situation occurs in the language of all strings of properly nested parentheses.

the situation occurs also in grammar that generates arithmetic expressions.

• Place the variable symbol generating the structure in the location of the
rules corresponding to where that structure may recursively appear.

uRvR →

}.:10{ mnnm
=

.||)(εSSSS →

aEXPRFACTOR

FACTORFACTORTERMTERMG

TERMTERMEXPREXPR

|)(

|:

|

4

><→><

><><×><→><

><><+><→><

aEXPREXPREXPREXPREXPREXPRG |)(||:5 ><><×><><+><→><

5

Theory of Computation, Feodor F. Dragan, Kent State University 9

• We have a choice of variable to replace at each step.

• derivations may appear different only because we make the same replacement in a
different order.

• to avoid such differences, we may restrict the choice.

• A leftmost derivation always replace the leftmost variable in a string.

• A rightmost derivation always replace the rightmost variable in a string.

• , used to indicate derivations are leftmost or rightmost.

• Example: strings of 0’s and 1’s such that each block of 0’s is followed by at least as many 1’s.

Leftmost and Rightmost Derivations

ε

01|1|10

|

AAA

ASS

→

→ ε

⇒
rm

⇒
lm

011001110011001110

01100110110011101100110111

⇒⇒⇒⇒⇒⇒⇒•

⇒⇒⇒⇒⇒⇒⇒•

AAAAAAAASASS

SSAASSSAASS
lm lm lm lm lm lm lm

rm rm rm rm rm rm rm

S

A S

A 1 A S

0 1 A0 1

0 1

One can prove the following for a grammar G

.),(

))(.,.(

wleftthefromleavesoflabels

yieldandSrootwithGfortreeparseaisthere

iffwS

iffwS

iffGLinisweiwS

⇒

⇒

⇒

rm

lm

*

*

Theory of Computation, Feodor F. Dragan, Kent State University 10

• A CFG G is ambiguous if one or more words from L(G) have multiple leftmost
derivations from the start variable.

• equivalently: multiple rightmost derivations, or multiple parse trees.

• Example: consider and the string 00111.

{ strings of 0’s and 1’s such that each block of 0’s is followed by at least as many 1’s }

Ambiguous Grammars

01|1|10;| AAAASS →→ ε

00111001111101

001110011111010

⇒⇒⇒⇒⇒•

⇒⇒⇒⇒⇒•

SSASAASS

SSASAASS
lm lm lm lm lm

Inherently Ambiguous Languages

• A CFL L is inherently ambiguous if every CFG for L is ambiguous.

• such CFLs exist: e.g.,

• an inherently ambiguous languages would absolutely unsuitable as a
programming language.

• The language of our example grammar is not inherently ambiguous, even
though the grammar is ambiguous.

• Change the grammar to force the extra 1’s to be generated last.

}.:212{ kjorji
kji

==

01|1;|10;| BBBAAASS →→→ ε

lm lm lm lm lm

6

Theory of Computation, Feodor F. Dragan, Kent State University 11

Chomsky Normal Form
• A context-free grammar is in Chomsky form if every rule is of the form

where a is any terminal and A,B,C are any variables- except that B and C may not
be the start variable. In addition we permit the rule , where S is the start
variable.

Theorem: Any CFL is generated by a CFG in Chomsky form.

Proof (by construction; we convert any grammar into Chomsky form)

aA

BCA

→

→

ε→S

• add start symbol and the rule , where S was the original start symbol.

• remove an -rule , where A is not the start variable (are strings of
variables and terminals).

• then for each occurrence of an A on the right-hand side of a rule, add a new rule with
that occurrence deleted (e.g.,

• if we have we add unless we had previously removed the rule

• repeat this step until we eliminate all - rules not involving the start symbol.

• remove a unite rule Whenever a rule appears, add the rule unless
this was a unit rule previously deleted. Repeat.

• replace each rule , where and each is a variable or terminal with
rules are new variables.

if replace any terminal in the preceding rule(s) with new variable and add

the rule

0S SS →0

ε ε→A

.;; uvwRuAvwRuvAwRuAvAwR

uvRuAvR

→→→→→

→→→

f

f

AR → ε→R .ε→R

ε

.BA →

uB → uA →

wuv ,,

3...21 ≥→ kuuuA k iu

.;...;;; 1233222111 kkk uuAAuAAuAAuA
−−

→→→→ iA

,2≥k
iu iU

.ii uU →

.BA →

Theory of Computation, Feodor F. Dragan, Kent State University 12

Example

ε|

|

|

bB

SBA

aBASAS

→

→

→
0S

ε|

|

|
0

bB

SBA

aBASAS

SS

→

→

→

→

bB

SBA

aaBASAS

SS

→

→

→

→

ε||

||
0ε→B

bB

SBA

SASSAaaBASAS

SS

→

→

→

→

|

|||||
0

ε→A

bB

SBA

ASSAaaBASAS

SS

→

→

→

→

|

||||
0

SS →

BA →

SA → bB

ASSAaaBASAbA

ASSAaaBASAS

ASSAaaBASAS

→

→

→

→

|||||

||||

||||0

bB

aU

SAA

ASSAaUBAAbA

ASSAaUBAAS

ASSAaUBAAS

→

→

→

→

→

→

1

1

1

10

|||||

||||

||||

Final step: we simplified the resulting

grammar by using a single variable U and rule

aU →

bB

SBA

ASSAaaBASAS

ASSAaaBASAS

→

→

→

→

|

||||

||||0

SS →0

