

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-row><table-row>

Context-Free Grammars (cont.)	
• Any language that can be generated by some context-free grammar is called a <i>context-free language</i> (CFL)	
• For convenience when presenting a context-free grammar, we abbreviate several rules with the same left-hand variable, such as $A \rightarrow 0A1$ and $A \rightarrow B$, into a single line $A \rightarrow 0A1 \mid B$, using the symbol " " as an "or".	
• Example of a context-free grammar called G2, which describes a fragment of the English language:	
$ \langle SENTENCE \rangle \rightarrow \langle NOUN - PHRASE \rangle \langle VERB - PHRASE \rangle \\ \langle NOUN - PHRASE \rangle \rightarrow \langle CMPLX - NOUN \rangle \langle CMPLX - NOUN \rangle \langle PREP - PHRASE \rangle \\ \langle VERB - PHRASE \rangle \rightarrow \langle CMPLX - VERB \rangle \langle CMPLX - VERB \rangle \langle PREP - PHRASE \rangle \\ \langle PREP - PHRASE \rangle \rightarrow \langle PREP \rangle \langle CMPLX - NOUN \rangle \\ \langle CMPLX - NOUN \rangle \rightarrow \langle ARTICLE \rangle \langle NOUN \rangle \\ \langle CMPLX - VERB \rangle \rightarrow \langle VERB \rangle \langle VERB \rangle \langle NOUN - PHRASE \rangle \\ \langle ARTICLE \rangle \rightarrow althe \\ \langle NOUN \rangle \rightarrow boylgirll flower \\ \langle VERB \rangle \rightarrow touchesllikeslsees \\ \langle PREP \rangle \rightarrow with \\ a boy sees \\ the boy sees a flower \\ \end{cases} $	
• Strings in <i>L(G2)</i> include the following three examples	a girl with a flower likes the boy
• Each of these strings has a derivation in grammar G2. The following is a derivation of the first string on the list < SENTENCE > ⇒ < NOUN – PHRASE >< VERB – PHRASE >⇒ < CMPLX – NOUN >< VERB – PHRASE > ⇒ < ARTICLE >< NOUN >< VERB – PHRASE >⇒ a < NOUN >< VERB – PHRASE >⇒ a boy < VERB – PHRASE >⇒ a boy < CMPLX – VERB >⇒ a boy <verb>⇒ a boy sees</verb>	
Theory of Computation, Feodor F. Dragan, Kent State University 4	

Formal Definition of a Context-Free Grammar

• A context-free grammar is a 4-tuple (V, Σ, R, S) , where

V is a finite set called *variables*,

 Σ is a finite set (=alphabet), disjoint from *V*, called the *terminals*,

R is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and

 $S \in V$ is the start variable.

• If *u*, *v*, and *w* are strings of variables and terminals, and $A \rightarrow w$ is a rule of the grammar, we say that *uAv* yields uwv, writing $uAv \Rightarrow uwv$.

• Write $u \stackrel{*}{\Rightarrow} v$ if u = v or if a sequence $u_1, u_2, ..., u_k$ exists for $k \ge 0$ and

 $u \Longrightarrow u_1 \Longrightarrow u_2 \Longrightarrow ... \Longrightarrow u_k \Longrightarrow v.$

• The *language of the grammar* is $\{w \in \Sigma^* : S \stackrel{*}{\Rightarrow} w\}$.

• Hence, for *G1*: $V=\{A,B\}$, $\Sigma = \{0,1,\varepsilon\}$, *S=A*, and *R* is the collection of those three rules. for *G2*: $V=\{$ <SENTENCE>,<NOUN-PHRASE>,<VERB-PHRASE>,<PREP-PHRASE>,<CMPLX-NOUN>,<CMPLX-VERB>,<ARTICLE>,<NOUN>,<VERB>,<PREP>}, $\Sigma = \{a,b,c,...,z,""\}$.

• Example: $G3 = (\{S\}, \{(,,)\}, R, S)$. The set of rules is $S \to (S) |SS| \varepsilon$.

L(G3) is the language of all strings of properly nested parentheses. Theory of Computation, Feodor F. Dragan, Kent State University

<section-header><section-header><list-item><list-item><list-item><equation-block><equation-block><text>

Chomsky Normal Form • A context-free grammar is in *Chomsky form* if every rule is of the form where *a* is any terminal and *A*,*B*,*C* are any variables- except that *B* and *C* may not be the start variable. In addition we permit the rule $S \rightarrow \varepsilon^{T}$, where S is the start variable. **Theorem:** Any CFL is generated by a CFG in Chomsky form. **Proof** (by construction; we convert any grammar into Chomsky form) • add start symbol S_0 and the rule $S_0 \rightarrow S$, where S was the original start symbol. • remove an \mathcal{E} -rule $A \rightarrow \mathcal{E}$, where A is not the start variable (v, u, w are strings of variables and terminals).• then for each occurrence of an A on the right-hand side of a rule, add a new rule with that occurrence deleted (e.g., $R \rightarrow uAv \rightarrow R \rightarrow uv$ $R \rightarrow uAvAw \succ \rightarrow R \rightarrow uvAw; R \rightarrow uAvw; R \rightarrow uvw.$ • if we have $R \to A$ we add $R \to \varepsilon$ unless we had previously removed the rule $R \to \varepsilon$. • repeat this step until we eliminate all ϵ - rules not involving the start symbol. • remove a unite rule $A \rightarrow B$. Whenever a rule $B \rightarrow u$ appears, add the rule $A \rightarrow u$ unless this was a unit rule previously deleted. Repeat. • replace each rule $A \rightarrow u_1 u_2 \dots u_k$, where $k \ge 3$ and each u_i is a variable or terminal with rules $A \rightarrow u_1 A_1; A_1 \rightarrow u_2 A_2; A_2 \rightarrow u_3 A_3; ...; A_{k-2} \rightarrow u_{k-1} u_k.$ A_i are new variables. if $k \ge 2$, replace any terminal u_i in the preceding rule(s) with new variable U_i and add the rule $U_i \rightarrow u_i$. Theory of Computation, Feodor F. Dragan, Kent State University 11

