Turing Machines (intro)

- So far in our development of theory of computation we have presented several models for computing devices
 - **Finite automata** are good models for devices that have a small amount of memory.
 - **Pushdown automata** are good models for devices that have an unlimited memory that is usable only in the last in, first out manner of a stack.
 - We have shown that some very simple tasks are beyond the capabilities of these models.
 - Now we will consider a much more powerful model, first proposed by Alan Turing in 1936, called the **Turing Machine (TM)**.
 - It is similar to a finite automaton but with an *unlimited* and *unrestricted* memory.
 - TM is much more accurate model of a general purpose computer.
 - It can do everything that a real computer can do.
 - But a TM also cannot solve certain problems.
 - There are problems that are beyond the theoretical limits of computation.

Turing Machines (informal)

- The Turing machine model uses an *infinite tape* as its unlimited memory.
- It has a *head* that can read and write symbols and move around on the tape.
- Initially the tape contains only the input string and is blank everywhere else.
- If a TM needs to store information, it may write this info on the tape.
- To read the information that it has written, a TM can move its head back over it.
- The machine continues computing until it produces an output.
- The output accept and reject are obtained by entering designated accepting and rejecting states.
- If it does not enter an accepting or a rejecting state, it will go on forever, never halting.

Schematic of a Turing Machine:

- The differences between finite automata and Turing machines.
 - A TM can both write on the tape and read from it.
 - The read-write head can move both to the left and to the right.
 - The tape is infinite.
 - The special states for rejecting and accepting take immediate effect.
Example

• We want to design a TM M_1 which accepts if its input is a member of B

$$B = \{w \# w' : w, w' \in \{0, 1\}^*\}.$$

Informal description how the TM works on input string s.

• Scan the input to be sure that it contains a single # symbol. If not, reject.
• Zig-zag across the tape to corresponding positions on either side of the # symbol to check on whether these positions contain the same symbol. If they do not, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
• When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept.

```
011000#011000 ...  
x11000#011000 ...  
x11000#x11000 ...  
xx1000#x11000 ...  
xxxxxxxx # xxxxxx ...  
```

M_1 on input $011000#011000$

accept

Formal Definition of TMs

• A Turing machine (TM) is specified by a 7-tuple

$$(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}),$$

where

- Q is a finite set of states,
- Σ is a finite input alphabet not containing \cup,
- Γ is a finite tape alphabet, such that $\cup \in \Gamma$, $\Sigma \subset \Gamma$,
- $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function,
- $q_0 \in Q$ is the start state,
- $q_{\text{accept}} \in Q$ is the accept state, and
- $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{accept}} \neq q_{\text{reject}}$.

• The heart of the definition of a TM is the transition function because it tells us how the machine gets from one step to the next.

$\delta(q, a) = (r, b, L)$ means that when the machine is in a certain state q and head is over a tape square containing a symbol a, the machine writes the symbol b replacing the a, and goes to state r. The third component is either L or R and indicates whether the head moves to the left or right after writing.
How does a TM compute?

- Initially TM receives its input $w = w_1w_2...w_n \in \Sigma^*$ on the leftmost n squares of the tape, and the rest of the tape is blank.
- The head starts on the leftmost square of the tape.
- Note that Σ does not contain the blank symbol, so the first blank symbol appearing on the tape marks the end of the input.
- Once TM starts, the computation proceeds according to the rules described by the transition function.
- If TM ever tries to move its head to the left off the left-hand end of the tape, the head stays in the same place for that move, even though the transition function indicates L.
- The computation continues until it enters either accept state or reject state at which point it halts.
- If neither occurs, TM goes on forever.

Acceptance of Strings and the Language of TM

A configuration C of the TM.

For a state q and two strings u and v over the tape alphabet Γ we write uqv for the configuration where the current state is q, the current tape contents is uv, and the current head location is the first symbol of v.

Let $a, b, c \in \Gamma$, $u, v \in \Gamma^*$, $q, q_j \in Q$.

We say that configuration

$$uaq_j bv \text{ yields } \begin{cases} uq_j acv & \text{ if } \delta(q_j, b) = (q_j, c, L) \\ uqc_j v & \text{ if } \delta(q_j, b) = (q_j, c, R) \end{cases}$$

Note that

$$q_j bv \text{ yields } \begin{cases} q_j cv & \text{ if } \delta(q, b) = (q_j, c, L) \\ c q_j v & \text{ if } \delta(q, b) = (q_j, c, R) \end{cases}$$

and that uaq_j is equivalent to uaq_j and we can handle this as before.
Acceptance of Strings and the Language of TM (cont.)

- The **start configuration** of TM on input \(w\) is \(q_0w\).
- In an **accepting configuration** the state is \(q_{\text{accept}}\).
- In an **rejecting configuration** the state is \(q_{\text{reject}}\).

Halting configurations

- A Turing machine TM **accepts input** \(w\) if a sequence of configurations \(C_1, C_2, \ldots, C_k\) exists where
 - \(C_1\) is the start configuration of TM on input \(w\),
 - each \(C_i\) yields \(C_{i+1}\) and
 - \(C_k\) is an accepting configuration.
- If \(L\) is a set of strings that TM accepts, we say that \(L\) is the **language of TM** and write \(L=\mathcal{L}(TM)\).
- We say TM **recognizes** \(L\) or TM **accepts** \(L\).
- A language is **Turing-recognizable** if some TM recognizes it.
- For a TM three outcomes are possible on an input: it may accept, reject or loop.
- **Deciders** are TMs that always make a decision to accept or reject the input.
- A language is **Turing-decidable** or simply **decidable** if it is accepted by a decider.

Example 1.

- A TM \(M_2\) which decides the language \(A = \{0^n : n \geq 0\}\).

Higher-level description.

\(M_2\) = “On input string \(w\):"

1. Sweep left to right across the tape, crossing off every other 0.
2. If in stage 1 the tape contained a single 0, accept.
3. If in stage 1 the tape contained more than a single 0 and the number of 0’s was odd, reject.
4. Go to stage 1.”

Formal description.

\(M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})\)

- \(Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{accept}}, q_{\text{reject}}\}\)
- \(\Sigma = \{0\}\)
- \(\Gamma = \{0, x, _\}\)

Start state

Run \(M_2\) on input 0000 and 000
Example 2.

- A TM $M1$ which decides the language $B = \{w\#w : w \in \{0,1\}^*\}$. For higher-level description see slide #4.

Formal description. $M1 = (Q, \Sigma, \Gamma, \delta, q1, q_{accept}, q_{reject})$ $\Sigma = \{0, 1, \#\}$ $Q = \{q1, ..., q14, q_{accept}, q_{reject}\}$

Theory of Computation, Feodor F. Dragan, Kent State University

Example 3: A TM solving the element uniqueness problem. It is given a list of strings over $\{0, 1\}$ separated by #s and its job is to accept if all strings are different. The language is $E = \{\#x_1\#x_2\#...\#x_l : x_i \in \{0,1\}^* \forall i \in \{1, ..., l\}, x_i \neq x_j \text{ for } i \neq j\}$.

- TM M3 works by comparing x_1 with x_2 through x_l, then by comparing x_2 with x_3 through x_l, and so on.

Higher-level description: $M3 = \text{"On input } w:\text{"}$

1. Place a mark on top of the leftmost tape symbol. If that symbol was blank, $accept$. If it was a #, continue with the next stage. Otherwise, $reject$.
2. Scan right to the next # and place a second mark on top of it. If no # is encountered before a blank symbol, only x_1 was present, so $accept$.
3. By zig-zagging, compare the two strings to the right of the marked #s. If they are equal, $reject$.
4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol is encountered before a blank symbol, move the leftmost mark to the next # to its right and the rightmost mark to the # after that. If no # is available for the rightmost mark, all the strings have been compared, so $accept$.
5. Go to stage 3.”

(In the actual implementation, the machine has two different symbols, # and $\#$, in its tape alphabet).