
1

Theory of Computation, Feodor F. Dragan, Kent State University 1

CHAPTER 3

The Church-Turing Thesis

Contents

• Turing Machines

• definitions, examples, Turing-recognizable and Turing-decidable

languages

• Variants of Turing Machine

• Multitape Turing machines, non-deterministic Turing Machines,

Enumerators, equivalence with other models

• The definition of Algorithm

• Hilbert’s problems, terminology for describing Turing machines

Theory of Computation, Feodor F. Dragan, Kent State University 2

Turing Machines (intro)

• So far in our development of theory of computation we have presented several
models for computing devices

• Finite automata are good models for devices that have a small amount of
memory.

• Pushdown automata are good models for devices that have an unlimited memory
that is usable only in the last in, first out manner of a stack.

• We have shown that some very simple tasks are beyond the capabilities of these
models.

• Now we will consider a much more powerful model, first proposed by Alan
Turing in 1936, called the Turing Machine (TM).

• It is similar to a finite automaton but with an unlimited and unrestricted memory.

• TM is much more accurate model of a general purpose computer.

• It can do everything that a real computer can do.

• But a TM also cannot solve certain problems.

• There are problems that are beyond the theoretical limits of computation.

2

Theory of Computation, Feodor F. Dragan, Kent State University 3

Turing Machines (informal)
• The Turing machine model uses an infinite tape as its unlimited memory.

• It has a head that can read and write symbols and move around on the tape.

• Initially the tape contains only the input string and is blank everywhere else.

• If TM needs to store information, it may write this info on the tape.

• To read the information that it has written, TM can move its head back over it.

• The machine continues computing until it produces an output.

• The output accept and reject are obtained by entering designated accepting and

rejecting states.

• If it does not enter an accepting or a rejecting state, it will go on forever, never

halting.

a a b b
control

infinite tape

Schematic of a Turing Machine:

• The differences between finite automata and Turing machines.

• A TM can both write on the tape and read from it.

• The read-write head can move both to the left and to the right.

• The tape is infinite.

• The special states for rejecting and accepting take immediate effect.

…

read-write head

Theory of Computation, Feodor F. Dragan, Kent State University 4

Example
• We want to design a TM M1 which accepts if its input is a
member of B

}*}.1,0{:#{ ∈= wwwB

Informal description how the TM works on input string s.

• Scan the input to be sure that it contains a single # symbol. If not, reject.

• Zig-zag across the tape to corresponding positions on either side of the #
symbol to check on whether these positions contain the same symbol. If they do
not, reject. Cross off symbols as they are checked to keep track of which
symbols correspond.

• When all symbols to the left of the # have been crossed off, check for any
remaining symbols to the right of the #. If any symbols remain, reject;
otherwise, accept.

...__#

...__11000#1000

...__11000#11000

...__11000#11000

...__011000#11000

...__011000#011000

xxxxxxxxxxxx

xxx

xx

xx

x

accept

M1 on input

011000#011000

3

Theory of Computation, Feodor F. Dragan, Kent State University 5

• A Turing machine (TM) is specified by a 7-tuple

, where

is a finite set of states,

is a finite input alphabet not containing ,

is a finite tape alphabet, such that

is the transition function,

is the start state,

is the accept state, and

is the reject state, where

• The heart of the definition of a TM is the transition function because it tells us

how the machine gets from one step to the next.

means that when the machine is in a certain state q and head is
over a tape square containing a symbol a, the machine writes the symbol b
replacing the a, and goes to state r. The third component is either L or R and
indicates whether the head moves to the left or right after writing.

},{: RLQQ ×Γ×→Γ×δ

Formal Definition of TMs

),,,,,(0 rejectaccept qqqQ δΓΣ

Qqaccept ∈

Qq ∈0

Σ

Q

,, Γ⊂ΣΓ∈Γ

),,(),(Lbraq =δ

Qqreject ∈ .rejectaccept qq ≠

Theory of Computation, Feodor F. Dragan, Kent State University 6

How does a TM compute?

• Initially TM receives its input on the leftmost n squares
of the tape, and the rest of the tape is blank.

• The head starts on the leftmost square of the tape.

• Note that does not contain the blank symbol, so the first blank symbol
appearing on the tape marks the end of the input.

• Once TM starts, the computation proceeds according to the rules described
by the transition function.

• If TM ever tries to move its head to the left off the left-hand end of the tape,
the head stays in the same place for that move, even though the transition
function indicates L.

• The computation continues until it enters either accept state or reject state at
which point it halts.

• If neither occurs, TM goes on forever.

*...21 Σ∈= nwwww

Σ

a a b b
control

…

4

Theory of Computation, Feodor F. Dragan, Kent State University 7

Acceptance of Strings and the Language of TM

A configuration C of the TM.

1 0 1 0
q7

…0 1 0

101q70010

For a state q and two strings u and v over the tape

alphabet we write uqv for the configuration where

the current state is q, the current tape contents is uv,

and the current head location is the first symbol of v.

Γ

Let

We say that configuration

Note that

and that and we can handle this as before.

.,*,,,,, Qqqvucba ji ∈Γ∈Γ∈

=

=

),,(),(

),,(),(

Rcqbqifvqacu

Lcqbqifacvqu
yieldsbvqua

jij

jij

i δ

δ

=

=

),,(),(

),,(),(

Rcqbqifvqc

Lcqbqifcvq
yieldsbvq

jij

jij

i δ

δ

ii quatoequivalentisqua

Theory of Computation, Feodor F. Dragan, Kent State University 8

Acceptance of Strings and the Language of TM (cont.)
• The start configuration of TM on input w is

• In an accepting configuration the state is

• In an rejecting configuration the state is

• A Turing machine TM accepts input w if a sequence of configurations
exists where

• is the start configuration of TM on input w,

• each yields and

• is an accepting configuration.

kCCC ,...,, 21

.0wq

.
accept

q

.
reject

q

 Halting

configurations

1C

iC 1+iC

kC

• If L is a set of strings that TM accepts, we say that L is the language of TM
and write L=L(TM).

• We say TM recognizes L or TM accepts L.
• A language is Turing-recognizable if some TM recognizes it.

• For a TM three outcomes are possible on an input: it may accept, reject or loop.
• Deciders are TMs that always make a decision to accept or reject the input.
• A language is Turing-decidable or simply decidable if it is accepted by a

decider.

5

Theory of Computation, Feodor F. Dragan, Kent State University 9

Example 1.
• A TM M2 which decides the language }.0:0{ 2

≥= nA
n

Higher-level description.

1. Sweep left to right across the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the tape contained more than a single 0 and the number of 0’s
was odd, reject.

4. Return the head to the left-hand end of the tape.

5. Go to stage 1.”

Run M2 on input 0000 and 000

M2=“On input string w:

Formal description.

),,1,,,,(2 rejectaccept qqqQM δΓΣ=

}0{=Σ

},,5,4,3,2,1{ rejectaccept qqqqqqqQ =

},,0{ x=Γ
Start state

q1

q5

q2 q3
R_,0 →

q4acceptqrejectq

Rx →

Rx

R

→

→_ R→_

Rx,0 →

L→_

Rx →

R→0 Rx,0 →

Rx →
R→_

R→_

Lx

L

→

→0

Theory of Computation, Feodor F. Dragan, Kent State University 10

Example 2.
• A TM M1 which decides the language

For higher-level description see slide #4.

Formal description.),,1,,,,(1 rejectaccept qqqQM δΓΣ= }#,1,0{=Σ
},,14,...,1{ rejectaccept qqqqQ = },,#,1,0{ x=Γ

}*}.1,0{:#{ ∈= wwwB

q1

q3

R_,0 →

acceptq

rejectq

R→1,0

R→#

Rx →

R→_

q5 q7 q9 q11

q12

q14

q2 q4 q6 q8 q10

q13

R_,1→

R→1,0 L→#,1,0

R→1,0 R→1,0 L→#,1,0

R→_L→_

R→# R→_L→_

R→1,0

R→1,0

R→#

R→#

Rx →

Lx,0 →

Lx,1→

Lx →,#,1,0 Rx →

R→_

R→#

Rx →
R→#

Rx,1→

Rx,0 →

6

Theory of Computation, Feodor F. Dragan, Kent State University 11

Higher-level description:
1. Place a mark on top of the leftmost tape symbol. If that symbol was blank, accept. If it

was a #, continue with the next stage. Otherwise, reject.

2. Scan right to the next # and place a second mark on top of it. If no # is encountered
before a blank symbol, only was present , so accept.

3. By zig-zagging, compare the two strings to the right of the marked #s. If they are
equal, reject.

4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol
is encountered before a blank symbol, move the leftmost mark to the next # to its right
and the rightmost mark to the # after that. If no # is available for the rightmost mark,
all the strings have been compared, so accept.

5. Go to stage 3.”

M3=“On input w:

• Example 3: A TM solving the element uniqueness problem. It is given a
list of strings over {0,1} separated by #s and its job is to accept if all strings are
different. The language is

• TM M3 works by comparing with through , then by comparing
with through , and so on.

}.},,...,1{*}1,0{:#...##{# 21 jiforxxlixxxxE jiil ≠≠∈∀∈=

1x 2x lx 2x

3x lx

1x

(In the actual implementation, the machine has two different symbols, # and #, in its tape alphabet).
.

