CHAPTER 3
The Church-Turing Thesis

Contents

* Turing Machines

* definitions, examples, Turing-recognizable and Turing-decidable
languages

* Variants of Turing Machine

* Multitape Turing machines, non-deterministic Turing Machines,
Enumerators, equivalence with other models

* The definition of Algorithm

® Hilbert’s problems, terminology for describing Turing machines

Theory of Computation, Feodor F. Dragan, Kent State University

Turing Machines (intro)

® So far in our development of theory of computation we have presented several
models for computing devices

* Finite automata are good models for devices that have a small amount of
memory.

 Pushdown automata are good models for devices that have an unlimited memory
that is usable only in the last in, first out manner of a stack.

* We have shown that some very simple tasks are beyond the capabilities of these
models.

* Now we will consider a much more powerful model, first proposed by Alan
Turing in 1936, called the Turing Machine (TM).

e It is similar to a finite automaton but with an unlimited and unrestricted memory.
* TM is much more accurate model of a general purpose computer.

e It can do everything that a real computer can do.

* ButaTM also cannot solve certain problems.

* There are problems that are beyond the theoretical limits of computation.

Theory of Computation, Feodor F. Dragan, Kent State University

Turing Machines (informal)

® The Turing machine model uses an infinite tape as its unlimited memory.

e It has a head that can read and write symbols and move around on the tape.

* Initially the tape contains only the input string and is blank everywhere else.

e If TM needs to store information, it may write this info on the tape.

¢ To read the information that it has written, TM can move its head back over it.

e The machine continues computing until it produces an output.

» The output accept and reject are obtained by entering designated accepting and
rejecting states.

» If it does not enter an accepting or a rejecting state, it will go on forever, never
halting.

read-write head .
infinite tape

A
. . . ; “«
Schematic of a Turing Machine: | control alalblblo] o[...

¢ The differences between finite automata and Turing machines.

® ATM can both write on the tape and read from it.

* The read-write head can move both to the left and to the right.

* The tape is infinite.

» The special states for rejecting and accepting take immediate effect.

Theory of Computation, Feodor F. Dragan, Kent State University

Example

* We want to design a TM M1 which accepts if its input is a
member of B
B={w#w:we {0,1}*}.

Informal description how the TM works on input string s.

® Scan the input to be sure that it contains a single # symbol. If not, reject.

* Zig-zag across the tape to corresponding positions on either side of the #
symbol to check on whether these positions contain the same symbol. If they do
not, reject. Cross off symbols as they are checked to keep track of which
symbols correspond.

* When all symbols to the left of the # have been crossed off, check for any
remaining symbols to the right of the #. If any symbols remain, reject;

T “D11000#011000 __..
x110004011000 __ ...

011000#011000 _vﬁllOOO#xIIOOO_...
xx1000# x11000 __...

X000 # 000000

" accept
Theory of Computation, Feodor F. Dragan, Kent State University

Formal Definition of TMs
* A Turing machine (TM) is specified by a 7-tuple
(Q’ Z’ r5’ qO 9 qaccept 2 qreject) s Whel'e

(0] is a finite set of states,

by is a finite input alphabet not containing v ,

r is a finite tape alphabet, such that _, € I", X c T,
0:0xI' > OxI'x{L,R} is the transition function,

q,€ 0 is the start state,

Qaccen € O is the accept state, and

9 reject € 0 is the reject state, where Quceepr & Dreject-

¢ The heart of the definition of a TM is the transition function because it tells us
how the machine gets from one step to the next.

6(q,a)=(r,b,L) means that when the machine is in a certain state g and head is
over a tape square containing a symbol a, the machine writes the symbol b
replacing the a, and goes to state r. The third component is either L or R and
indicates whether the head moves to the left or right after writing.

Theory of Computation, Feodor F. Dragan, Kent State University

How does a TM compute?

® Initially TM receives its input w = w,w,...w, € £*on the leftmost n squares
of the tape, and the rest of the tape is blank.
e The head starts on the leftmost square of the tape.

* Note that £ does not contain the blank symbol, so the first blank symbol
appearing on the tape marks the end of the input.

* Once TM starts, the computation proceeds according to the rules described
by the transition function.

 [f TM ever tries to move its head to the left off the left-hand end of the tape,
the head stays in the same place for that move, even though the transition
function indicates L.

» The computation continues until it enters either accept state or reject state at
which point it halts.

e If neither occurs, TM goes on forever.

control '
ala b b [I VI] I

Theory of Computation, Feodor F. Dragan, Kent State University

Acceptance of Strings and the Language of TM

A configuration C of the TM.

For a state ¢ and two strings u and v over the tape
1 alphabet © we write ugv for the configuration where
q7 [Mlo[1]0]0 [1o]<].. _the current state is g, the current tape contents is uv,
and the current head location is the first symbol of v.

10170010

Leta,b,cel’, u,vel™, g,,q;€0.
We say that configuration

uaq,bv yields 1" 1% i 00,0 =(4;.c.L)
GO IEE uacq,v it 8g,b)=(q;¢.R)

Note that .
qjCV UC 5(q,~,b)=(qjac3l‘)

cq;v UC 5(qiab)=(qj’C?R)

and that yg q; is equivalent to ua g, and we can handle this as before.

q; bv yields {

Theory of Computation, Feodor F. Dragan, Kent State University 7

Acceptance of Strings and the Language of TM (cont.)

® The start configuration of TM on input w is gyW.
e In an accepting configuration the state is9accep:
* In an rejecting configuration the state is ¢,

Halting
configurations

* A Turing machine TM accepts input w if a sequence of configurations C,, C,,...,C,
exists where

e C, is the start configuration of TM on input w,
eeach C, yields C,,, and
* C, isan accepting configuration.
° If L is a set of strings that TM accepts, we say that L is the language of TM
and write L=L(TM).
* We say TM recognizes L or TM accepts L.
* A language is Turing-recognizable if some TM recognizes it.

* For a TM three outcomes are possible on an input: it may accept, reject or loop.

* Deciders are TMs that always make a decision to accept or reject the input.

* A language is Turing-decidable or simply decidable if it is accepted by a
decider.

Theory of Computation, Feodor F. Dragan, Kent State University 8

Example 1.
« ATM M2 which decides the language A={0> :n>0}.

Higher-level description.

M2=""On input string w:
1. Sweep left to right across the tape, crossing off every other 0.
If in stage 1 the tape contained a single 0, accept.

3. Ifin st%e 1 the tape contained more than a single 0 and the number of 0’s
was odd, reject.

Return the head to the left-hand end of the tape. g _’i
X —>

A g

Go to stage 1.”

Formal description.
M2 = (Qez’e F, 57 ql’ qaccept’ qreject)

0={ql

qz’ q3’ q4’ qs’ qaccept ° qreject }
T ={0)
'={0,x,)

Start state

Run M2 on input 0000 and 000

Theory of Computation, Feodor F. Dragan, Kent State University

Example 2.
* ATM M1 which decides the language B={w#w:we {0,1}*}.
For higher-level description see slide #4.

Formal description. M1=(Q.Z.1,6,91. 4,0 @,ject) T ={0,1,#)}
Q . {ql ° q14 qaccept’ qre/ect} F = {0’1’#7 X, }

01—R 01—->R O0L#->L 01—R

oD T
L1 #, x—>R

01— R 0l—-R OlL#—>L 01—>R

Theory of Computation, Feodor F. Dragan, Kent State University 10

o Exam[gle 3:ATM solving the element uniqueness problem. It is given a
list of strings over {0,1} separated by #s and its job is to accept if all strings are
different. The language is

E={#x#x,#. #x:xe{0}*Vie{l.. I}, x, #x; for i+ j}.

* TM M3 works by comparing x, with x, through x, then by comparing x,
with x; through X, ,and so on.

Higher-level description: M3=“On input w:

1. Place a mark on top of the leftmost tape symbol. If that symbol was blank, accept. If it
was a #, continue with the next stage. Otherwise, reject.

2. Scan right to the next # and place a second mark on top of it. If no # is encountered
before a blank symbol, only X, was present , so accept.

3. By zig-zagging, compare the two strings to the right of the marked #s. If they are
equal, reject.

4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol
is encountered before a blank symbol, move the leftmost mark to the next # to its right
and the rightmost mark to the # after that. If no # is available for the rightmost mark,
all the strings have been compared, so accept.

5. Go to stage 3.”

(In the actual implementation, the machine has two different symbols, # and #, in its tape alphabet).

Theory of Computation, Feodor F. Dragan, Kent State University

