CHAPTER 3 The Church-Turing Thesis

Contents

- Turing Machines
- definitions, examples, Turing-recognizable and Turing-decidable languages
- Variants of Turing Machine
- Multitape Turing machines, non-deterministic Turing Machines, Enumerators, equivalence with other models
- The definition of Algorithm
- Hilbert's problems, terminology for describing Turing machines

Turing Machines (intro)

- So far in our development of theory of computation we have presented several models for computing devices
- Finite automata are good models for devices that have a small amount of memory.
- Pushdown automata are good models for devices that have an unlimited memory that is usable only in the last in, first out manner of a stack.
- We have shown that some very simple tasks are beyond the capabilities of these models.
- Now we will consider a much more powerful model, first proposed by Alan Turing in 1936, called the Turing Machine (TM).
- It is similar to a finite automaton but with an unlimited and unrestricted memory.
- TM is much more accurate model of a general purpose computer.
- It can do everything that a real computer can do.
- But a TM also cannot solve certain problems.
- There are problems that are beyond the theoretical limits of computation.

Turing Machines (informal)

- The Turing machine model uses an infinite tape as its unlimited memory.
- It has a head that can read and write symbols and move around on the tape.
- Initially the tape contains only the input string and is blank everywhere else.
- If TM needs to store information, it may write this info on the tape.
- To read the information that it has written, TM can move its head back over it.
- The machine continues computing until it produces an output.
- The output accept and reject are obtained by entering designated accepting and rejecting states.
- If it does not enter an accepting or a rejecting state, it will go on forever, never halting.

Schematic of a Turing Machine:

- The differences between finite automata and Turing machines.
- A TM can both write on the tape and read from it.
- The read-write head can move both to the left and to the right.
- The tape is infinite.
- The special states for rejecting and accepting take immediate effect.

Example

- We want to design a TM M1 which accepts if its input is a member of B

$$
B=\left\{w \# w: w \in\{0,1\}^{*}\right\} .
$$

Informal description how the TM works on input string s.

- Scan the input to be sure that it contains a single \# symbol. If not, reject.
- Zig-zag across the tape to corresponding positions on either side of the \# symbol to check on whether these positions contain the same symbol. If they do not, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- When all symbols to the left of the \# have been crossed off, check for any remaining symbols to the right of the \#. If any symbols remain, reject; otherwise, accept.

M1 on input 011000\#011000

Formal Definition of TMs

- A Turing machine (TM) is specified by a 7-tuple
$\left(Q, \Sigma, \Gamma \mathcal{\delta}, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where
Q
Σ
$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$
$q_{0} \in Q$
$q_{\text {accept }} \in Q$
$q_{\text {reject }} \in Q$
is a finite set of states, is a finite input alphabet not containing \sqcup, is a finite tape alphabet, such that $\sqcup \in \Gamma, \Sigma \subset \Gamma$, is the transition function, is the start state, is the accept state, and
is the reject state, where $q_{\text {accept }} \neq q_{\text {reject }}$.
- The heart of the definition of a TM is the transition function because it tells us how the machine gets from one step to the next.
$\boldsymbol{\delta}(q, a)=(r, b, L)$ means that when the machine is in a certain state q and head is over a tape square containing a symbol a, the machine writes the symbol b replacing the a, and goes to state r. The third component is either L or R and indicates whether the head moves to the left or right after writing.

How does a TM compute?

- Initially TM receives its input $w=w_{1} w_{2} \ldots w_{n} \in \Sigma *$ on the leftmost n squares of the tape, and the rest of the tape is blank.
- The head starts on the leftmost square of the tape.
- Note that Σ does not contain the blank symbol, so the first blank symbol appearing on the tape marks the end of the input.
- Once TM starts, the computation proceeds according to the rules described by the transition function.
- If TM ever tries to move its head to the left off the left-hand end of the tape, the head stays in the same place for that move, even though the transition function indicates L.
- The computation continues until it enters either accept state or reject state at which point it halts.
- If neither occurs, TM goes on forever.

Acceptance of Strings and the Language of TM

A configuration C of the TM .

For a state q and two strings u and v over the tape alphabet Γ we write $u q v$ for the configuration where the current state is q, the current tape contents is $u v$, and the current head location is the first symbol of v.

$$
101 q 70010
$$

Let $a, b, c \in \Gamma, u, v \in \Gamma^{*}, q_{i}, q_{j} \in Q$.
We say that configuration

$$
u a q_{i} b v \text { yields } \begin{cases}u q_{j} a c v & \text { if } \delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right) \\ u a c q_{j} v & \text { if } \delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)\end{cases}
$$

Note that

$$
q_{i} b v \text { yields }\left\{\begin{array}{cl}
q_{j} c v & \text { if } \delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right) \\
c q_{j} v & \text { if } \delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)
\end{array}\right.
$$

and that $u a q_{i}$ is equivalent to $u a q_{i}-$ and we can handle this as before.

Acceptance of Strings and the Language of TM (cont.)

- The start configuration of TM on input w is $q_{0} w$.
- In an accepting configuration the state is $q_{\text {accept }}$.
- In an rejecting configuration the state is $q_{\text {reject }}$.

Halting configurations

- A Turing machine TM accepts input w if a sequence of configurations $C_{1}, C_{2}, \ldots, C_{k}$ exists where
- C_{1} is the start configuration of TM on input w,
- each C_{i} yields C_{i+1} and
- C_{k} is an accepting configuration.
- If L is a set of strings that TM accepts, we say that L is the language of $\mathbf{T M}$ and write $L=L(T M)$.
- We say TM recognizes L or TM accepts L.
- A language is Turing-recognizable if some TM recognizes it.
- For a TM three outcomes are possible on an input: it may accept, reject or loop.
- Deciders are TMs that always make a decision to accept or reject the input.
- A language is Turing-decidable or simply decidable if it is accepted by a decider.

Example 1.

- A TM M2 which decides the language $A=\left\{0^{2^{n}}: n \geq 0\right\}$.

Higher-level description.

M2="On input string w :

1. Sweep left to right across the tape, crossing off every other 0 .
2. If in stage 1 the tape contained a single 0 , accept.
3. If in stage 1 the tape contained more than a single 0 and the number of 0 's was odd, reject.
4. Return the head to the left-hand end of the tape.
5. Go to stage 1."

Formal description.
$M 2=\left(Q, \Sigma, \Gamma, \delta, q 1, q_{\text {accepp }}, q_{\text {reject }}\right)$
$Q=\left\{q 1, q 2, q 3, q 4, q 5, q_{\text {accept }}, q_{\text {reject }}\right\}$
$\Sigma=\{0\}$
$\Gamma=\{0, x, \sqcup\}$

Run M2 on input 0000 and 000

Example 2.

- A TM M1 which decides the language $B=\left\{w \# w: w \in\{0,1\}^{*}\right\}$. For higher-level description see slide \#4.
Formal description. $\quad M 1=\left(Q, \Sigma, \Gamma, \delta, q 1, q_{\text {accept }}, q_{\text {reject }}\right) \quad \Sigma=\{0,1, \#\}$

$$
Q=\left\{q 1, \ldots, q 14, q_{\text {accept }}, q_{\text {reject }}\right\} \quad \Gamma=\{0,1, \#, x, \sqcup\}
$$

- Example 3: A TM solving the element uniqueness problem. It is given a list of strings over $\{0,1\}$ separated by \#s and its job is to accept if all strings are different. The language is

$$
E=\left\{\# x_{1} \# x_{2} \# \ldots \# x_{l}: x_{i} \in\{0,1\} * \forall i \in\{1, \ldots, l\}, x_{i} \neq x_{j} \text { for } i \neq j\right\} .
$$

- TM M3 works by comparing x_{1} with x_{2} through x_{l}, then by comparing x_{2} with x_{3} through x_{l}, and so on.

Higher-level description: M3="On input w :

1. Place a mark on top of the leftmost tape symbol. If that symbol was blank, accept. If it was a \#, continue with the next stage. Otherwise, reject.
2. Scan right to the next \# and place a second mark on top of it. If no \# is encountered before a blank symbol, only x_{1} was present, so accept.
3. By zig-zagging, compare the two strings to the right of the marked \#s. If they are equal, reject.
4. Move the rightmost of the two marks to the next \# symbol to the right. If no \# symbol is encountered before a blank symbol, move the leftmost mark to the next \# to its right and the rightmost mark to the \# after that. If no \# is available for the rightmost mark, all the strings have been compared, so accept.
5. Go to stage 3."
(In the actual implementation, the machine has two different symbols, \# and \#, in its tape alphabet).
