Turing Machines (intro)

- So far in our development of theory of computation we have presented several models for computing devices
 - **Finite automata** are good models for devices that have a small amount of memory.
 - **Pushdown automata** are good models for devices that have an unlimited memory that is usable only in the last in, first out manner of a stack.
 - We have shown that some very simple tasks are beyond the capabilities of these models.
 - Now we will consider a much more powerful model, first proposed by Alan Turing in 1936, called the **Turing Machine (TM)**.
 - It is similar to a finite automaton but with an *unlimited* and *unrestricted* memory.
 - TM is much more accurate model of a general purpose computer.
 - It can do everything that a real computer can do.
 - But a TM also cannot solve certain problems.
 - There are problems that are beyond the theoretical limits of computation.
Turing Machines (informal)

• The Turing machine model uses an *infinite tape* as its unlimited memory.
• It has a *head* that can read and write symbols and move around on the tape.
• Initially the tape contains only the input string and is blank everywhere else.
• If TM needs to store information, it may write this info on the tape.
• To read the information that it has written, TM can move its head back over it.
• The machine continues computing until it produces an output.
• The output *accept* and *reject* are obtained by entering designated accepting and rejecting states.
• If it does not enter an accepting or a rejecting state, it will go on forever, never halting.

Schematic of a Turing Machine:

![Schematic of a Turing Machine](image)

• The differences between finite automata and Turing machines.
 • A TM can both write on the tape and read from it.
 • The read-write head can move both to the left and to the right.
 • The tape is infinite.
 • The special states for rejecting and accepting take immediate effect.
Example

• We want to design a TM M_1 which accepts if its input is a member of B

$$B = \{ w#w : w \in \{0,1\}^* \}.$$

Informal description how the TM works on input string s.

• Scan the input to be sure that it contains a single # symbol. If not, reject.

• Zig-zag across the tape to corresponding positions on either side of the # symbol to check on whether these positions contain the same symbol. If they do not, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

• When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept.

M_1 on input

011000#011000

accept
Formal Definition of TMs

• A Turing machine (TM) is specified by a 7-tuple

\[(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\]

where

- \(Q\) is a finite set of states,
- \(\Sigma\) is a finite input alphabet not containing \(\square\),
- \(\Gamma\) is a finite tape alphabet, such that \(\square \in \Gamma, \ \Sigma \subset \Gamma\),
- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) is the transition function,
- \(q_0 \in Q\) is the start state,
- \(q_{\text{accept}} \in Q\) is the accept state, and
- \(q_{\text{reject}} \in Q\) is the reject state, where \(q_{\text{accept}} \neq q_{\text{reject}}\).

• The heart of the definition of a TM is the transition function because it tells us how the machine gets from one step to the next.

\(\delta(q, a) = (r, b, L)\) means that when the machine is in a certain state \(q\) and head is over a tape square containing a symbol \(a\), the machine writes the symbol \(b\) replacing the \(a\), and goes to state \(r\). The third component is either \(L\) or \(R\) and indicates whether the head moves to the left or right after writing.
How does a TM compute?

• Initially TM receives its input $w = w_1w_2...w_n \in \Sigma^*$ on the leftmost n squares of the tape, and the rest of the tape is blank.

• The head starts on the leftmost square of the tape.

• Note that Σ does not contain the blank symbol, so the first blank symbol appearing on the tape marks the end of the input.

• Once TM starts, the computation proceeds according to the rules described by the transition function.

• If TM ever tries to move its head to the left off the left-hand end of the tape, the head stays in the same place for that move, even though the transition function indicates L.

• The computation continues until it enters either accept state or reject state at which point it halts.

• If neither occurs, TM goes on forever.
Acceptance of Strings and the Language of TM

A configuration \(C \) of the TM.

For a state \(q \) and two strings \(u \) and \(v \) over the tape alphabet \(\Gamma \) we write \(uqv \) for the configuration where the current state is \(q \), the current tape contents is \(uv \), and the current head location is the first symbol of \(v \).

Let \(a, b, c \in \Gamma, \ u, v \in \Gamma^*, \ q_i, q_j \in Q \).

We say that configuration

\[
uaq_i \ BV \ yields \ \begin{cases}
 uq_jacv & \text{if } \delta(q_i, b) = (q_j, c, L) \\
 uacq_jv & \text{if } \delta(q_i, b) = (q_j, c, R)
\end{cases}
\]

Note that

\[
q_i \ BV \ yields \ \begin{cases}
 q_jcv & \text{if } \delta(q_i, b) = (q_j, c, L) \\
 cq_jv & \text{if } \delta(q_i, b) = (q_j, c, R)
\end{cases}
\]

and that \(uaq_i \) is equivalent to \(uaq_i \) and we can handle this as before.
Acceptance of Strings and the Language of TM (cont.)

• The start configuration of TM on input w is q_0w.
• In an accepting configuration the state is q_{accept}.
• In a rejecting configuration the state is q_{reject}.

• A Turing machine TM accepts input w if a sequence of configurations C_1, C_2, \ldots, C_k exists where
 • C_1 is the start configuration of TM on input w,
 • each C_i yields C_{i+1} and
 • C_k is an accepting configuration.

• If L is a set of strings that TM accepts, we say that L is the language of TM and write $L = L(TM)$.
• We say TM recognizes L or TM accepts L.
• A language is Turing-recognizable if some TM recognizes it.

• For a TM three outcomes are possible on an input: it may accept, reject or loop.
• Deciders are TMs that always make a decision to accept or reject the input.
• A language is Turing-decidable or simply decidable if it is accepted by a decider.
Example 1.

• A TM M_2 which decides the language $A = \{0^{2^n} : n \geq 0\}$.

Higher-level description.

M_2 = “On input string w:
1. Sweep left to right across the tape, crossing off every other 0.
2. If in stage 1 the tape contained a single 0, accept.
3. If in stage 1 the tape contained more than a single 0 and the number of 0’s was odd, reject.
4. Return the head to the left-hand end of the tape.
5. Go to stage 1.”

Formal description.

$M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$

$Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$

$\Sigma = \{0\}$

$\Gamma = \{0, x, _\}$

Start state Run M_2 on input 0000 and 000
Example 2.

• A TM \(M1\) which decides the language \[B = \{ w\#w : w \in \{0,1\}^* \} \]. For higher-level description see slide #4.

Formal description. \(M1 = (Q, \Sigma, \Gamma, \delta, q1, q_{accept}, q_{reject})\)
\[\Sigma = \{0,1,\#\} \]
\[\Gamma = \{0,1,\#, x, _\} \]
• **Example 3:** A TM solving the *element uniqueness problem*. It is given a list of strings over \{0,1\} separated by #s and its job is to accept if all strings are different. The language is

\[
E = \{\# x_1 \# x_2 \# \ldots \# x_l : x_i \in \{0,1\}^* \ \forall i \in \{1, \ldots, l\}, x_i \neq x_j \text{ for } i \neq j\}.
\]

• TM M3 works by comparing \(x_1 \) with \(x_2 \) through \(x_l \), then by comparing \(x_2 \) with \(x_3 \) through \(x_l \), and so on.

Higher-level description:
M3 = “On input \(w \):

1. Place a mark on top of the leftmost tape symbol. If that symbol was blank, *accept*. If it was a #, continue with the next stage. Otherwise, *reject*.

2. Scan right to the next # and place a second mark on top of it. If no # is encountered before a blank symbol, only \(x_1 \) was present, so *accept*.

3. By zig-zagging, compare the two strings to the right of the marked #s. If they are equal, *reject*.

4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol is encountered before a blank symbol, move the leftmost mark to the next # to its right and the rightmost mark to the # after that. If no # is available for the rightmost mark, all the strings have been compared, so *accept*.

5. Go to stage 3.”

(In the actual implementation, the machine has two different symbols, # and \#, in its tape alphabet).