
1

Theory of Computation, Feodor F. Dragan, Kent State University 1

CHAPTER 3

The Church-Turing Thesis

Contents

• Turing Machines

• definitions, examples, Turing-recognizable and Turing-decidable

languages

• Variants of Turing Machine

• Multi-tape Turing machines, non-deterministic Turing Machines,

Enumerators, equivalence with other models

• The definition of Algorithm

• Hilbert’s problems, terminology for describing Turing machines

Theory of Computation, Feodor F. Dragan, Kent State University 2

Variants of Turing Machine (intro)

• There are alternative definitions of Turing machines, including versions with
multiple tapes or with non-determinism.

• They are called variants of the Turing machine model.

• The original model and all its reasonable variants have the same power - they
recognize the same class of languages.

• In this section we describe some of these variants and the proofs of equivalence in
power.

Simplest equivalent “generalized” model

• In basic definition, the head can move to the left or right after each step: it
cannot stay put.

• If we allow the head to stay put. The transition function would then have the
form

• Does this make the model more powerful? Might this feature allow Turing
machines to recognize additional languages?

• Of course not. We can replace each stay put transition with two transitions, one
that moves to the right and the second back to the left.

}.,,{: SRLQQ ×Γ×→Γ×δ

2

Theory of Computation, Feodor F. Dragan, Kent State University 3

Multi-tape Turing Machine

a a b b
control

a …

• A multi-tape TM is like an ordinary TM with several tapes.

• Each tape has its own head for reading and writing.

• Initially the input appears on tape 1, and others are blank.

• The transition function is changed to allow for reading, writing, and moving
the heads on all tapes simultaneously. Formally,

where k is the number of tapes.

• The expression

means that, if the machine is in state q and heads 1 through k are reading
symbols trough , the machine goes to state r, writes symbols through
, and moves each head to the left or right as specified.

1a

,},{: kkk RLQQ ×Γ×→Γ×δ

),...,,,,...,,(),...,,(11 LRLbbraaq kk =δ

ka 1b
kb

b a b

0 1 0 0

• Multi-tape TMs appear to be more powerful than ordinary TMs, but we will show
that they are equivalent in power.

…

…

Theory of Computation, Feodor F. Dragan, Kent State University 4

Multi-tape TMs vs. ordinary TMs
• Theorem: Every multi-tape Turing machine has an equivalent single tape Turing

Machine.

• We show how to convert a multi-tape TM M to an equivalent single tape TM S.

• The key idea is to show how to simulate M with S.

• Let M has k tapes.

• Then S simulates the effect of k tapes by storing their information on its single
tape.

• It uses new symbol # as a delimiter to separate the contents of the different tapes.

• S must also keep track of the locations of the heads.

• It does so by writing a tape symbol with a dot above it to mark the place where the
head on that tape would be.

• Think of these as ‘virtual’ tapes and heads.

a a b
M

…

b a

0 1 …

…

0 1 #S #a a b b a
.. .

As before, the ‘dotted’ tape symbols are simply new

symbols that have been added to the tape alphabet.

3 1

3

Theory of Computation, Feodor F. Dragan, Kent State University 5

Multi-tape TMs vs. ordinary TMs (cont.)

Corollary: A language is Turing-recognizable if and only if some multi-tape

Turing machine recognizes it.

1. First S puts its tape into the format that represents all k tapes of M. The
formatted tape contains

2. To simulate a single move, S scans its tape from the first #, which marks
the left-hand end, to the (k+1)st #, which marks the right-hand end, in
order to determine the symbols under the virtual heads. Then S makes a
second pass to update the tapes according to the way that M’s transition
function dictates.

3. If at any point S moves one of the virtual heads to the right onto a #, this
action signifies that M has moved the corresponding head onto the
previously unread blank portion of that tape. So S writes a blank symbol on
this tape cell and shifts the tape contents, from this sell until the rightmost
#, one unit to the right. Then it continues the simulation as before.

S=“On input :...21 nwwww =

#...###...# 21 nwww
. . .

Theory of Computation, Feodor F. Dragan, Kent State University 6

Non-deterministic Turing Machine

• A non-deterministic TM is defined in the expected way: at any point of
computation the machine may proceed according to several possibilities.

• The transition function for a non-deterministic TM has the form

• The computation of a non-deterministic TM N is a tree whose branches
correspond to different possibilities for the machine.

• Each node of the tree is a configuration of N. The root is the start
configuration.

• If some branch of the computation leads to the accept state, the machine
accepts the input.

• We will show that non-determinism does not affect the power of the Turing
machine model.

}).,{(: RLQQ ×Γ×→Γ× Ρδ

• Theorem: Every non-deterministic Turing machine has an equivalent

deterministic Turing Machine.

• We show that we can simulate any non-deterministic TM N with a deterministic TM D.

• The idea: D will try all possible branches of N’s non-deterministic computation.

• The TM D searches the tree for an accepting configuration. If D ever finds an accepting
configuration, it accepts. Otherwise, D’s simulation will not terminate.

4

Theory of Computation, Feodor F. Dragan, Kent State University 7

Non-deterministic TMs vs. ordinary TMs

• The simulating deterministic TM D has three tapes. By previous theorem this
arrangement is equivalent to having a single tape.

• Tape 1 always contains the input string and is never altered.

• Tape 2 maintains a copy of N’s tape on some branch of its non-deterministic
computation.

• Tape 3 keeps track of D’s location in N’s non-deterministic computation tree.

• Every node in the tree can have at most b children, where b is the size of the largest set
of possible choices given by N’s transition function.

• Tape 3 contains a string over Each symbol in the string tells us
which choice to make next when simulating a step in one branch in N’s non-deterministic
computation. This gives the address of a node in the tree.

• Sometimes a symbol may not correspond to any choice if too few choices are available
for a configuration. In this case we say that the address is invalid, it does not correspond
to any node.

• The empty string is the address of the root of the tree.

x x # 0
D

1 x

1 2 3 2 3 3 1

0 1 0 0 …

…

.*},...,2,1{ bb =Σ

…

Input tape

Simulation tape

Address tape.

Theory of Computation, Feodor F. Dragan, Kent State University 8

Non-deterministic TMs vs. ordinary TMs (cont.)

Corollary 1: A language is Turing-recognizable if and only if some non-
deterministic Turing machine recognizes it.

1. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2.

3. Use tape 2 to simulate N with input w on the branch of its non-
deterministic computation. Before each step of N consult the next symbol
on tape 3 to determine which choice to make among those allowed by N’s
transition function. If no more symbols remain on tape 3 or if this non-
deterministic choice is invalid, abort this branch by going to stage 4. Also
go to stage 4 if a rejecting configuration is encountered. If an accepting
configuration is encountered, accept the input.

4. Replace the string on tape 3 with the lexicographically next string.
Simulate the next branch of N’s computation by going to stage 2.”

D=“On input w:

In a similar way one can show the following.

Corollary 2: A language is Turing-decidable if and only if some non-deterministic

Turing machine decides it.

5

Theory of Computation, Feodor F. Dragan, Kent State University 9

Equivalence with other models

• We have presented several variants of the Turing Machines and have proved them to
be equivalent in power.

• Many other models of general purpose computation have been proposed in literature.

• Some of these models are very much like Turing machines, while others are quite
different (e.g. -calculus).

• All share the essential feature of Turing machines, namely, unrestricted access to
unlimited memory, distinguishing them from weaker models such us finite automata
and pushdown automata.

• All models with that feature turn out to be equivalent in power, so long as they satisfy
certain reasonable requirements (e.g., the ability to perform only a finite amount of
work in a single step).

}.,{: RESETRQQ ×Γ×→Γ×δ

λ

More variants of Turing machine
• k-PDA, a PDA with k stacks.

• write-once Turing machines.

• Turing machines with doubly infinite tape.

• Turing machines with left reset

• Turing machines with stay put instead of left }.,{: SRQQ ×Γ×→Γ×δ

• If you missed a HW, try to give a complete answer to one of the problems 3.9, 3.11 – 3.14.

Only one and complete answer will be accepted. Then you will get 10 points extra credit.

