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CHAPTER  3

The Church-Turing Thesis

Contents

• Turing Machines

• definitions, examples, Turing-recognizable and Turing-decidable 

languages

• Variants of Turing Machine 

• Multi-tape Turing machines, non-deterministic Turing Machines, 

Enumerators, equivalence with other models

• The definition of Algorithm 

• Hilbert’s problems, terminology for describing Turing machines
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Variants of Turing Machine (intro)

• There are alternative definitions of Turing machines, including versions with 
multiple tapes or with non-determinism. 

• They are called variants of the Turing machine model.

• The original model and all its reasonable variants have the same power - they 
recognize the same class of languages. 

• In this section we describe some of these variants and the proofs of equivalence in 
power. 

Simplest equivalent “generalized” model

• In basic definition, the head can move to the left or right after each step: it 
cannot stay put. 

• If we allow the head to stay put. The transition function would then have the 
form 

• Does this make the model more powerful? Might this feature allow Turing 
machines to recognize additional languages? 

• Of course not. We can replace each stay put transition with two transitions, one 
that moves to the right and the second back to the left. 

}.,,{: SRLQQ ×Γ×→Γ×δ
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Multi-tape Turing Machine

a a b b
control

a …

• A multi-tape TM is like an ordinary TM with several tapes. 

• Each tape has its own head for reading and writing.

• Initially the input appears on tape 1, and others are blank. 

• The transition function is changed to allow for reading, writing, and moving 
the heads on all tapes simultaneously. Formally, 

where k is the number of tapes.

• The expression 

means that, if the machine is in state q and heads 1 through k are reading 
symbols       trough      , the machine goes to state r, writes symbols       through      
, and moves each head to the left or right as specified. 
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• Multi-tape TMs appear to be more powerful than ordinary TMs, but we will show 
that they are equivalent in power. 

…

…
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Multi-tape TMs vs. ordinary TMs
• Theorem: Every multi-tape Turing machine has an equivalent single tape Turing 

Machine. 

• We show how to convert  a multi-tape TM M to an equivalent single tape TM S.

• The key idea is to show how to simulate M with S. 

• Let M has k tapes.  

• Then S simulates the effect of k tapes by storing their information on its single 
tape. 

• It uses new symbol # as a delimiter to separate the contents of the different tapes. 

• S must also keep track of the locations of the heads. 

• It does so by writing a tape symbol with a dot above it to mark the place where the 
head on that tape would be. 

• Think of these as ‘virtual’ tapes and heads.  

a a b
M

…

b a

0 1 …

…

# 0 1 #S #a a b b a #
.. .

As before, the ‘dotted’ tape symbols are simply new 

symbols that have been added to the tape alphabet. 
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Multi-tape TMs vs. ordinary TMs (cont.)

Corollary: A language is Turing-recognizable if and only if some multi-tape 

Turing  machine recognizes it. 

1. First S puts its tape into the format that represents all k tapes of M. The 
formatted tape contains 

2. To simulate a single move, S scans its tape from the first #, which marks 
the left-hand end, to the (k+1)st  #, which marks the right-hand end, in 
order to determine the symbols under the virtual heads. Then S makes a 
second pass to update the tapes according to the way that M’s transition 
function dictates. 

3. If at any point S moves one of the virtual heads to the right onto a #, this 
action signifies that M has moved the corresponding head onto the 
previously unread blank portion of that tape. So S writes a blank symbol on 
this tape cell and shifts the tape contents, from this sell until the rightmost 
#, one unit to the right. Then it continues the simulation as before.

S=“On input :...21 nwwww =

#...###...# 21 nwww
. . .
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Non-deterministic Turing Machine

• A non-deterministic TM is defined in the expected way: at any point of 
computation the machine may proceed according to several possibilities.

• The transition function for a non-deterministic TM has the form 

• The computation of a non-deterministic TM N is a tree whose branches 
correspond to different possibilities for the machine. 

• Each node of the tree is a configuration of N. The root is the start 
configuration.

• If some branch of the computation leads to the accept state, the machine 
accepts the input. 

• We will show that non-determinism does not affect the power of the Turing 
machine model.

}).,{(: RLQQ ×Γ×→Γ× Ρδ

• Theorem: Every non-deterministic Turing machine has an equivalent 

deterministic Turing Machine. 

• We show that we can simulate any non-deterministic TM N with a deterministic TM D. 

• The idea:  D will try all possible branches of N’s non-deterministic computation.

• The TM D searches the tree for an accepting configuration. If D ever finds an accepting 
configuration, it accepts. Otherwise, D’s simulation will not terminate.



4

Theory of Computation, Feodor F. Dragan, Kent State University 7

Non-deterministic TMs vs. ordinary TMs

• The simulating deterministic TM D has three tapes. By previous theorem this 
arrangement is equivalent to having a single tape.

• Tape 1 always contains the input string and is never altered.

• Tape 2 maintains a copy of N’s tape on some branch of its non-deterministic 
computation.

• Tape 3 keeps track of D’s location in N’s non-deterministic computation tree.

• Every node in the tree can have at most b children, where b is the size of the largest set 
of possible choices given by N’s transition function. 

• Tape 3 contains a string over                                  Each symbol in the string tells us 
which choice to make next when simulating a step in one branch in N’s non-deterministic 
computation. This gives the address of a node in the tree.

• Sometimes a symbol may not correspond to any choice if too few choices are available 
for a configuration. In this case we say that the address is invalid, it does not correspond 
to any node.

• The empty string is the address of the root of the tree. 

x x # 0
D

1 x

1 2 3 2 3 3 1

0 1 0 0 …

…
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Input tape

Simulation tape

Address tape. 
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Non-deterministic TMs vs. ordinary TMs (cont.)

Corollary 1: A language is Turing-recognizable if and only if some non-
deterministic Turing  machine recognizes it. 

1. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2.

3. Use tape 2 to simulate N with input w on the branch of its non-
deterministic computation. Before each step of N consult the next symbol 
on tape 3 to determine which choice to make among those allowed by N’s 
transition function. If no more symbols remain on tape 3 or if this non-
deterministic choice is invalid, abort this branch by going to stage 4. Also 
go to stage 4 if a rejecting configuration is encountered. If an accepting 
configuration is encountered, accept the input.

4. Replace the string on tape 3 with the lexicographically next string. 
Simulate the next branch of N’s computation by going to stage 2.”

D=“On input w:

In a similar way one can show the following.

Corollary 2: A language is Turing-decidable if and only if some non-deterministic 

Turing  machine decides it. 
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Equivalence with other models

• We have presented several variants of the Turing Machines and have proved them to 
be equivalent in power.

• Many other models of general purpose computation have been proposed in literature. 

• Some of these models are very much like Turing machines, while others are quite 
different (e.g.    -calculus).

• All share the essential feature of Turing machines, namely, unrestricted access to 
unlimited memory, distinguishing them from weaker models such us finite automata 
and pushdown automata.

• All models with that feature turn out to be equivalent in power, so long as they satisfy 
certain reasonable requirements (e.g., the ability to perform only a finite amount of 
work in a single step).

}.,{: RESETRQQ ×Γ×→Γ×δ
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More variants of Turing machine
• k-PDA, a PDA with k stacks.

• write-once Turing machines.

• Turing machines with doubly infinite tape.

• Turing machines with left reset

• Turing machines with stay put instead of left }.,{: SRQQ ×Γ×→Γ×δ

• If you missed a HW, try to give a complete answer to one of the problems 3.9, 3.11 – 3.14. 

Only one and complete answer will be accepted. Then you will get 10 points extra credit. 


