CHAPTER 3 The Church-Turing Thesis

Contents

- Turing Machines
- definitions, examples, Turing-recognizable and Turing-decidable languages
- Variants of Turing Machine
- Multi-tape Turing machines, non-deterministic Turing Machines, Enumerators, equivalence with other models
- The definition of Algorithm
- Hilbert's problems, terminology for describing Turing machines

Variants of Turing Machine (intro)

- There are alternative definitions of Turing machines, including versions with multiple tapes or with non-determinism.
- They are called variants of the Turing machine model.
- The original model and all its reasonable variants have the same power - they recognize the same class of languages.
- In this section we describe some of these variants and the proofs of equivalence in power.

$$
\underline{\text { Simplest equivalent "generalized" model }}
$$

- In basic definition, the head can move to the left or right after each step: it cannot stay put.
- If we allow the head to stay put. The transition function would then have the form

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R, S\}
$$

- Does this make the model more powerful? Might this feature allow Turing machines to recognize additional languages?
- Of course not. We can replace each stay put transition with two transitions, one that moves to the right and the second back to the left.

Multi-tape Turing Machine

- A multi-tape TM is like an ordinary TM with several tapes.
- Each tape has its own head for reading and writing.
- Initially the input appears on tape 1 , and others are blank.
- The transition function is changed to allow for reading, writing, and moving the heads on all tapes simultaneously. Formally,

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k},
$$

where k is the number of tapes.

- The expression $\quad \delta\left(q, a_{1}, \ldots, a_{k}\right)=\left(r, b_{1}, \ldots, b_{k}, L, R, \ldots, L\right)$
means that, if the machine is in state q and heads 1 through k are reading symbols a_{1} trough a_{k}, the machine goes to state r, writes symbols b_{1} through , and moves each head to the left or right as specified.

- Multi-tape TMs appear to be more powerful than ordinary TMs, but we will show that they are equivalent in power.

Multi-tape TMs vs. ordinary TMs

- Theorem: Every multi-tape Turing machine has an equivalent single tape Turing Machine.
- We show how to convert a multi-tape TM M to an equivalent single tape TM S.
- The key idea is to show how to simulate M with S.
- Let M has k tapes.
- Then S simulates the effect of k tapes by storing their information on its single tape.
- It uses new symbol \# as a delimiter to separate the contents of the different tapes.
- S must also keep track of the locations of the heads.
- It does so by writing a tape symbol with a dot above it to mark the place where the head on that tape would be.
- Think of these as 'virtual' tapes and heads.

Multi-tape TMs vs. ordinary TMs (cont.)

$\mathrm{S}=$ "On input $w=w_{1} w_{2} \ldots w_{n}$:

1. First S puts its tape into the format that represents all k tapes of M. The formatted tape contains

$$
\# w_{1}^{\dot{w}} w_{2} \ldots w_{n} \# \dot{\bullet} \# \dot{\bullet} \# \ldots \#
$$

2. To simulate a single move, S scans its tape from the first \#, which marks the left-hand end, to the $(k+1)$ st \#, which marks the right-hand end, in order to determine the symbols under the virtual heads. Then S makes a second pass to update the tapes according to the way that M 's transition function dictates.
3. If at any point S moves one of the virtual heads to the right onto a \#, this action signifies that M has moved the corresponding head onto the previously unread blank portion of that tape. So S writes a blank symbol on this tape cell and shifts the tape contents, from this sell until the rightmost \#, one unit to the right. Then it continues the simulation as before.

Corollary: A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it.

Non-deterministic Turing Machine

- A non-deterministic TM is defined in the expected way: at any point of computation the machine may proceed according to several possibilities.
- The transition function for a non-deterministic TM has the form

$$
\delta: Q \times \Gamma \rightarrow \mathbf{P}(Q \times \Gamma \times\{L, R\})
$$

- The computation of a non-deterministic TM N is a tree whose branches correspond to different possibilities for the machine.
- Each node of the tree is a configuration of N. The root is the start configuration.
- If some branch of the computation leads to the accept state, the machine accepts the input.
- We will show that non-determinism does not affect the power of the Turing machine model.
- Theorem: Every non-deterministic Turing machine has an equivalent deterministic Turing Machine.
- We show that we can simulate any non-deterministic TM N with a deterministic TM D.
- The idea: D will try all possible branches of N 's non-deterministic computation.
- The TM D searches the tree for an accepting configuration. If D ever finds an accepting configuration, it accepts. Otherwise, D 's simulation will not terminate.

Non-deterministic TMs vs. ordinary TMs

- The simulating deterministic TM D has three tapes. By previous theorem this arrangement is equivalent to having a single tape.
- Tape 1 always contains the input string and is never altered.
- Tape 2 maintains a copy of N 's tape on some branch of its non-deterministic computation.
- Tape 3 keeps track of D 's location in N 's non-deterministic computation tree.

- Every node in the tree can have at most b children, where b is the size of the largest set of possible choices given by N 's transition function.
- Tape 3 contains a string over $\Sigma_{b}=\{1,2, \ldots, b\}^{*}$. Each symbol in the string tells us which choice to make next when simulating a step in one branch in N 's non-deterministic computation. This gives the address of a node in the tree.
- Sometimes a symbol may not correspond to any choice if too few choices are available for a configuration. In this case we say that the address is invalid, it does not correspond to any node.
- The empty string is the address of the root of the tree.

Theory of Computation, Feodor F. Dragan, Kent State University

Non-deterministic TMs vs. ordinary TMs (cont.)

$\mathrm{D}=$ "On input w :

1. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2 .
3. Use tape 2 to simulate N with input w on the branch of its nondeterministic computation. Before each step of N consult the next symbol on tape 3 to determine which choice to make among those allowed by N 's transition function. If no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by going to stage 4 . Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, accept the input.
4. Replace the string on tape 3 with the lexicographically next string. Simulate the next branch of N 's computation by going to stage 2 ."

Corollary 1: A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.

In a similar way one can show the following.
Corollary 2: A language is Turing-decidable if and only if some non-deterministic Turing machine decides it.

Equivalence with other models

- We have presented several variants of the Turing Machines and have proved them to be equivalent in power.
- Many other models of general purpose computation have been proposed in literature.
- Some of these models are very much like Turing machines, while others are quite different (e.g. λ-calculus).
- All share the essential feature of Turing machines, namely, unrestricted access to unlimited memory, distinguishing them from weaker models such us finite automata and pushdown automata.
- All models with that feature turn out to be equivalent in power, so long as they satisfy certain reasonable requirements (e.g., the ability to perform only a finite amount of work in a single step).

More variants of Turing machine

- k-PDA, a PDA with k stacks.
- write-once Turing machines.
- Turing machines with doubly infinite tape.
- Turing machines with left reset $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{R, R E S E T\}$
- Turing machines with stay put instead of left
$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{R, S\}$.
- If you missed a HW, try to give a complete answer to one of the problems 3.9, 3.11-3.14. Only one and complete answer will be accepted. Then you will get 10 points extra credit.

Theory of Computation, Feodor F. Dragan, Kent State University

