CHAPTER 3
The Church-Turing Thesis

Contents

e Turing Machines

e definitions, examples, Turing-recognizable and Turing-decidable
languages

* Variants of Turing Machine

* Multi-tape Turing machines, non-deterministic Turing Machines,
Enumerators, equivalence with other models

* The definition of Algorithm

® Hilbert’s problems, terminology for describing Turing machines

Theory of Computation, Feodor F. Dragan, Kent State University

Variants of Turing Machine (intro)

® There are alternative definitions of Turing machines, including versions with
multiple tapes or with non-determinism.

 They are called variants of the Turing machine model.

e The original model and all its reasonable variants have the same power - they
recognize the same class of languages.

* In this section we describe some of these variants and the proofs of equivalence in
power.

Simplest equivalent “generalized” model

* In basic definition, the head can move to the left or right after each step: it
cannot stay put.

* If we allow the head to stay put. The transition function would then have the
form

0:0xI' 5> OxI'x{L,R,S}.
* Does this make the model more powerful? Might this feature allow Turing

machines to recognize additional languages?

¢ Of course not. We can replace each stay put transition with two transitions, one
that moves to the right and the second back to the left.

Theory of Computation, Feodor F. Dragan, Kent State University

Multi-tape Turing Machine

* A multi-tape TM is like an ordinary TM with several tapes.
e Each tape has its own head for reading and writing.
e Initially the input appears on tape 1, and others are blank.

* The transition function is changed to allow for reading, writing, and moving
the heads on all tapes simultaneously. Formally,

0:0xI" — OxT* x{L,R}",
where k is the number of tapes.
* The expression 0(q,4d,,...,a,) =(r,b,,....b,,L,R,..., L)

means that, if the machine is in state ¢ and heads 1 through k are readinﬁ
symbols g, trough a,, the machine goes to state 5 writes symbols b, through
, and movgs each head to the left or right as specified.

Lof1lofo[o[HuTeT ...
et

{ I T S |

control

(Blalhlo[oloo[o .

® Multi-tape TMs appear to be more powerful than ordinary TMs, but we will show
that they are equivalent in power.

Theory of Computation, Feodor F. Dragan, Kent State University

Multi-tape TMs vs. ordinary TMs

® Theorem: Every multi-tape Turing machine has an equivalent single tape Turing
Machine.

* We show how to convert a multi-tape TM M to an equivalent single tape TM S.
* The key idea is to show how to simulate M with S.
e Let M has k tapes.

* Then S simulates the effect of k tapes by storing their information on its single
tape.

* [t uses new symbol # as a delimiter to separate the contents of the different tapes.
S must also keep track of the locations of the heads.

* It does so by writing a tape symbol with a dot above it to mark the place where the
head on that tape would be.

* Think of these as ‘virtual’ tapes and heads.

—
3=l | S | GO E AR

lalalblo]---
As before, the ‘dotted’ tape symbols are simply new
[blals[u]... symbols that have been added to the tape alphabet.

Theory of Computation, Feodor F. Dragan, Kent State University 4

M

Multi-tape TMs vs. ordinary TMs (cont.)

S=“On input w= ww,..w, :
1. First S puts its tape into the format that represents all k tapes of M. The
formatted tape contains

#ww, . w #OHOH##

2. To simulate a single move, S scans its tape from the first #, which marks
the left-hand end, to the (k+1/)st #, which marks the right-hand end, in
order to determine the symbols under the virtual heads. Then S makes a
second pass to update the tapes according to the way that M’s transition
function dictates.

3. Ifat any point S moves one of the virtual heads to the right onto a #, this
action signifies that M has moved the corresponding head onto the
previously unread blank portion of that tape. So S writes a blank symbol on
this tape cell and shifts the tape contents, from this sell until the rightmost
#, one unit to the right. Then it continues the simulation as before.

Corollary: A language is Turing-recognizable if and only if some multi-tape
Turing machine recognizes it.

Theory of Computation, Feodor F. Dragan, Kent State University

Non-deterministic Turing Machine

® A non-deterministic TM is defined in the expected way: at any point of
computation the machine may proceed according to several possibilities.

e The transition function for a non-deterministic TM has the form
0:0xI" > P(OXI'X{L,R}).

* The computation of a non-deterministic TM N is a tree whose branches
correspond to different possibilities for the machine.

» Each node of the tree is a configuration of N. The root is the start
configuration.

* If some branch of the computation leads to the accept state, the machine
accepts the input.

* We will show that non-determinism does not affect the power of the Turing
machine model.

® Theorem: Every non-deterministic Turing machine has an equivalent
deterministic Turing Machine.

* We show that we can simulate any non-deterministic TM N with a deterministic TM D.

* The idea: D will try all possible branches of N’s non-deterministic computation.

* The TM D searches the tree for an accepting configuration. If D ever finds an accepting

configuration, it accepts. Otherwise, D’s simulation will not terminate.

Theory of Computation, Feodor F. Dragan, Kent State University

Non-deterministic TMs vs. ordinary TMs

® The simulating deterministic TM D has three tapes. By previous theorem this
arrangement is equivalent to having a single tape.

* Tape 1 always contains the input string and is never altered.

* Tape 2 maintains a copy of N’s tape on some branch of its non-deterministic
computation.

* Tape 3 keeps track of D’s location in N’s non-deterministic computation tree.

lofifolo[] ,, @ ~—7——— Input tape

: . .
IxIxI#10]1[x[2]... +—— Simulation tape

D

(1121312133 1] .</Addresstape,

* Every node in the tree can have at most b children, where b is the size of the largest set
of possible choices given by N’s transition function.

» Tape 3 contains a string over X, = {1,2,...,b}*. Each symbol in the string tells us
which choice to make next when simulating a step in one branch in N’s non-deterministic
computation. This gives the address of a node in the tree.

* Sometimes a symbol may not correspond to any choice if too few choices are available
for a configuration. In this case we say that the address is invalid, it does not correspond
to any node.

* The empty string is the address of the root of the tree.

Theory of Computation, Feodor F. Dragan, Kent State University 7

Non-deterministic TMs vs. ordinary TMs (cont.)

D=“On input w:

1. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2.
3.

Use tape 2 to simulate N with input w on the branch of its non-
deterministic computation. Before each step of N consult the next symbol
on tape 3 to determine which choice to make among those allowed by N’s
transition function. If no more symbols remain on tape 3 or if this non-
deterministic choice is invalid, abort this branch by going to stage 4. Also
2o to stage 4 if a rejecting configuration is encountered. If an accepting
configuration is encountered, accept the input.

4. Replace the string on taﬁe 3 with the lexicographically next string.
Simulate the next branch of N’s computation by going to stage 2.”

Corollary 1: A language is Turing-recognizable if and only if some non-
deterministic Turing machine recognizes it.

In a similar way one can show the following.

Corollary 2: A language is Turing-decidable if and only if some non-deterministic
Turing machine decides it.

Theory of Computation, Feodor F. Dragan, Kent State University 8

Equivalence with other models

® We have presented several variants of the Turing Machines and have proved them to
be equivalent in power.

* Many other models of general purpose computation have been proposed in literature.

* Some of these models are very much like Turing machines, while others are quite
different (e.g. 4 -calculus).

e All share the essential feature of Turin% machines, namely, unrestricted access to
unlimited memory, distinguishing them from weaker models such us finite automata
and pushdown automata.

 All models with that feature turn out to be equivalent in power, so long as they satisfy
certain reasonable requirements (e.g., the ability to perform only a finite amount of
work in a single step).

More variants of Turing machine

® k-PDA, a PDA with k stacks.
» write-once Turing machines.

* Turing machines with doubly infinite tape.
* Turing machines with left reset 6:0xI"— OXI'X{R,RESET }.

¢ Turing machines with stay put instead of left 0:0xI' - OXI'xX{R,S}.

* If you missed a HW, try to give a complete answer to one of the problems 3.9, 3.11 — 3.14.
Only one and complete answer will be accepted. Then you will get 10 points extra credit.

Theory of Computation, Feodor F. Dragan, Kent State University 9

