The Church-Turing Thesis

Contents

• Turing Machines
 • definitions, examples, Turing-recognizable and Turing-decidable languages

• Variants of Turing Machine
 • Multi-tape Turing machines, non-deterministic Turing Machines, Enumerators, equivalence with other models

• The definition of Algorithm
 • Hilbert’s problems, terminology for describing Turing machines

The definition of algorithm

• Informally, an algorithm is a collection of simple instructions for carrying out some task.

• Algorithms play an important role in CS and Math.

• Even though algorithms have had a long history in mathematics (finding prime numbers, greatest common divisors, …), the notion of algorithms itself was not defined precisely until the twentieth century.

• Before that, mathematicians had an intuitive notion of what algorithms were and relied upon that notion when using and describing them.

• The intuitive notion was insufficient for gaining a deeper understanding of algorithms.

• The story “Hilbert’s tenth problem” relates how the precise definition of algorithm was crucial to one important mathematical problem.

• In 1900, mathematician David Hilbert, in his lecture (at the International Congress of Mathematicians in Paris), identified twenty-three mathematical problems and posed them as challenge for the coming century.

• The tenth problem on his list concerned algorithms.

 Devise a process according to which it can be determined by finite number of operations whether a polynomial has an integral root.
Hilbert’s tenth problem

- A **polynomial** is a sum of terms, where each **term** is a product of certain variables and a constant called a **coefficient**.
 - $6 \cdot x \cdot x \cdot x \cdot y \cdot z \cdot z = 6x^3yz^2$ is a term with coefficient 6.
 - $6x^3yz^2 + 3xy^2 - x^3 - 10$ is a polynomial with four terms over the variables x, y, and z.
- A **root** of a polynomial is an assignment of values to variables so that the value of the polynomial is 0. That polynomial has a root $x=5, y=3, z=0$.
- This root is **integral** since all the variables are assigned integer values.
- Some polynomials have an integral root and some do not.
- So, Hilbert’s tenth problem was to devise an algorithm that tests whether a polynomial has an integral root.
- We now know that no algorithm exists for this task; it is algorithmically unsolvable.
- For mathematicians of that period to come to this conclusion with their intuitive concept of algorithm would have been virtually impossible.
- The intuitive concept of algorithm may have been adequate for giving algorithms for certain tasks, but it was useless for showing that no algorithm exists for a particular task.
- Proving that an algorithm does not exist requires having a clear definition of algorithm. Progress on the tenth problem had to wait for that definition.

Church-Turing thesis

- The definition came in the 1936 papers of *A. Church* and *A. Turing*.
- Church used a notational system called λ-calculus to define algorithms.
- Turing did it with his ‘machines’.
- These two definitions were shown to be equivalent.
- This connection between the informal notion of algorithm and the precise definition has come to be called the **Church-Turing thesis**.

| Intuitive notion of algorithms | equals | Turing machine algorithms |

- This thesis provides the definition of algorithm necessary to resolve Hilbert’s tenth problem.
- In 1970, Yuri Matijasevich showed that no algorithm exists for testing whether a polynomial has integral roots.
- Later we will see the techniques that form the basis for proving that this and other problems are algorithmically unsolvable.
Hilbert’s tenth problem (cont.)

- We formulate Hilbert’s tenth problem in our terminology.
- Let $D = \{ p : p \text{ is polynomial with an integral root} \}$. Hilbert’s tenth problem asks whether the language (set) D is decidable.
- The answer is negative. We can show that D is Turing-recognizable, but not decidable.
- Let first consider a simpler problem: it is an analog of Hilbert’s tenth problem for polynomials that have only a single variable, e.g. $4x^3 - 2x^2 + x - 7$.
- Let $D_1 = \{ p : p \text{ is polynomial over } x \text{ with an integral root} \}$. Here is a Turing machine M_1 that recognizes D_1:

 1. Evaluate p with x set successively to the values $0, 1, -1, 2, -2, \ldots$.

 If at any point the polynomial evaluates to 0, accept.

- Clearly, if p has an integral root, M_1 will find it and accept. If p does not have an integral root, M_1 will run forever.
- For multivariable case, we can present similar Turing machine M that recognizes D. M will go through all possible settings of its variables to integral values.
- Both M_1 and M are recognizers but not deciders. We can convert M_1 to be decider for D_1 since we can calculate bounds within which the roots of a single variable polynomial must lie and restrict the search to these bounds. If a root is not found within these bounds, the machine rejects. $x_i \in [-k e_{\text{max}} / c_1, k e_{\text{max}} / c_1]$.
- Matijasevich’s theorem shows that calculating such bounds for multivariable polynomials is impossible.

Terminology for describing Turing Machines

Three variants of description:

1. The formal description: spells out in full the Turing machine’s states, transition function, and so on.
2. The implementation description: uses English prose to describe the way that the Turing machine moves its head and the way that it stores data on its tape.
3. The high-level description: uses English prose to describe an algorithm, ignoring the implementation model. At this level we do not need to mention how the machine manages its tape or head.

- From now on we will use only high-level descriptions.
- The input to a TM is always a string.
- if we want to provide an object other than a string as input, we must first represent that object as a string. Strings can easily represent polynomials, graphs, grammars, automata, and any combination of those objects.
- Notation for the encoding of an object O into its representation as a string is $<O>$. A string $<O_1,O_2,\ldots,O_k>$ is the encoding of several objects O_1,O_2,\ldots,O_k.
- We will use the following format for describing TM algorithms:

 - We describe TM algorithm with an indented segments of text within quotes.
 - We break the algorithm into stages, each usually involving many individual steps of the TM’s computation.
 - The first line of the algorithm describes the input to the machine. If the input is simply w, the input is taken to be a string w. If the input is the encoding of an object as in $<A>$, the TM first implicitly tests whether the input properly encodes an object of the desired form and rejects it if it doesn’t.
Example

Let \(A \) be the language consisting of all strings representing undirected graphs that are connected.

- Graph is connected if every node can be reached from every other node by traveling along the edges of the graph.
- We write \(A = \{ <G>: G \text{ is a connected undirected graph} \} \).
- The following is a high-level description of a TM \(M \) that decides \(A \).

1. Select the first node of \(G \) and mark it.
2. Repeat the following stage until no new nodes are marked.
3. For each node in \(G \), mark it if it is attached by an edge to a node that is already marked.
4. Scan all the nodes of \(G \) to determine whether they all are marked. If they are, accept; otherwise reject.

\[M = \text{"On input } <G>, \text{ the encoding of a graph } G:\]

1. Select the first node of \(G \) and mark it.
2. Repeat the following stage until no new nodes are marked.
3. For each node in \(G \), mark it if it is attached by an edge to a node that is already marked.
4. Scan all the nodes of \(G \) to determine whether they all are marked. If they are, accept; otherwise reject.

\[G = \begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array}
\]

\[<G> = (1,2,3,4)((1,2), (2,3), (3,1), (1,4)) \]

A graph \(G \) and its encoding \(<G> \).