Decidability (intro.)

- We have introduced Turing machines as a model of a general purpose computer.
- We defined the notion of algorithm in terms of Turing machines by means of the Church-Turing thesis.
- In this chapter we
 - begin to investigate the power of algorithms to solve problems
 - demonstrate certain problems that can be solved algorithmically and others that cannot
- Our objective is to explore the limits of algorithmic solvability.
- Why should we study unsolvability? Showing that a problem is unsolvable doesn’t appear to be of any use if we have to solve it. But …
- We need to study this phenomenon for two reasons:
 - First, knowing that a problem is algorithmically unsolvable is useful because then you realize that the problem must be simplified or altered before you can find an algorithmic solution.
 - The second reason is cultural. Even if you deal with problems that clearly are solvable, a glimpse of the unsolvable can stimulate your imagination and help you gain an important perspective on computation.

Decidable Languages

- In this section we give some examples of languages that are decidable by algorithms.
- For example, we present an algorithm which tests whether a string is a member of a context-free language.
- This problem is related to the problem of recognizing and compiling programs in a programming language.

Decidable Problems Concerning Regular Languages

- We begin with certain computation problems concerning finite automata.
- We give algorithms for testing whether a finite automaton accepts a string, whether the language of a finite automaton is empty, and whether two finite automata are equivalent.
- For convenience we use languages to represent various computational problems.
- For example, the acceptance problem for DFAs of testing whether a particular finite automaton accepts a given string can be expressed as a language, A_{DFA}.

 $$A_{DFA} = \{ \langle B, w \rangle : B \text{ is a DFA that accepts input string } w \}.$$

- The problem of testing whether a DFA B accepts an input w is the same as the problem of testing whether $\langle B, w \rangle$ is a member of the language A_{DFA}.
- Similarly, we can formulate other computational problems in terms of testing membership in a language. Showing that a language is decidable is the same as showing that the computation problem is decidable (= algorithmically solvable).
The Acceptance Problem for DFAs is Decidable

Theorem 1 A_{DFA} is a decidable language.

- We present a TM M that decides A_{DFA}.
- $M = \{ \text{on input } <B,w>, \text{ where } B \text{ is a DFA and } w \text{ is a string:} \}
 \begin{enumerate}
 \item Simulate B on input w.
 \item If the simulation ends in an accept state, accept. If it ends in a non-accepting state, reject.
 \end{enumerate}

A few implementation details:
- The input is $<B,w>$. It is a representation of a DFA B together with a string w. One reasonable representation of B is a list of its five components, $Q, \Sigma, \delta, q_0, F$.
- When M receives its input, M first checks on whether it properly represents a DFA B and a string w. If not, it rejects.
- Then M carries out the simulation in a direct way. It keeps track of B’s current state and B’s current position in the input w.
- Initially, B’s current state is q_0 and B’s current position is the leftmost symbol of w.
- The states and position are updated according to the specified transition function δ.
- When M finishes processing the last symbol of w, M accepts if B is in an accepting state; M rejects if B is in a non-accepting state.

The Acceptance Problem for NFAs and REXs.

We can prove similar result for NFAs and Regular Expressions.

Theorem 2 $A_{\text{NFA}} = \{ <B,w>: B \text{ is a NFA that accepts input string } w \}$.

- A_{NFA} is a decidable language.
- $N = \{ \text{on input } <B,w>, \text{ where } B \text{ is a NFA and } w \text{ is a string:} \}
 \begin{enumerate}
 \item Convert NFA B to an equivalent DFA C using the procedure for this conversion given in Theorem “subset construction”.
 \item Run TM M from Theorem 1 on input $<C,w>$.
 \item If M accepts, accept, otherwise reject.”
 \end{enumerate}

Running TM M in stage 2 means incorporating M into the design of N as a subprocedure.

Theorem 3 $A_{\text{REX}} = \{ <R,w>: R \text{ is a regular Expression that generates string } w \}$.

Theorem 3 A_{REX} is a decidable language.

- $P = \{ \text{on input } <R,w>, \text{ where } R \text{ is a reg. expr. and } w \text{ is a string:} \}
 \begin{enumerate}
 \item Convert R to an equivalent DFA C using the procedure for this conversion given in Theorem earlier.
 \item Run TM M from Theorem 1 on input $<C,w>$.
 \item If M accepts, accept, otherwise reject.”
 \end{enumerate}
The Emptiness Problem for the Language of a Finite Automaton.

\[E_{\text{DFA}} = \{ \langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset \} \].

Theorem 4: \(E_{\text{DFA}} \) is a decidable language.

- A DFA accepts some string if and only if reaching an accept state from the start state by traveling along the arrows of the DFA is possible.
- To test this condition we can design a TM \(T \) that uses marking algorithm similar to that used in example “connectedness of a graph”.

\(T = \) “on input \(\langle A \rangle \), where \(A \) is a DFA :

1. Mark the start state of \(A \).
2. Repeat the following stage until no new states get marked:
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept; otherwise reject.”

The Equivalence Problem for Finite Automata.

\[E_{\text{DFA}} = \{ \langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \].

Theorem 5: \(E_{\text{DFA}} \) is a decidable language.

- Consider a symmetric difference of \(L(A) \) and \(L(B) \), i.e a language \(L(C) \)
 \[L(C) = (L(A) \cap L(B)) \cup (\overline{L(A)} \cap L(B)). \]
- Hence, \(L(C) = \emptyset \) if and only if \(L(A) = L(B) \).
- We can construct \(C \) from \(A \) and \(B \) with the constructions for proving the class of regular languages closed under complementation, union, and intersection.
- These constructions are algorithms that can be carried out by Turing machines.

\(F = \) “on input \(\langle A, B \rangle \), where \(A, B \) are DFAs :

1. Construct DFA \(C \) as described.
2. Run TM \(T \) from theorem 4 on input \(\langle C \rangle \).
3. If \(T \) accepts, accept; if \(T \) rejects, reject.”
Decidable Problems Concerning CFLs

• Here we describe algorithms to test whether a CFG generates a particular string and to test whether the language of a CFG is empty.

• Let $A_{\text{CFG}} = \{ \langle G, w \rangle : G \text{ is a CFG that generates string } w \}$.

Theorem 6: A_{CFG} is a decidable language.

• For CFG G and string w we want to test whether G generates w.

• One idea is to use G to go through all derivations to determine whether any is a derivation of w. This idea doesn’t work, as infinitely many derivations may have to be tried. If G does not generate w, this algorithm would never halt. Hence this idea gives a TM which is recognizer, not a decider.

• To make this TM into a decider we need to ensure that the algorithm tries only finite many derivations.

• If G is in Chomsky normal form, any derivation of w has $2n-1$ steps, where n is the length of w. Only finite many such derivations exist.

• We present a TM S that decides A_{CFG}.

$S =$ “on input $<G, w>$, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.

2. List all derivations with $2n-1$ steps, where n is the length of w, except if $n=0$, then instead list all derivations with 1 step.

3. If any of these derivations generate w, accept; if not, reject.”

• Here we describe algorithms to test whether a CFG generates a particular string and to test whether the language of a CFG is empty.

• Let $E_{\text{CFG}} = \{ \langle G \rangle : G \text{ is a CFG and } L(G) = \emptyset \}$.

Theorem 7: E_{CFG} is a decidable language.

• For CFG G we need to test whether the start variable can generate a string of terminals.

• The algorithm does so by solving a more general problem. It determines for each variable whether that variable is capable of generating a string of terminals. When the algorithm has determined that a variable can generate some string of terminals, the algorithm keeps track of this information by placing a mark on that variable. First the algorithm marks all terminal symbols in the grammar.

• Then it scans all the rules of the grammar. If it ever finds a rule that permits some variable to be replaced by some string of symbols all of which are already marked, the algorithm knows that this variable can be marked, too.

• The algorithm continues in this way until it cannot mark any additional variables. The TM R implements this algorithm.

$R =$ “on input $<G>$, where G is a CFG:

1. Mark all terminals in G. Repeat (2) until no new variables get marked:

2. Mark any variable A where G has a rule $A \rightarrow U_1U_2\ldots U_k$ and each symbol U_1, U_2, \ldots, U_k has already been marked.

3. If the start symbol is not marked, accept; otherwise reject.”
Decidable Problems Concerning CFLs (cont.)

- Let $EQ_{CFL} = \{ <G, H> \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$.
- This language is *undecidable* (we cannot apply technique used in "EQ$_{DFA}$ is decidable": the class of CFLs is not closed under complementation and intersection).

- We can prove now the following.

Theorem 8: Every CFL is decidable.

- Let A be a CFL and G be a CFG for A.

Here is a TM $M(G)$ that decides A.

- We build a copy of G into $M(G)$.
- S is a TM from Theorem 6.

$M(G) = \text{on input } w$:

1. Run TM S on input $<G, w>$
2. If this machine accepts, accept; if it rejects, reject.