CHAPTER 4 Decidability

Contents

- Decidable Languages

- decidable problems concerning regular languages
- decidable problems concerning context-free languages
- The Halting Problem
- The diagonalization method
- The halting problem is undecidable
- A Turing unrecognizable languages

Decidability (intro.)

- We have introduced Turing machines as a model of a general purpose computer
- We defined the notion of algorithm in terms of Turing machines by means of the Church-Turing thesis
- In this chapter we
- begin to investigate the power of algorithms to solve problems
- demonstrate certain problems that can be solved algorithmically and others that cannot
- Our objective is to explore the limits of algorithmic solvability
- Why should we study unsolvability? Showing that a problem is unsolvable doesn't appear to be of any use if we have to solve it. But ...
- We need to study this phenomenon for two reasons:
- First, knowing that a problem is algorithmically unsolvable is useful because then you realize that the problem must be simplified or altered before you can find an algorithmic solution.
- The second reason is cultural. Even if you deal with problems that clearly are solvable, a glimpse of the unsolvable can stimulate your imagination and help you gain an important perspective on computation.

Decidable Languages

- In this section we give some examples of languages that are decidable by algorithms.
- For example, we present an algorithm which tests whether a string is a member of a context-free language.
- This problem is related to the problem of recognizing and compiling programs in a programming language.

Decidable Problems Concerning Regular Languages

- We begin with certain computation problems concerning finite automata
- We give algorithms for testing whether a finite automata accepts a string, whether the language of a finite automaton is empty, and whether two finite automata are equivalent.
- For convenience we use languages to represent various computational problems.
- For example, the acceptance problem for DFAs of testing whether a particular finite automaton accepts a given string can be expressed as a language, $A_{D F A}$.

$$
A_{D F A}=\{\langle B, w\rangle: B \text { is a DFA that accepts input string } w\} .
$$

- The problem of testing whether a DFA B accepts an input w is the same as the problem of testing whether $\langle B, w\rangle$ is a member of the language $A_{D F A}$.
- Similarly, we can formulate other computational problems in terms of testing membership in a language. Showing that a language is decidable is the same as showing that the computation problem is decidable (= algorithmically solvable).

The Acceptance Problem for DFAs is Decidable

Theorem $1 A_{D F A}$ is a decidable language.

- We present a TM M that decides $A_{D F A}$.
$M=$ "on input $\langle B, w\rangle$, where B is a DFA and w is a string:

1. Simulate B on input w.
2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject. "

A few implementation details:

- The input is $\langle B, w\rangle$. It is a representation of a DFA B together with a string w. One reasonable representation of B is a list of its five components, $Q, \Sigma, \delta, q_{0}, F$.
- When M receives its input, M first checks on whether it properly represents a DFA B and a string w. If not, it rejects.
- Then M carries out the simulation in a direct way. It keeps track of B 's current state and B 's current position in the input w.
- Initially, B 's current state is q_{0} and B 's current position is the leftmost symbol of w.
- The states and position are updated according to the specified transition function $\boldsymbol{\delta}$.
- When M finishes processing the last symbol of w, M accepts if B is in an accepting state; M rejects if B is in a non-accepting state.

The Acceptance Problem for NFAs and REXs.

We can prove similar result for NFAs and Regular Expressions.
$A_{N F A}=\{\langle B, w\rangle: B$ is a NFA that accepts input string $w\}$.
Theorem 2: $A_{N F A}$ is a decidable language.
$N=$ "on input $\langle B, w\rangle$, where B is a NFA and w is a string:

1. Convert NFA B to an equivalent DFA C using the procedure for this conversion given in Theorem "subset construction".
2. Run TM M from Theorem 1 on input $\langle C, w\rangle$.
3. If M accepts, accept, otherwise reject."

Running TM M in stage 2 means incorporating M into the design of N as a subprocedure.
$A_{R E X}=\{\langle R, w\rangle: R$ is a regular Expression that generates string $w\}$.
Theorem 3: $A_{R E X}$ is a decidable language.
$P=$ "on input $\langle R, w\rangle$, where R is a reg.expr. and w is a string:

1. Convert R to an equivalent DFA C using the procedure for this conversion given in Theorem earlier.
2. Run TM M from Theorem 1 on input $\langle C, w\rangle$.
3. If M accepts, accept, otherwise reject."

The Emptiness Problem for the Language of a
 Finite Automaton.
 $E_{D F A}=\{\langle A\rangle: A$ is a DFA and $L(A)=\varnothing\}$.

Theorem 4: $E_{D F A}$ is a decidable language.

- A DFA accepts some string if and only if reaching an accept state from the start state by traveling along the arrows of the DFA is possible.
- To test this condition we can design a TM T that uses marking algorithm similar to that used in example "connectedness of a graph".
$T=$ "on input $\langle A\rangle$, where A is a DFA :

1. Mark the start state of A.
2. Repeat the following stage until no new states get marked:
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept; otherwise reject."

The Equivalence Problem for Finite Automata.

$$
E Q_{D F A}=\{\langle A, B\rangle: A \text { and } B \text { are DFAs and } L(A)=L(B)\}
$$

Theorem 5: $E Q_{D F A}$ is a decidable language.

- Consider a symmetric difference of $L(A)$ and $L(B)$, i.e a language $L(C)$

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B)) .
$$

- Hence, $L(C)=\varnothing$ if and only if $L(A)=L(B)$.
- We can construct C from A and B with the constructions for proving the class of regular languages closed under complementation, union, and intersection.
- These constructions are algorithms that can be carried out by Turing machines.
$F=$ "on input $\langle A, B\rangle$, where A, B are DFAs :

1. Construct DFA C as described.
2. Run TM T from theorem 4 on input $\langle C\rangle$.
3. If T accepts, accept ; if T rejects, reject."

Decidable Problems Concerning CFLs

- Here we describe algorithms to test whether a CFG generates a particular string and to test whether the language of a CFG is empty.
- Let $A_{C F G}=\{\langle G, w\rangle: G$ is a CFG that generates string $w\}$.

Theorem 6: $A_{C F G}$ is a decidable language.

- For CFG G and string w we want to test whether G generates w.
- One idea is to use G to go through all derivations to determine whether any is a derivation of w. This idea doesn't work, as infinitely many derivations may have to be tried. If G does not generate w, this algorithm would never halt. Hence this idea gives a TM which is recognizer, not a decider.
- To make this TM into a decider we need to ensure that the algorithm tries only finite many derivations.
- If G is in Chomsky normal form, any derivation of w has $2 n-1$ steps, where n is the length of w. Only finite many such derivations exist.
- We present a TM S that decides $A_{C F G}$.
$S=$ "on input $\langle G, w\rangle$, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. List all derivations with $2 n-1$ steps, where n is the length of w, except if $n=0$, then instead list all derivations with 1 step.
3. If any of these derivations generate w, accept; if not, reject. "

Decidable Problems Concerning CFLs(cont.)

- Here we describe an algorithm to test whether the language of a CFG is empty.
- Let $E_{C F G}=\{\langle G\rangle$: G is a CFG and $L(G)=\varnothing\}$.

Theorem 7: $E_{C F G}$ is a decidable language.

- For CFG G we need to test whether the start variable can generate a string of terminals.
- The algorithm does so by solving a more general problem. It determines for each variable whether that variable is capable of generating a string of terminals.
- When the algorithm has determined that a variable can generate some string of terminals, the algorithm keeps track of this information by placing a mark on that variable. First the algorithm marks all terminal symbols in the grammar.
- Then it scans all the rules of the grammar. If it ever finds a rule that permits some variable to be replaced by some string of symbols all of which are already marked, the algorithm knows that this variable can be marked, too.
- The algorithm continues in this way until it cannot mark any additional variables. The TM R implements this algorithm.
$R=$ "on input $\langle G\rangle$, where G is a CFG:

1. Mark all terminals in G. Repeat (2) until no new variables get marked:
2. Mark any variable A where G has a rule $A \rightarrow U_{1} U_{2} \ldots U_{k}$ and each symbol $U_{1}, U_{2}, \ldots, U_{k}$ has already been marked.
3. If the start symbol is not marked, accept; otherwise reject. "

Decidable Problems Concerning CFLs(cont.)

- Let $E Q_{C F G}=\{\langle G, H\rangle: G$ and H are CFGs and $L(G)=L(H)\}$.
- This language is undecidable (we cannot apply technique used in " $E Q_{D F A}$ is decidable"; the class of CFLs is not closed under complementation and intersection).
- We can prove now the following.
-Theorem 8: Every CFL is decidable.
- Let A be a CFL and G be a CFG for A.
- Here is a TM $M(G)$ that decides A.
- We build a copy of G into $M(G)$.
- S is a TM from Theorem 6 .
$M(G)=$ "on input $w:$

1. Run TM S on input $\langle G, w\rangle$
2. If this machine accepts, accept; if it rejects, reject. "

