CHAPTER 4
Decidability

Contents

• Decidable Languages
 • decidable problems concerning regular languages
 • decidable problems concerning context-free languages

• The Halting Problem
 • The diagonalization method
 • The halting problem is undecidable
 • A Turing unrecognizable languages
Decidability (intro.)

• We have introduced Turing machines as a model of a general purpose computer
• We defined the notion of algorithm in terms of Turing machines by means of the Church-Turing thesis
• In this chapter we
 • begin to investigate the power of algorithms to solve problems
 • demonstrate certain problems that can be solved algorithmically and others that cannot
• Our objective is to explore the limits of algorithmic solvability
• Why should we study unsolvability? Showing that a problem is unsolvable doesn’t appear to be of any use if we have to solve it. But …
• We need to study this phenomenon for two reasons:
 • First, knowing that a problem is algorithmically unsolvable is useful because then you realize that the problem must be simplified or altered before you can find an algorithmic solution.
 • The second reason is cultural. Even if you deal with problems that clearly are solvable, a glimpse of the unsolvable can stimulate your imagination and help you gain an important perspective on computation.
Decidable Languages

• In this section we give some examples of languages that are decidable by algorithms.

• For example, we present an algorithm which tests whether a string is a member of a context-free language.

• This problem is related to the problem of recognizing and compiling programs in a programming language.

Decidable Problems Concerning Regular Languages

• We begin with certain computation problems concerning finite automata

• We give algorithms for testing whether a finite automata accepts a string, whether the language of a finite automaton is empty, and whether two finite automata are equivalent.

• For convenience we use languages to represent various computational problems.

• For example, the acceptance problem for DFAs of testing whether a particular finite automaton accepts a given string can be expressed as a language, \(A_{DFA} \).

\[
A_{DFA} = \{ <B,w> : B \text{ is a DFA that accepts input string } w \}.
\]

• The problem of testing whether a DFA \(B \) accepts an input \(w \) is the same as the problem of testing whether \(<B,w> \) is a member of the language \(A_{DFA} \).

• Similarly, we can formulate other computational problems in terms of testing membership in a language. Showing that a language is decidable is the same as showing that the computation problem is decidable (= algorithmically solvable).
The Acceptance Problem for DFAs is Decidable

Theorem 1 \(A_{DFA} \) is a decidable language.

- We present a TM \(M \) that decides \(A_{DFA} \).

\[M = " \text{on input}\ <B, w>, \text{ where } B \text{ is a DFA and } w \text{ is a string:} \]

1. Simulate \(B \) on input \(w \).
2. If the simulation ends in an accept state, accept. If it ends in a non-accepting state, reject.

A few implementation details:

- The input is \(<B, w> \). It is a representation of a DFA \(B \) together with a string \(w \). One reasonable representation of \(B \) is a list of its five components, \(Q, \Sigma, \delta, q_0, F \).
- When \(M \) receives its input, \(M \) first checks on whether it properly represents a DFA \(B \) and a string \(w \). If not, it rejects.
- Then \(M \) carries out the simulation in a direct way. It keeps track of \(B \)'s current state and \(B \)'s current position in the input \(w \).
- Initially, \(B \)'s current state is \(q_0 \) and \(B \)'s current position is the leftmost symbol of \(w \).
- The states and position are updated according to the specified transition function \(\delta \).
- When \(M \) finishes processing the last symbol of \(w \), \(M \) accepts if \(B \) is in an accepting state; \(M \) rejects if \(B \) is in a non-accepting state.
The Acceptance Problem for NFAs and REXs.

We can prove similar result for NFAs and Regular Expressions.

\[A_{NFA} = \{ <B,w> : \text{B is a NFA that accepts input string } w \} \].

Theorem 2: \(A_{NFA} \) is a decidable language.

\(N = \) “on input \(<B,w>\), where \(B \) is a NFA and \(w \) is a string:

1. Convert NFA \(B \) to an equivalent DFA \(C \) using the procedure for this conversion given in Theorem “subset construction”.
2. Run TM \(M \) from Theorem 1 on input \(<C,w>\).
3. If \(M \) accepts, accept, otherwise reject.”

Running TM \(M \) in stage 2 means incorporating \(M \) into the design of \(N \) as a subprocedure.

\[A_{REX} = \{ <R,w> : \text{R is a regular Expression that generates string } w \} \].

Theorem 3: \(A_{REX} \) is a decidable language.

\(P = \) “on input \(<R,w>\), where \(R \) is a reg.expr. and \(w \) is a string:

1. Convert \(R \) to an equivalent DFA \(C \) using the procedure for this conversion given in Theorem earlier.
2. Run TM \(M \) from Theorem 1 on input \(<C,w>\).
3. If \(M \) accepts, accept, otherwise reject.”
The Emptiness Problem for the Language of a Finite Automaton.

\[E_{DFA} = \{ < A > : A \text{ is a DFA and } L(A) = \emptyset \}. \]

Theorem 4: \(E_{DFA} \) is a decidable language.

- A DFA accepts some string if and only if reaching an accept state from the start state by traveling along the arrows of the DFA is possible.

- To test this condition we can design a TM \(T \) that uses marking algorithm similar to that used in example “connectedness of a graph”.

\[T = \text{“on input } < A >, \text{ where } A \text{ is a DFA :} \]

1. Mark the start state of \(A \).
2. Repeat the following stage until no new states get marked:
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept; otherwise reject.”
The Equivalence Problem for Finite Automata.

\[EQ_{DFA} = \{ <A, B> : A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}. \]

Theorem 5: \(EQ_{DFA} \) is a decidable language.

- Consider a symmetric difference of \(L(A) \) and \(L(B) \), i.e. a language \(L(C) \)
 \[L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)). \]
- Hence, \(L(C) = \emptyset \) if and only if \(L(A) = L(B) \).
- We can construct \(C \) from \(A \) and \(B \) with the constructions for proving the class of regular languages closed under complementation, union, and intersection.
- These constructions are algorithms that can be carried out by Turing machines.

\(F = \) “on input \(<A, B> \), where \(A, B \) are DFAs:
 1. Construct DFA \(C \) as described.
 2. Run TM \(T \) from theorem 4 on input \(<C> \).
 3. If \(T \) accepts, accept; if \(T \) rejects, reject.”
Decidable Problems Concerning CFLs

• Here we describe algorithms to test whether a CFG generates a particular string and to test whether the language of a CFG is empty.

• Let $A_{CFG} = \{ <G, w> : G \text{ is a CFG that generates string } w \}$.

Theorem 6: A_{CFG} is a decidable language.

• For CFG G and string w we want to test whether G generates w.

• One idea is to use G to go through all derivations to determine whether any is a derivation of w. This idea doesn’t work, as infinitely many derivations may have to be tried. If G does not generate w, this algorithm would never halt. Hence this idea gives a TM which is recognizer, not a decider.

• To make this TM into a decider we need to ensure that the algorithm tries only finite many derivations.

• If G is in Chomsky normal form, any derivation of w has $2n-1$ steps, where n is the length of w. Only finite many such derivations exist.

• We present a TM S that decides A_{CFG}.

S = “on input $<G, w>$, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.

2. List all derivations with $2n-1$ steps, where n is the length of w, except if $n=0$, then instead list all derivations with 1 step.

3. If any of these derivations generate w, accept; if not, reject. “
Decidable Problems Concerning CFLs (cont.)

- Here we describe an algorithm to test whether the language of a CFG is empty.
- Let \(E_{CFG} = \{ <G> : G \text{ is a CFG and } L(G) = \emptyset \} \).

Theorem 7: \(E_{CFG} \) is a decidable language.

- For CFG \(G \) we need to test whether the start variable can generate a string of terminals.
- The algorithm does so by solving a more general problem. It determines for each variable whether that variable is capable of generating a string of terminals.
- When the algorithm has determined that a variable can generate some string of terminals, the algorithm keeps track of this information by placing a mark on that variable. First the algorithm marks all terminal symbols in the grammar.
- Then it scans all the rules of the grammar. If it ever finds a rule that permits some variable to be replaced by some string of symbols all of which are already marked, the algorithm knows that this variable can be marked, too.
- The algorithm continues in this way until it cannot mark any additional variables. The TM \(R \) implements this algorithm.

\(R = \) “on input \(<G> \), where \(G \) is a CFG:

1. Mark all terminals in \(G \). Repeat (2) until no new variables get marked:

2. Mark any variable \(A \) where \(G \) has a rule \(A \rightarrow U_1U_2...U_k \) and each symbol \(U_1, U_2, ..., U_k \) has already been marked.

3. If the start symbol is not marked, accept; otherwise reject.”
Decidable Problems Concerning CFLs (cont.)

- Let \(EQ_{CFG} = \{ <G, H> : G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \).

- This language is **undecidable** (we cannot apply technique used in “\(EQ_{DFA} \) is decidable”; the class of CFLs is not closed under complementation and intersection).

- We can prove now the following.

Theorem 8: Every CFL is decidable.

- Let \(A \) be a CFL and \(G \) be a CFG for \(A \).

- Here is a TM \(M(G) \) that decides \(A \).

- We build a copy of \(G \) into \(M(G) \).

- \(S \) is a TM from Theorem 6.

\[
M(G) = \text{"on input } w:\
1. \text{ Run TM } S \text{ on input } <G,w> \\
2. \text{ If this machine accepts, accept; if it rejects, reject. "}
\]