Decidability (intro.)

• We have introduced Turing machines as a model of a general purpose computer
• We defined the notion of algorithm in terms of Turing machines by means of the Church-Turing thesis
• In this chapter we
 • begin to investigate the power of algorithms to solve problems
 • demonstrate certain problems that can be solved algorithmically and others that cannot
• Our objective is to explore the limits of algorithmic solvability
• Why should we study unsolvability? Showing that a problem is unsolvable doesn’t appear to be of any use if we have to solve it. But …
• We need to study this phenomenon for two reasons:
 • First, knowing that a problem is algorithmically unsolvable is useful because then you realize that the problem must be simplified or altered before you can find an algorithmic solution.
 • The second reason is cultural. Even if you deal with problems that clearly are solvable, a glimpse of the unsolvable can stimulate your imagination and help you gain an important perspective on computation.
Decidable Languages

• In this section we give some examples of languages that are decidable by algorithms.

• For example, we present an algorithm which tests whether a string is a member of a context-free language.

• This problem is related to the problem of recognizing and compiling programs in a programming language.

Decidable Problems Concerning Regular Languages

• We begin with certain computation problems concerning finite automata

• We give algorithms for testing whether a finite automata accepts a string, whether the language of a finite automaton is empty, and whether two finite automata are equivalent.

• For convenience we use languages to represent various computational problems.

• For example, the acceptance problem for DFAs of testing whether a particular finite automaton accepts a given string can be expressed as a language, A_{DFA}.

 $A_{DFA} = \{ <B, w> : B \text{ is a DFA that accepts input string } w \}$.

• The problem of testing whether a DFA B accepts an input w is the same as the problem of testing whether $<B, w>$ is a member of the language A_{DFA}.

• Similarly, we can formulate other computational problems in terms of testing membership in a language. Showing that a language is decidable is the same as showing that the computation problem is decidable (= algorithmically solvable).
The Acceptance Problem for DFAs is Decidable

Theorem 1 \(A_{DFA} \) is a decidable language.

- We present a TM \(M \) that decides \(A_{DFA} \).

\(M = \) “on input \(\langle B, w \rangle \), where \(B \) is a DFA and \(w \) is a string:

1. Simulate \(B \) on input \(w \).
2. If the simulation ends in an accept state, \textit{accept}. If it ends in a non-accepting state, \textit{reject}.“

A few implementation details:

- The input is \(\langle B, w \rangle \). It is a representation of a DFA \(B \) together with a string \(w \). One reasonable representation of \(B \) is a list of its five components, \(Q, \Sigma, \delta, q_0, F \).
- When \(M \) receives its input, \(M \) first checks on whether it properly represents a DFA \(B \) and a string \(w \). If not, it \textit{rejects}.
- Then \(M \) carries out the simulation in a direct way. It keeps track of \(B \)’s current state and \(B \)’s current position in the input \(w \).
- Initially, \(B \)’s current state is \(q_0 \) and \(B \)’s current position is the leftmost symbol of \(w \).
- The states and position are updated according to the specified transition function \(\delta \).
- When \(M \) finishes processing the last symbol of \(w \), \(M \text{ accepts} \) if \(B \) is in an accepting state; \(M \text{ rejects} \) if \(B \) is in a non-accepting state.
The Acceptance Problem for NFAs and REXs.

We can prove similar result for NFAs and Regular Expressions.

\[A_{NFA} = \{ <B, w> : B \text{ is a NFA that accepts input string } w \} \].

Theorem 2: \(A_{NFA} \) is a decidable language.

\(N = \text{“on input } <B,w>, \text{ where } B \text{ is a NFA and } w \text{ is a string:} \)

1. Convert NFA \(B \) to an equivalent DFA \(C \) using the procedure for this conversion given in Theorem “subset construction”.

2. Run TM \(M \) from Theorem 1 on input \(<C,w> \).

3. If \(M \) accepts, accept, otherwise reject.”

Running TM \(M \) in stage 2 means incorporating \(M \) into the design of \(N \) as a subprocedure.

\[A_{REX} = \{ <R, w> : R \text{ is a regular Expression that generates string } w \} \].

Theorem 3: \(A_{REX} \) is a decidable language.

\(P = \text{“on input } <R,w>, \text{ where } R \text{ is a reg.expr. and } w \text{ is a string:} \)

1. Convert \(R \) to an equivalent DFA \(C \) using the procedure for this conversion given in Theorem earlier.

2. Run TM \(M \) from Theorem 1 on input \(<C,w> \).

3. If \(M \) accepts, accept, otherwise reject.”
The Emptiness Problem for the Language of a Finite Automaton.

\[E_{DFA} = \{ <A> : A \text{ is a DFA and } L(A) = \emptyset \}. \]

Theorem 4: \(E_{DFA} \) is a decidable language.

• A DFA accepts some string if and only if reaching an accept state from the start state by traveling along the arrows of the DFA is possible.

• To test this condition we can design a TM \(T \) that uses marking algorithm similar to that used in example “*connectedness of a graph*”.

\(T = \) “on input \(<A> \), where \(A \) is a DFA:

1. Mark the start state of \(A \).

2. Repeat the following stage until no new states get marked:

3. Mark any state that has a transition coming into it from any state that is already marked.

4. If no accept state is marked, accept; otherwise reject.”
The Equivalence Problem for Finite Automata.

\[EQ_{DFA} = \{ <A, B> : A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \]

Theorem 5: \(EQ_{DFA} \) is a decidable language.

- Consider a symmetric difference of \(L(A) \) and \(L(B) \), i.e. a language \(L(C) \)
 \[L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)). \]
- Hence, \(L(C) = \emptyset \) if and only if \(L(A) = L(B) \).
- We can construct \(C \) from \(A \) and \(B \) with the constructions for proving the class of regular languages closed under complementation, union, and intersection.
- These constructions are algorithms that can be carried out by Turing machines.

\[F = \text{“on input } <A,B>\text{, where } A,B \text{ are DFAs :} \]
1. Construct DFA \(C \) as described.
2. Run TM \(T \) from theorem 4 on input \(<C> \).
3. If \(T \) accepts, \textit{accept} ; if \(T \) rejects, \textit{reject}.”
Decidable Problems Concerning CFLs

• Here we describe algorithms to test whether a CFG generates a particular string and to test whether the language of a CFG is empty.

• Let \(A_{CFG} = \{ \langle G, w \rangle : G \text{ is a CFG that generates string } w \} \).

Theorem 6: \(A_{CFG} \) is a decidable language.

• For CFG \(G \) and string \(w \) we want to test whether \(G \) generates \(w \).

• One idea is to use \(G \) to go through all derivations to determine whether any is a derivation of \(w \). This idea doesn’t work, as infinitely many derivations may have to be tried. If \(G \) does not generate \(w \), this algorithm would never halt. Hence this idea gives a TM which is recognizer, not a decider.

• To make this TM into a decider we need to ensure that the algorithm tries only finite many derivations.

• If \(G \) is in Chomsky normal form, any derivation of \(w \) has \(2n-1 \) steps, where \(n \) is the length of \(w \). Only finite many such derivations exist.

• We present a TM \(S \) that decides \(A_{CFG} \).

\[
S = \text{“on input } \langle G, w \rangle, \text{ where } G \text{ is a CFG and } w \text{ is a string:} \\
1. \text{Convert } G \text{ to an equivalent grammar in Chomsky normal form.} \\
2. \text{List all derivations with } 2n-1 \text{ steps, where } n \text{ is the length of } w, \text{ except if } n=0, \text{ then instead list all derivations with 1 step.} \\
3. \text{If any of these derivations generate } w, \text{ accept; if not, reject. “}
\]
Decidable Problems Concerning CFLs (cont.)

• Here we describe an algorithm to test whether the language of a CFG is empty.

• Let \(E_{CFG} = \{ <G> : G \text{ is a CFG and } L(G) = \emptyset \} \).

Theorem 7: \(E_{CFG} \) is a decidable language.

• For CFG \(G \) we need to test whether the start variable can generate a string of terminals.

• The algorithm does so by solving a more general problem. It determines for each variable whether that variable is capable of generating a string of terminals.

• When the algorithm has determined that a variable can generate some string of terminals, the algorithm keeps track of this information by placing a mark on that variable. First the algorithm marks all terminal symbols in the grammar.

• Then it scans all the rules of the grammar. If it ever finds a rule that permits some variable to be replaced by some string of symbols all of which are already marked, the algorithm knows that this variable can be marked, too.

• The algorithm continues in this way until it cannot mark any additional variables. The TM \(R \) implements this algorithm.

\(R = \text{“on input } <G>, \text{ where } G \text{ is a CFG:} \)

1. Mark all terminals in \(G \). Repeat (2) until no new variables get marked:

2. Mark any variable \(A \) where \(G \) has a rule \(A \rightarrow U_1U_2\ldots U_k \) and each symbol \(U_1, U_2, \ldots, U_k \) has already been marked.

3. If the start symbol is not marked, accept; otherwise reject.”
Decidable Problems Concerning CFLs (cont.)

- Let $EQ_{CFG} = \{< G, H >: G and H are CFGs and L(G) = L(H)\}$.

- This language is undecidable (we cannot apply technique used in “EQ_{DFA} is decidable”; the class of CFLs is not closed under complementation and intersection).

- We can prove now the following.

- **Theorem 8:** Every CFL is decidable.

- Let A be a CFL and G be a CFG for A.

- Here is a TM $M(G)$ that decides A.
- We build a copy of G into $M(G)$.
- S is a TM from Theorem 6.

$M(G) =$ “on input w:

1. Run TM S on input $< G, w >$
2. If this machine accepts, accept; if it rejects, reject.”