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CHAPTER  4

Decidability 
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• First we observe that            is Turing-recognizable. (hence recognizers are more 
powerful than deciders). Requiring a TM to halt on all inputs restricts the kinds of 
languages that it can recognize.

• The following TM U recognizes           .

U = “on input <M,w>, where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept. If M ever enters its reject state,  reject. “

• Note, this machine loops on input <M,w> if M loops on w. 

• If the algorithm had some way to determine that M was not halting on w, it could reject.

• Hence, the halting problem. We will show, an algorithm has no way to make this 
determination.

• U is an example of universal Turing machine first proposed by Turing. It is capable of 
simulating any other Turing machine from the description of that machine. 

• The universal Turing machine played an important early role in stimulating the 
development of stored-program computers. 

• A conclusion: the general problem of software verification is not solvable algorithmically 
(by computer).  

The Acceptance Problem for TMs

Theorem 9:           is undecidable.TMA

TMA

}.:,{ wstringinputacceptsthatTMaisMwMATM ><=

• In this section we will encounter several computationally unsolvable problems.
• Here we will learn techniques for proving unsolvability. 
• Consider the  problem of testing whether a Turing Machine accepts a given input.

TMA
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The Diagonalization Method
• The proof of the undecidability of the halting problem uses a technique called 
diagonalization, discovered first by mathematician Georg Cantor in 1873. 

• Cantor was concerned with the problem of measuring the sizes of infinite sets. If 
we have two infinite sets, how can we tell whether one is larger than other or 
whether they are of the same size? 

• For finite sets, of course, answering these questions is easy. We count the 
elements in a finite set, and the resulting number is its size. But, if we try to count 
the elements of an infinite set we will never finish. 

• Cantor proposed a rather nice solution to this problem. He observed that two 
finite sets have the same size if the elements of one set can be paired with the 
elements of the other set. This idea can be extended to infinite sets. 

• Assume we have two sets A and B and a function f from A to B.

• Say that f is one-to-one if it never maps two different elements of A to the same 
element in B, i.e., if 

• Say that f is onto if it hits every element of B, i.e., for any b in B there is an a in A
such that f(a)=b.

• Say that A and B are the same size if there is a one-to-one, onto function f: A     B.

• A function that is both one-to-one and onto is called a correspondence.

• In a correspondence every element of A maps to a unique element of B and each 
element of B has a unique element of A mapping to it. A correspondence is simply a 
way of pairing the elements of A with the elements of B.

).()(, bfafthenba ≠≠
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Countable sets
• Example 1: Let N be the set of natural numbers {1,2,…,} and E is the set of even 
natural numbers {2,4,…}. Using Cantor’s definition of size we can see that N and 
E have the same size. The correspondence f mapping N to E is simply f(n) = 2n. 

• A set A is countable if either it is finite or it has the same size as N. 

• Example 2: Let Q be the set of positive rational numbers, that is

• Q seems to be much larger than N, yet these two sets have the same size: Q is 
countable.

• We make an infinite matrix containing all the positive rational numbers, as shown 
(the number i/j occurs in the ith row and jth column). 

• Then we turn this matrix into a list.

• We skip an element if 

it would cause a repetition. 

}.,:{ Nnm
n

m
Q ∈=

n 1 2 3 …

f(n) 2 4 6 …

1/1 1/2 1/3 1/4

2/1 2/2 2/3 2/4

3/1

4/1

3/2

4/2

3/3 3/4

…

...
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Uncountable sets
• For some infinite sets no correspondence with N exists. Such sets are called 
uncountable. (These sets simply too big.)

• A real number is one that has a decimal representation

• Example: The set of all real numbers  R is uncountable. 

• Cantor proved this by using  the diagonalization method.

• We show by contradiction that no correspondence exists between N and R. 

• Suppose the correspondence f existed. 

• f must pair all the members of N with all the members of R. 

• But we will find an x in R that is not paired with anything in N, which will be our 
contradiction. 

•We will construct this x. We choose each digit of x to make x different from one of the real 
numbers that is paired with an element of N. 

• In the end we are sure that x is different from any real number that is paired.  

• We illustrate this idea by giving an example. 

...)4142135.12...,1415926.3( ==π

n f(n)

1 3.14159…

2 5.55555…

3 0.12345…

4 0.50000…

… …

We give decimal representation of x. It is a 

number between 0 and 1. Our objective is to 

ensure that x is not f(n) for any n. 

• We know that x is not f(n) for any n since it differs from f(n)

in the nth fractional digit. 

x = 0.4641…
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There are languages that are not T-recognizable. 
• The previous result has an important application to the theory of computation.

• It shows that some languages are not decidable or even Turing-recognizable, for 
the reason that there are uncountably many languages yet only countably many 
Turing machines. 

• Since each Turing machine can recognize a single language and there are more 
languages than Turing machines, some languages are not recognized by any Turing 
machine. Such languages are not Turing-recognizable. 

• We need only to show that the set of all Turing machines is countable and the set 
of all languages is uncountable. 

• First we observe that the set of all strings        is countable for any alphabet      .

• With only finitely many strings of each length, we may form a list of         by writing down

all strings of length 0, length 1, length 2, and so on. 

• The set of all Turing machines is countable because each Turing machine M has an 

encoding into  a string <M>.

• If we simply omit those strings that are not legal encoding of Turing machines, we can

obtain a list of all Turing machines. 

The set of all Turing machines is countable.

Σ*Σ

*Σ
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• First we observe that the set B of all infinite binary sequences is uncountable. 

• An infinite binary sequence is an unending sequence of 0s and 1s. 

• We can show that B is uncountable by using a proof by diagonalization similar to the one 
we used to show that R is uncountable. 

• Let L be the set of all languages over alphabet      .  

• We show that L is uncountable by giving an correspondence with B, thus showing the two 
sets are the same size. 

• Let                                   

• Each language A from L has a unique sequence in B . The ith bit of that sequence is a 1, if      

and is a 0 if            , which is called the characteristic sequence of A. 

• For example, 

• The function f: L � B , where f(A) equals the characteristic sequence of A, is one-to-one 

and onto and hence a correspondence.
• Therefore, as B is uncountable, L is uncountable as well. 

• Thus, indeed some languages are not recognizable by any Turing Machine.

The set of all languages is uncountable.

Σ

,...}.,,{* 321 sss=Σ

Asi ∈ Asi ∉

....110011010

...};,001,000,01,00,0{

...};,001,000,11,10,01,00,1,0,{*

=

=
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• We assume that        is decidable and obtain a contradiction. 

• Let H be decider for        , that is, on input <M,w>, where M is a TM and w is a 
string, 

• Consider now a TM D with H as a subroutine.

D = “on input <M>, where M is a TM:

1. Run H on input <M,<M>>.

2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects, 
accept.”

• That is,  

• What happens when we run D on own description <D> as input? 

• This is obviously a contradiction. Hence neither TM D nor TM H can exist.

The Acceptance Problem for TMs is undecidable

Theorem 9:           is undecidable.TMA

TMA

}.:,{ wstringinputacceptsthatTMaisMwMATM ><=

• We are ready to prove theorem 9

TMA
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• Where is the diagonalization in the proof of theorem 9?  We had    
• H accepts <M,w> exactly when M accepts w,
• D rejects <M> exactly when M accepts <M>,
• D rejects <D> exactly when D accepts <D>.        (a contradiction)

The Acceptance Problem for TMs is undecidable(cont.)

<M1>    <M2>     <M3>   <M4>    . . . 
M1   accept                  accept
M2   accept   accept    accept   accept  
M3                                         accept
M4   accept   accept            

.

.

.

.

.

.

. . .

Entry i,j is accept if Mi accepts <Mj>.

<M1>    <M2>     <M3>   <M4>    . . . 
M1   accept   reject     accept reject
M2   accept   accept    accept   accept  
M3   reject    reject      reject    accept
M4   accept   accept    reject    reject

.

.

.

.

.

.

. . .

Entry i,j is the value of H on input <Mi,<Mj>>.

<M1>    <M2>     <M3>   <M4>    . . .   <D>  . . . 

M1   accept reject     accept reject            accept 

M2   accept   accept accept   accept           reject

M3   reject    reject      reject accept accept 

M4   accept   accept    reject    reject reject

D     reject    reject    accept    accept __?__  

.

.

.

.

.

.

. . .

If D is in the figure, a 

contradiction occurs at “?”. 

.

.

.

.

.

.

.
.
.

.
.
.

. . .



Theory of Computation, Feodor F. Dragan, Kent State University 10

A Turing-unrecognizable language. 
• We have seen a language that is undecidable. Now we demonstrate a language 
which is  not even Turing-recognizable. 

• Recall that the complement of a language L is the language L consisting of all 
strings that are not in the language L. 

• We say that a language is co-Turing-recognizable if it is the complement of a 
Turing-recognizable language. 

Theorem: A language is decidable if and only if it is both Turing-recognizable and 
co-Turing-recognizable. 

Proof: (�) Clearly, if L is decidable then both L and L are Turing-recognizable.

• any decidable language is Turing-recognizable and 

• the complement of decidable language is decidable.

() Let M1 be the recognizer for L and M2 be the recognizer for L.

The following TM M is a decider for L.

M = “on input w:

1. Run both M1 and M2 on input w in parallel. 

2. If M1 accepts, accept; if M2 accepts, reject.”

• Run in parallel means that M has two tapes, one for simulating M1, and the other for simulating M2

• M takes turns simulating one step of each machine; it continues until one of them halts with accept.

• Since every string is in L or L, either M1 or M2 must accept w. M always halts; it is a decider. 

• Moreover it accepts all strings in L and rejects all strings not in L. Hence, L is decidable. 
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A Turing unrecognizable language (cont.) 

Corollary: is not Turing-recognizable.

Proof:   

• We know that          is Turing-recognizable.

• If           also were Turing-recognizable,            would be decidable.

• But it is not decidable by theorem 9. 

• Hence,           is not Turing-recognizable.

TMA

TMA TMA

TMA

TMA


