
1

Theory of Computation, Feodor F. Dragan, Kent State University 1

)}.()(,:,{

},)(:{

},:,{

212121 MLMLwithTMsareMMMMEQ

MLthatsuchTMaisMME

wstringinputonhaltsthatTMaisMwMHALT

TM

TM

TM

=><=

∅=><=

><=

• Now we examine several additional unsolvable problems.

• In doing so we introduce the primary method for proving that problems are
computationally unsolvable.

• It is called reducibility.

• A reduction is a way of converting one problem into another problem in such a
way that a solution to the second problem can be used to solve the first problem.

• When A is reducible to B, solving A cannot be harder that solving B because a
solution to B gives a solution to A.

• In terms of computability theory, if A is reducible to B and B is decidable then A
also is decidable.

• Equivalently, if A is undecidable and reducible to B, B is undecidable.

• This is the key to proving that various problems are undecidable.

• Our method for proving that a problem is undecidable will be: show that some
other problem already known to be undecidable reduces to it.

• We will consider the following problems (~ as membership in languages):

Reducibility

Theory of Computation, Feodor F. Dragan, Kent State University 2

• We have seen that the acceptance problem for TMs is undecidable

• Consider the problem determining whether a Turing machine halts (by accepting
or rejecting) on a given input.

S = “on input <M,w>, where M is a TM and w is a string:

1. Run TM R on input <M,w>.

2. If R rejects, reject.

3. If R accepts, simulate M on w until it halts.

4. If M has accepted, accept; if M rejected, reject.”

The Halting Problem for TMs.

Theorem 1: is undecidable.

• We use undecidability of to prove the undecidability of by
reducing to .

• Let assume that TM R decides We construct a TM S to decide

TMHALT

Theorem: is undecidable.TMA

}.:,{ wstringinputacceptsthatTMaisMwMATM ><=

}.:,{ wstringinputonhaltsthatTMaisMwMHALTTM ><=

TMA TMHALT
TMA TMHALT

.TMHALT .TMA

Clearly, if R decides , then S decides . Because is
undecidable, is undecidable too.

TMHALT TMA TMA

TMHALT

2

Theory of Computation, Feodor F. Dragan, Kent State University 3

The Emptiness Problem for the Language of a TM.

Theorem 2: is undecidable.
TME

}.)(:{ ∅=><= MLthatsuchTMaisMMETM

• Let assume that TM R decides . We construct a TM S to decide

• Idea is for S to run R on input <M> and see whether it accepts. If it does then
L(M) is empty and hence M does not accept w. But if M rejects …(???) we still do
not know whether M accepts w.

• Instead of running R on <M> we run R on a modification of <M> (<M1>). The
only string M1 accepts is w, so its language is nonempty if and only if it accepts w.

TME .TMA

S = “on input <M,w>, an encoding of a TM M and a string w:
1. Use the description of M and w to construct the following TM M1.

M1 = “on input x:
1. If , reject.
2. If x = w, run M on input w and accept if M does.”

2. Run R on input <M1>.
3. If R accepts, reject; if R rejects, accept.”

wx ≠

• The test whether x = w is obvious; scan the input and compare it character by character
with w to determine whether they are the same.

• Note that S must be able to compute a description of M1 from a description of M and w. It
is able because it needs only add extra states to M that perform the x = w test.

• If R were a decider for , S would be a decider for which is impossible.
TME TMA

Theory of Computation, Feodor F. Dragan, Kent State University 4

The Equivalence Problem for TMs.

Theorem 3: is undecidable.
TMEQ

• We could prove it by a reduction from , but we use this opportunity to give an
example of an undecidability proof by reduction from

• Let TM R decides and construct TM S to decide as follows.

.TME

S = “on input <M>, an encoding of a TM M:

1. Run R on input <M,M1>, where M1 is a TM that rejects all inputs.

2. If R accepts, accept; if R rejects, reject.”

• The problem is a special case of the problem wherein one of the
machines is fixed to recognize the empty language.

• This idea makes giving the reduction easy.

• So, If R were a decider for , S would be a decider for , which is
impossible.

• One can also show that is neither Turing-recognizable nor co-Turing-recognizable.

In the textbook, a simple problem called Post Correspondence Problem is shown to be
unsolvable by algorithms.

TMEQ

)}.()(,:,{ 212121 MLMLwithTMsareMMMMEQTM =><=

TMA

TMEQ TME

TME

TMETMEQ

TMEQ

