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• Now we examine several additional unsolvable problems.

• In doing so we introduce the primary method for proving  that problems are 
computationally unsolvable. 

• It is called reducibility. 

• A reduction is a way of converting one problem into another problem in such a 
way that a solution to the second problem can be used to solve the first problem. 

• When A is reducible to B, solving A cannot be harder that solving B because a 
solution  to B gives a solution to A.

• In terms of computability theory,   if A is reducible to B and B is decidable then A
also is decidable.

• Equivalently, if A is undecidable and reducible to B, B is undecidable. 

• This is the key to proving that various problems are undecidable. 

• Our method for proving that a problem is undecidable will be:  show that some 
other problem already known to be undecidable reduces to it.  

• We will consider the following problems (~ as membership in languages):

Reducibility
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• We have seen that the acceptance problem for TMs is undecidable 

• Consider the problem determining whether a Turing machine halts  (by accepting 
or rejecting) on a given input. 

S = “on input <M,w>, where M is a TM and w is a string:

1. Run TM R on input <M,w>.

2. If R rejects, reject.

3. If R accepts, simulate M on w until it halts. 

4. If M has accepted, accept; if M rejected, reject.”

The Halting Problem for TMs.

Theorem 1:                is  undecidable.

• We use undecidability of          to prove the undecidability of                    by 
reducing           to                   .

• Let assume that TM R decides                    We construct a TM S to decide 
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Clearly, if R decides                  , then S decides         .  Because          is 
undecidable,                    is undecidable too.
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The Emptiness Problem for the Language of a TM.

Theorem 2:           is  undecidable.
TME
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• Let assume that TM R decides           . We construct a TM S to decide

• Idea is for S to run R on input <M> and see whether it accepts. If it does then 
L(M) is empty and hence M does not accept w. But if M rejects …(???)  we still do 
not know whether M accepts w.

• Instead of running R on <M> we run R on a modification of <M> (<M1>). The 
only string M1 accepts is w, so its language is nonempty if and only if it accepts w. 

TME .TMA

S = “on input <M,w>, an encoding of a TM M and a string w:
1. Use the description of M and w to construct the following TM M1.

M1 = “on input x:
1. If          , reject. 
2. If x = w, run M on input w and accept if M does.”

2. Run R on input <M1>.
3. If R accepts, reject; if R rejects, accept.”

wx ≠

• The test whether x = w is obvious; scan the input and compare it character by character 
with w to determine whether they are the same. 

• Note that S must be able to compute a description of M1 from a description of M and w. It 
is able because it needs only add extra states to M that perform the x = w test. 

• If R were a decider for           , S would be a decider for             which is impossible. 
TME TMA
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The Equivalence Problem for TMs.

Theorem 3:           is  undecidable.
TMEQ

• We could prove it by a reduction from         , but we use this opportunity to give an 
example of an undecidability proof by reduction from 

• Let TM R decides              and construct TM S to decide          as follows. 

.TME

S = “on input <M>, an encoding of a TM M:

1. Run R on input <M,M1>, where M1 is a TM that rejects all inputs.  

2. If R accepts, accept; if R rejects, reject.”

• The             problem is a special case of the              problem wherein one of the 
machines is fixed to recognize the empty language. 

• This idea makes giving the reduction easy. 

• So, If R were a decider for              , S would be a decider for           , which is 
impossible. 

• One can also show that              is neither Turing-recognizable nor co-Turing-recognizable. 

In the textbook, a simple problem called Post Correspondence Problem is shown to be 
unsolvable by algorithms.
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