Reducibility

• Now we examine several additional unsolvable problems.
• In doing so we introduce the primary method for proving that problems are computationally unsolvable.
• It is called *reducibility*.

A reduction is a way of converting one problem into another problem in such a way that a solution to the second problem can be used to solve the first problem.

When A is reducible to B, solving A cannot be harder that solving B because a solution to B gives a solution to A.

In terms of computability theory, if A is reducible to B and B is decidable then A also is decidable.

Equivalently, if A is undecidable and reducible to B, B is undecidable.

This is the key to proving that various problems are undecidable.

Our method for proving that a problem is undecidable will be: show that some other problem already known to be undecidable reduces to it.

We will consider the following problems (~ as membership in languages):

\[
\begin{align*}
\text{HALT}_{TM} &= \{ <M,w> : M \text{ is a TM that halts on input string } w \}, \\
E_{TM} &= \{ <M> : M \text{ is a TM such that } L(M) = \emptyset \}, \\
EQ_{TM} &= \{ <M_1,M_2> : M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}.
\end{align*}
\]
The Halting Problem for TMs.

• We have seen that the acceptance problem for TMs is undecidable
 \[A_{TM} = \{ <M, w> : M \text{ is a TM that accepts input string } w \} \].

Theorem: \(A_{TM} \) is undecidable.

• Consider the problem determining whether a Turing machine halts (by accepting or rejecting) on a given input.
 \[\text{HALT}_{TM} = \{ <M, w> : M \text{ is a TM that halts on input string } w \} \].

Theorem 1: \(\text{HALT}_{TM} \) is undecidable.

• We use undecidability of \(A_{TM} \) to prove the undecidability of \(\text{HALT}_{TM} \) by reducing \(A_{TM} \) to \(\text{HALT}_{TM} \).

• Let assume that TM \(R \) decides \(\text{HALT}_{TM} \). We construct a TM \(S \) to decide \(A_{TM} \).

\(S = \) “on input \(<M, w> \), where \(M \) is a TM and \(w \) is a string:

1. Run TM \(R \) on input \(<M, w> \).
2. If \(R \) rejects, reject.
3. If \(R \) accepts, simulate \(M \) on \(w \) until it halts.
4. If \(M \) has accepted, accept; if \(M \) rejected, reject.”

Clearly, if \(R \) decides \(\text{HALT}_{TM} \), then \(S \) decides \(A_{TM} \). Because \(A_{TM} \) is undecidable, \(\text{HALT}_{TM} \) is undecidable too.
The Emptiness Problem for the Language of a TM.

\[E_{TM} = \{ <M> : M \text{ is a TM such that } L(M) = \emptyset \} . \]

Theorem 2: \(E_{TM} \) is undecidable.

- Let assume that TM \(R \) decides \(E_{TM} \). We construct a TM \(S \) to decide \(A_{TM} \).

- Idea is for \(S \) to run \(R \) on input \(<M> \) and see whether it accepts. If it does then \(L(M) \) is empty and hence \(M \) does not accept \(w \). But if \(M \) rejects \(w \) we still do not know whether \(M \) accepts \(w \).

- Instead of running \(R \) on \(<M> \) we run \(R \) on a modification of \(<M> \) (\(<M_1> \)). The only string \(M_1 \) accepts is \(w \), so its language is nonempty if and only if it accepts \(w \).

\(S = \) “on input \(<M,w> \), an encoding of a TM \(M \) and a string \(w \):

1. Use the description of \(M \) and \(w \) to construct the following TM \(M_1 \).
 \[M_1 = \text{“on input } x \text{:} \]
 1. If \(x \neq w \), reject.
 2. If \(x = w \), run \(M \) on input \(w \) and accept if \(M \) does.”

2. Run \(R \) on input \(<M_1> \).

3. If \(R \) accepts, reject; if \(R \) rejects, accept.”

- The test whether \(x = w \) is obvious; scan the input and compare it character by character with \(w \) to determine whether they are the same.

- Note that \(S \) must be able to compute a description of \(M_1 \) from a description of \(M \) and \(w \). It is able because it needs only add extra states to \(M \) that perform the \(x = w \) test.

- If \(R \) were a decider for \(E_{TM} \), \(S \) would be a decider for \(A_{TM} \) which is impossible.
The Equivalence Problem for TMs.

\[EQ_{TM} = \{ <M_1, M_2> : M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}. \]

Theorem 3: \(EQ_{TM} \) is undecidable.

- We could prove it by a reduction from \(A_{TM} \), but we use this opportunity to give an example of an undecidability proof by reduction from \(E_{TM} \).
- Let TM \(R \) decides \(EQ_{TM} \) and construct TM \(S \) to decide \(E_{TM} \) as follows.

\[S = \text{“on input } <M>, \text{ an encoding of a TM } M:\]

1. Run \(R \) on input \(<M,M1> \), where \(M1 \) is a TM that rejects all inputs.
 2. If \(R \) accepts, accept; if \(R \) rejects, reject.”

- The \(E_{TM} \) problem is a special case of the \(EQ_{TM} \) problem wherein one of the machines is fixed to recognize the empty language.
- This idea makes giving the reduction easy.
- So, If \(R \) were a decider for \(EQ_{TM} \), \(S \) would be a decider for \(E_{TM} \), which is impossible.
- One can also show that \(EQ_{TM} \) is neither Turing-recognizable nor co-Turing-recognizable.

In the textbook, a simple problem called Post Correspondence Problem is shown to be unsolvable by algorithms.