Reducibility

- Now we examine several additional unsolvable problems.
- In doing so we introduce the primary method for proving that problems are computationally unsolvable.
- It is called reducibility.
- A reduction is a way of converting one problem into another problem in such a way that a solution to the second problem can be used to solve the first problem.
- When A is reducible to B, solving A cannot be harder that solving B because a solution to B gives a solution to A.
- In terms of computability theory, if A is reducible to B and B is decidable then A also is decidable.
- Equivalently, if A is undecidable and reducible to B, B is undecidable.
- This is the key to proving that various problems are undecidable.
- Our method for proving that a problem is undecidable will be: show that some other problem already known to be undecidable reduces to it.
- We will consider the following problems (\sim as membership in languages):

$$
\begin{aligned}
& H A L T_{T M}=\{<M, w>: M \text { is a } T M \text { that halts on input string } w\}, \\
& E_{T M}=\{<M>: M \text { is a } T M \text { such that } L(M)=\varnothing\} \\
& E Q_{T M}=\left\{<M_{1}, M_{2}>: M_{1}, M_{2} \text { are TMs with } L\left(M_{1}\right)=L\left(M_{2}\right)\right\} .
\end{aligned}
$$

The Halting Problem for TMs.

- We have seen that the acceptance problem for TMs is undecidable

$$
A_{T M}=\{\langle M, w\rangle: M \text { is a } T M \text { that accepts input string } w\} .
$$

Theorem: $A_{T M}$ is undecidable.

- Consider the problem determining whether a Turing machine halts (by accepting or rejecting) on a given input.

$$
\operatorname{HALT}_{T M}=\{<M, w>: M \text { is a TM that halts on input string } w\} .
$$

Theorem 1: $H A L T_{T M}$ is undecidable.

- We use undecidability of $A_{T M}$ to prove the undecidability of $H A L T_{T M}$ by reducing $A_{T M}$ to $H A L T_{T M}$.
- Let assume that TM R decides $H A L T_{T M}$. We construct a TM S to decide $A_{T M}$. $S=$ "on input $\langle M, w\rangle$, where M is a TM and w is a string:

1. Run TM R on input $\langle M, w\rangle$.
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; if M rejected, reject."

Clearly, if R decides $\operatorname{HALT}_{T M}$, then S decides $A_{T M}$. Because $A_{T M}$ is undecidable, $H A L T_{T M}$ is undecidable too.

The Emptiness Problem for the Language of a TM.

$$
E_{T M}=\{<M>: M \text { is a } T M \text { such that } L(M)=\varnothing\} .
$$

Theorem 2: $E_{T M}$ is undecidable.

- Let assume that TM R decides $E_{T M}$. We construct a TM S to decide $A_{T M}$.
- Idea is for S to run R on input $\langle M\rangle$ and see whether it accepts. If it does then $L(M)$ is empty and hence M does not accept w. But if M rejects ...(???) we still do not know whether M accepts w.
- Instead of running R on $\langle M\rangle$ we run R on a modification of $\langle M\rangle$ ($\langle M 1\rangle$). The only string M1 accepts is w, so its language is nonempty if and only if it accepts w.
$S=$ "on input $\langle M, w\rangle$, an encoding of a TM M and a string w :

1. Use the description of M and w to construct the following TM M1.
$M 1=$ "on input x :
2. If $x \neq w$, reject.
3. If $x=w$, run M on input w and accept if M does."
4. Run R on input $\langle M 1$ >.
5. If R accepts, reject; if R rejects, accept."

- The test whether $x=w$ is obvious; scan the input and compare it character by character with w to determine whether they are the same.
- Note that S must be able to compute a description of $M 1$ from a description of M and w. It is able because it needs only add extra states to M that perform the $x=w$ test.
- If R were a decider for $E_{T M}, S$ would be a decider for $A_{T M}$ which is impossible.

The Equivalence Problem for TMs.

$$
E Q_{T M}=\left\{<M_{1}, M_{2}>: M_{1}, M_{2} \text { are TMs with } L\left(M_{1}\right)=L\left(M_{2}\right)\right\} .
$$

Theorem 3: $E Q_{T M}$ is undecidable.

- We could prove it by a reduction from $A_{T M}$, but we use this opportunity to give an example of an undecidability proof by reduction from $E_{T M}$.
- Let TM R decides $E Q_{T M}$ and construct TM S to decide $E_{T M}$ as follows.
$S=$ "on input $\langle M\rangle$, an encoding of a TM M :

1. Run R on input $\langle M, M 1\rangle$, where $M 1$ is a TM that rejects all inputs.
2. If R accepts, accept; if R rejects, reject."

- The $E_{T M}$ problem is a special case of the $E Q_{T M}$ problem wherein one of the machines is fixed to recognize the empty language.
- This idea makes giving the reduction easy.
- So, If R were a decider for $E Q_{T M}, S$ would be a decider for $E_{T M}$, which is impossible.
- One can also show that $E Q_{T M}$ is neither Turing-recognizable nor co-Turing-recognizable.

In the textbook, a simple problem called Post Correspondence Problem is shown to be unsolvable by algorithms.

