
1

Theory of Computation, Feodor F. Dragan, Kent State University 1

The class P: polynomial time

• Theorems 1 and 2 illustrate an important distinction.

• On the one hand, we demonstrated at most a square or polynomial difference
between the time complexity of problems measured on deterministic single tape and
multi-tape Turing machines.

• On the other hand, we showed at most an exponential difference between the time
complexity of the problems on deterministic and non-deterministic Turing
machines.

• For our purpose, polynomial difference in running time are considered to be small,
whereas exponential differences are considered to be large.

• Polynomial time algorithms are fast enough for many purposes, but exponential
time algorithms rarely are useful. (For n=1000, = 1 billion (still manageable
number), is much larger than the number of atoms in the universe.)

• All reasonable deterministic computational models are polynomially equivalent.
Any one of them can simulate another with only a polynomial increase in running
time.

• From here on we focus on aspects of time complexity theory that are unaffected by
polynomial difference in running time. We consider such differences to be
insignificant and ignore them.

• The Question is whether a given problem is polynomial or non-polynomial.

• So we came to an important definition in the complexity theory, P class.

3
n

n2

Theory of Computation, Feodor F. Dragan, Kent State University 2

The class P: definition

• Definition: P is the lass of languages that are decidable in polynomial time on a
deterministic single tape Turing machine. That is

• The class P plays an important role in our theory and is important because

• P is invariant for all models of computation that are polynomially equivalent
to the deterministic single tape TM, and

• P roughly corresponds to the class of problems that are realistically solvable
on a computer.

• When we analyze an algorithm to show that it runs in polynomial time, we need to
do two things

• First, give a polynomial upper bound (usually in big-O notation) on the
number of stages that the algorithm uses when it runs on input of length n.

• Then, examine the individual stages in the description of the algorithm to be
sure that each can be implemented in polynomial time on a reasonable
deterministic model.

• When both tasks have been done, we can conclude that it runs in polynomial time
because we have demonstrated that it runs for a polynomial number of stages, each
of which can be done in polynomial time, and the composition of polynomials is a
polynomial.

.)(U
k

knTIMEP =

2

Theory of Computation, Feodor F. Dragan, Kent State University 3

M = “on <G,s,t>: where G is a directed graph with nodes s and t.

1. Place a mark on node s.

2. Repeat the following until no additional nodes get marked.

3. Scan all the edges of G. If an edge (a,b) is found going from marked node
a to an unmarked node b, mark b.

4. If t is marked, accept; otherwise reject.”

• Stages 1 ,4 are executed only once. Stage 3 runs at most m=|V| times because each time
except the last it marks an additional node in G. Hence, the total number of stages is
1+1+m, giving a polynomial in the size of G.

• Stages 1,4 easily implemented in polynomial time on any reasonable deterministic
model. Stage 3 involves a scan of the input and a test whether certain nodes are marked,
which also is easily implemented in polynomial time.

• Hence, M is a polynomial time algorithm for PATH.

Examples of problems in P
• We had: the problem whether w is a member of the language is in P.

• Fortunately, there are many problems that are in P.

• The PATH problem is to determine whether a directed path exists from s to t.

}0:10{ ≥= kA kk

}.:,,{),,(ttosfrompathdirectedahasthatgraphdirectedaisGtsGtsGPATH ><=

Theorem:

• we use breadth first search and successively mark all nodes in G that are reachable from

s by directed paths of length 1, then 2, then 3, through m=|V|.

.PPATH ∈

Theory of Computation, Feodor F. Dragan, Kent State University 4

The class NP
• For some interesting and useful problems, polynomial time algorithms that solve them
aren’t known to exist.

• Why have we been unsuccessful in finding polynomial time algorithms for these problems?
We don’t know the answer to this important question.

• Perhaps these problems have, as yet undiscovered, polynomial time algorithms that rest on
unknown principles.

• Or possibly some of these problems simply cannot be solved in polynomial time. They may
be intrinsically difficult.

• One remarkable discovery concerning this question shows that the complexities of many
problems are linked. The discovery of a polynomial time algorithm for one such problem can
be used to solve an entire class of problems.

• A Hamiltonian path in a directed graph G is a directed path that goes through each node
exactly once. Consider the problem of testing whether a directed graph contains a
Hamiltonian path connecting two specified nodes.

• We can easily obtain an exponential
time algorithm for the HAMPATH
problem by brute-force approach which
checks all possible permutations of nodes
(n!).

• We need only add a check to verify that
the potential path is Hamiltonian.

• No one knows whether HAMPATH is
solvable in polynomial time.

HAMPATH={<G,s,t>: G is a directed graph

with a Hamiltonian path from s to t}.

3

Theory of Computation, Feodor F. Dragan, Kent State University 5

The class NP: definition
• Define the non-deterministic time complexity class

• Def: NP is the class of languages that are decidable in polynomial time on a non-
deterministic Turing machine. That is

• The class NP is insensitive to the choice of reasonable non-deterministic
computation model because all such models are polynomially equivalent.

.)(U
k

knNTIMENP =

}.m))((:{))((machineTuringinisticDeterNontimentOanbydecidedlanguageaisLLntNTIME −=

Theorem: .NPHAMPATH ∈

•The following is a non-deterministic Turing Machine (NTM) that decides the HAMPATH
problem in non-deterministic polynomial time (we defined the time of a non-deterministic
machine to be the time used by the longest computation branch).

N = “on <G,s,t>: where G is a directed graph with nodes s and t.

1. Write a list of m numbers where m is the number of nodes in G. Each
number in the list is non-deterministically selected to be between 1 and m.

2. Check for repetitions in the list. If any are found, reject.

3. Check whether If either fail, reject.

4. For each i between 1 and m-1, check whether is an edge of G. If any are
not, reject. Otherwise, accept.”

,,...,, 21 mppp

.1 mptandps ==

),(1+ii pp

• Clearly, this algorithms runs in non-deterministic polynomial time since all stages run in
polynomial time.

Theory of Computation, Feodor F. Dragan, Kent State University 6

Polynomial Time Verifiers
• The HAMPATH problem does have a feature called polynomial verifiability that is
important for understanding its complexity.

• Even though we don’t know of a fast (i,.e., polynomial time) way to determine whether a
graph contains a Hamiltonian path, if such a path were discovered somehow (perhaps using
the exponential time algorithm), we could easily convince someone else of its existence,
simply by presenting it.

• In other words, verifying the existence of a Hamiltonian path may be much easier than
determining its existence.

• We can give an equivalent definition of the NP class using the notion verifier.

• A verifier for a language A is an algorithm V, where
A={w: V accepts <w,c> for some string c}.

• A verifier uses additional information, represented by the symbol c in definition.
This information is called a certificate, or proof, of membership in A.

• Example: <G,s,t> belongs to HAMPATH if for some path p, V accepts <<G,s,t>,p> (that
is, V says “yes, p is a Hamiltonian path from s to t of G). For the HAMPATH problem, a
certificate for a string simply is the Hamiltonian path p from s to t.

• A polynomial time verifier is a verifier that runs in polynomial time in the length of w.

• A language A is polynomially verifiable if it has a polynomial time verifier.

• Def: NP is the class of languages that have polynomial time verifiers.

•The verifier can check in polynomial time that the input is in the language
when it is given the certificate.

HAMPATHtsG >∈< ,,

4

Theory of Computation, Feodor F. Dragan, Kent State University 7

CLIQUE is in NP
• A clique in an undirected graph G is a subgraph, wherein every two nodes are connected
by an edge. A k-clique is a clique that contains k nodes.

• The clique problem is to determine whether a graph contains a clique of a specific size.

CLIQUE={<G,k>: G is an

undirected graph with a k-clique}.

A graph with 4-clique.Theorem: .NPCLIQUE ∈

• Proof: The following is a verifier V for CLIQUE.

V = “on input <<G,k>,c>:

1. Test whether c is a set of k nodes in G.

2. Test whether G contains all edges connecting nodes in c.

3. If both pass, accept; otherwise, reject.”

• Alternative proof: If you prefer to think of NP in terms of non-deterministic polynomial
Turing machine …

N = “on <G,k>: where G is an undirected graph, k is an integer.

1. Non-deterministically select a subset c of k nodes in G.

2. Test whether G contains all edges connecting nodes in c.

3. If yes, accept; otherwise, reject.”

Theory of Computation, Feodor F. Dragan, Kent State University 8

SUBSET-SUM is in NP
• We have a collection of numbers, and a target number t. We want
to determine whether the collection contains a subcollection that adds up to t.

Theorem: .NPSUMSUBSET ∈−

• Proof: The following is a verifier V for SUBSET-SUM.

V = “on input <<S,t>,c>:

1. Test whether c is a collection of numbers that sum to t.

2. Test whether S contains all the numbers in c.

3. If both pass, accept; otherwise, reject.”

• Alternative proof: If you prefer to think of NP in terms of non-deterministic polynomial
Turing machine …

N = “on <S,t>:

1. Non-deterministically select a subset c of the numbers in S.

2. Test whether c is a collection of numbers that sum to t.

3. If yes, accept; otherwise, reject.”

,,...,, 21 kxxx

}.},,...,,{},...,,{

},...,,{:,{

2121

21

tyhavewexxxyyysomefor

andxxxStSSUMSUBSET

ikl

k

=⊆

=><=−

∑
• For example <{4,11,16,21,27},25> is in SUBSET-SUM since 4+21=25.

• Note that are multisets (we allow repetitions).},...,,{},...,,{ 2121 lk yyyandxxx

5

Theory of Computation, Feodor F. Dragan, Kent State University 9

The P versus NP question
P = the class of languages that are decidable by polynomial time deterministic TMs.

NP = the class of languages that are decidable by polynomial time non-deterministic TMs.

OR EQUIVALENTLY

P = the class of languages where membership can be decided quickly (in pol. time).

NP = the class of languages where membership can be verified quickly (in pol. time).

.)2()(UU
k

n

k

k
k

TIMEEXPTIMENPnNTIME =⊆=

•We presented examples of languages, such as
HAMPATH and CLIQUE, that are members of NP but
that are not known to be in P.

• No polynomial time algorithms are known for those
problems.

• We are unable to prove the existence of a single
language in NP that is not in P.

• The question of whether P = NP is one of the greatest
unsolved problems in theoretical computer science.

• Most researchers believe that the two classes are not
equal because people have invested enormous effort to
find polynomial time algorithms for certain problems in
NP, without success.

• The best method known for solving problems in NP
deterministically uses exponential time. In other words,
one can show that

P

NP

P=NP

One of these two possibilities is correct.

