The class P: polynomial time

- Theorems 1 and 2 illustrate an important distinction.
- On the one hand, we demonstrated at most a square or polynomial difference between the time complexity of problems measured on deterministic single tape and multi-tape Turing machines.
- On the other hand, we showed at most an exponential difference between the time complexity of the problems on deterministic and non-deterministic Turing machines.
- For our purpose, polynomial difference in running time are considered to be small, whereas exponential differences are considered to be large.
- Polynomial time algorithms are fast enough for many purposes, but exponential time algorithms rarely are useful. (For $n=1000$, $n^2 = 1$ billion (still manageable number), 2^n is much larger than the number of atoms in the universe.)
- All reasonable deterministic computational models are polynomially equivalent. Any one of them can simulate another with only a polynomial increase in running time.
- From here on we focus on aspects of time complexity theory that are unaffected by polynomial difference in running time. We consider such differences to be insignificant and ignore them.
- **The Question is** whether a given problem is polynomial or non-polynomial.
- So we came to an important definition in the complexity theory, P class.

The class P: definition

- **Definition**: P is the class of languages that are decidable in polynomial time on a deterministic single tape Turing machine. That is

$$ P = \bigcup_k \text{TIME}(n^k). $$

- The class P plays an important role in our theory and is important because
 - P is invariant for all models of computation that are polynomially equivalent to the deterministic single tape TM, and
 - P roughly corresponds to the class of problems that are realistically solvable on a computer.
- When we analyze an algorithm to show that it runs in polynomial time, we need to do two things
 - First, give a polynomial upper bound (usually in big-O notation) on the number of stages that the algorithm uses when it runs on input of length n.
 - Then, examine the individual stages in the description of the algorithm to be sure that each can be implemented in polynomial time on a reasonable deterministic model.
- When both tasks have been done, we can conclude that it runs in polynomial time because we have demonstrated that it runs for a polynomial number of stages, each of which can be done in polynomial time, and the composition of polynomials is a polynomial.
Examples of problems in P

- We had: the problem whether \(w \) is a member of the language \(A = \{0^k 1^k : k \geq 0 \} \) is in \(P \).
- Fortunately, there are many problems that are in \(P \).
- The \(PATH \) problem is to determine whether a directed path exists from \(s \) to \(t \).

\[
PATH(G,s,t) = \{ \langle G,s,t \rangle : G \text{ is a directed graph that has a directed path from } s \text{ to } t \}.
\]

Theorem: \(PATH \in P \).

- We use breadth first search and successively mark all nodes in \(G \) that are reachable from \(s \) by directed paths of length 1, then 2, then 3, through \(m=|V| \).

\[
M = \text{"on } \langle G,s,t \rangle \text{; where } G \text{ is a directed graph with nodes } s \text{ and } t. \\
1. \text{ Place a mark on node } s. \\
2. \text{ Repeat the following until no additional nodes get marked.} \\
3. \text{ Scan all the edges of } G. \text{ If an edge } (a,b) \text{ is found going from marked node } a \text{ to an unmarked node } b, \text{ mark } b. \\
4. \text{ If } t \text{ is marked, accept; otherwise reject."}
\]

- **Stages 1,4** are executed only once. **Stage 3** runs at most \(m=|V| \) times because each time except the last it marks an additional node in \(G \). Hence, the total number of stages is \(1+1+m \), giving a polynomial in the size of \(G \).
- **Stages 1,4** easily implemented in polynomial time on any reasonable deterministic model. **Stage 3** involves a scan of the input and a test whether certain nodes are marked, which also is easily implemented in polynomial time.
- Hence, \(M \) is a polynomial time algorithm for \(PATH \).

The class NP

- For some interesting and useful problems, polynomial time algorithms that solve them aren’t known to exist.
- Why have we been unsuccessful in finding polynomial time algorithms for these problems? We don’t know the answer to this important question.
- Perhaps these problems have, as yet undiscovered, polynomial time algorithms that rest on unknown principles.
- Or possibly some of these problems simply cannot be solved in polynomial time. They may be intrinsically difficult.
- One remarkable discovery concerning this question shows that the complexities of many problems are linked. The discovery of a polynomial time algorithm for one such problem can be used to solve an entire class of problems.

- A Hamiltonian path in a directed graph \(G \) is a directed path that goes through each node exactly once. Consider the problem of testing whether a directed graph contains a Hamiltonian path connecting two specified nodes.

\[
HAMPATH = \{ \langle G,s,t \rangle : G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}.
\]

- We can easily obtain an exponential time algorithm for the \(HAMPATH \) problem by brute-force approach which checks all possible permutations of nodes (\(n! \)).
- We need only add a check to verify that the potential path is Hamiltonian.
- No one knows whether \(HAMPATH \) is solvable in polynomial time.
The class \(NP\): definition

- Define the **non-deterministic time complexity class**
 \(\text{NTIME}(t(n)) = \{ L : L \text{ is a language decided by an } O(t(n)) \text{ time Non-Deterministic Turing machine} \}.

- **Def:** \(NP\) is the class of languages that are decidable in polynomial time on a non-deterministic Turing machine. That is \(NP = \bigcup_k \text{NTIME}(n^k)\).

- The class \(NP\) is insensitive to the choice of reasonable non-deterministic computation model because all such models are polynomially equivalent.

Theorem: \(HAMPATH \in NP\).

- The following is a non-deterministic Turing Machine (NTM) that decides the \(HAMPATH\) problem in non-deterministic polynomial time (we defined the time of a non-deterministic machine to be the time used by the longest computation branch).

\[
N = "\text{on } <G,s,t>: \text{ where } G \text{ is a directed graph with nodes } s \text{ and } t."
\]

1. Write a list of \(m\) numbers \(p_1, p_2, \ldots, p_m\), where \(m\) is the number of nodes in \(G\). Each number in the list is non-deterministically selected to be between \(l\) and \(m\).
2. Check for repetitions in the list. If any are found, reject.
3. Check whether \(s = p_1\) and \(t = p_m\). If either fail, reject.
4. For each \(i\) between \(l\) and \(m-1\), check whether \((p_i, p_{i+1})\) is an edge of \(G\). If any are not, reject. Otherwise, accept.

- Clearly, this algorithm runs in non-deterministic polynomial time since all stages run in polynomial time.

Polynomial Time Verifiers

- The \(HAMPATH\) problem does have a feature called **polynomial verifiability** that is important for understanding its complexity.

- Even though we don’t know of a fast (i.e., polynomial time) way to determine whether a graph contains a Hamiltonian path, if such a path were discovered somehow (perhaps using the exponential time algorithm), we could easily convince someone else of its existence, simply by presenting it.

- In other words, verifying the existence of a Hamiltonian path may be much easier than determining its existence.

- We can give an equivalent definition of the \(NP\) class using the notion verifier.

- A verifier for a language \(A\) is an algorithm \(V\), where \(A = \{ w : V \text{ accepts } <w,c> \text{ for some string } c \} \).

- A verifier uses additional information, represented by the symbol \(c\) in definition. This information is called a **certificate**, or **proof**, of membership in \(A\).

- Example: \(<G,s,t>\) belongs to \(HAMPATH\) if for some path \(p\), \(V\) accepts \(<<G,s,t>,p>\) (that is, \(V\) says “yes, \(p\) is a Hamiltonian path from \(s\) to \(t\) of \(G\)). For the \(HAMPATH\) problem, a certificate for a string \(<G,s,t>\in HAMPATH\) simply is the Hamiltonian path \(p\) from \(s\) to \(t\).

- A **polynomial time verifier** is a verifier that runs in polynomial time in the length of \(w\).

- A language \(A\) is **polynomially verifiable** if it has a polynomial time verifier.

- **Def:** \(NP\) is the class of languages that have polynomial time verifiers.

- The verifier can check in polynomial time that the input is in the language when it is given the certificate.
CLIQUE is in NP

- A *clique* in an undirected graph G is a subgraph, wherein every two nodes are connected by an edge. A *k-clique* is a clique that contains k nodes.
- The *clique problem* is to determine whether a graph contains a clique of a specific size.

$$\text{CLIQUE}=\{\langle G,k \rangle : G \text{ is an undirected graph with a } k\text{-clique}\}.$$

A graph with 4-clique.

Theorem: $\text{CLIQUE} \in \text{NP}$.

Proof: The following is a verifier V for CLIQUE.

$$V=\text{“on input } \langle G,k,c \rangle :$$

1. Test whether c is a set of k nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

Alternative proof: If you prefer to think of NP in terms of non-deterministic polynomial Turing machine…

$$N=\text{“on input } \langle G,k \rangle :$$

1. Non-deterministically select a subset c of k nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If yes, accept; otherwise, reject.”

SUBSET-SUM is in NP

- We have a collection of numbers, x_1, x_2, \ldots, x_k, and a target number t. We want to determine whether the collection contains a subcollection that adds up to t.

$$\text{SUBSET-SUM} = \{\langle S,t \rangle : S = \{x_1, x_2, \ldots, x_k\} \text{ and for some } \{y_1, y_2, \ldots, y_j\} \subseteq \{x_1, x_2, \ldots, x_k\}, \text{ we have } \sum y_j = t\}.$$

- For example $\langle\{4,11,16,21,27\}, 25\rangle$ is in SUBSET-SUM since $4+21=25$.
- Note that $\{x_1, x_2, \ldots, x_k\}$ and $\{y_1, y_2, \ldots, y_j\}$ are multisets (we allow repetitions).

Theorem: $\text{SUBSET-SUM} \in \text{NP}$.

Proof: The following is a verifier V for SUBSET-SUM.

$$V=\text{“on input } \langle S,t,c \rangle :$$

1. Test whether c is a collection of numbers that sum to t.
2. Test whether S contains all the numbers in c.
3. If both pass, accept; otherwise, reject.”

Alternative proof: If you prefer to think of NP in terms of non-deterministic polynomial Turing machine…

$$N=\text{“on input } \langle S,t \rangle :$$

1. Non-deterministically select a subset c of the numbers in S.
2. Test whether c is a collection of numbers that sum to t.
3. If yes, accept; otherwise, reject.”
The P versus NP question

P = the class of languages that are decidable by polynomial time deterministic TMs.

NP = the class of languages that are decidable by polynomial time non-deterministic TMs.

OR EQUIVALENTLY

P = the class of languages where membership can be decided quickly (in pol. time).

NP = the class of languages where membership can be verified quickly (in pol. time).

- We presented examples of languages, such as HAMPATH and CLIQUE, that are members of NP but that are not known to be in P.
- No polynomial time algorithms are known for those problems.
- We are unable to prove the existence of a single language in NP that is not in P.
- The question of whether P = NP is one of the greatest unsolved problems in theoretical computer science.
- Most researchers believe that the two classes are not equal because people have invested enormous effort to find polynomial time algorithms for certain problems in NP, without success.
- The best method known for solving problems in NP deterministically uses exponential time. In other words, one can show that \(\bigcup_1^{\infty} \text{TIME}(n^k) = \text{NP} \subseteq \text{EXPTIME} = \bigcup_1^{\infty} \text{TIME}(2^{n^k}). \)

One of these two possibilities is correct.