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Decision Problems

• For rather technical reasons, most NPcomplete problems that we will 
discuss will be phrased as decision problems. 

• A problem is called a decision problem if its output is a simple ``yes'' or 
``no'' (or you may think of this as True/False, 0/1, accept/reject). 

• We will phrase many optimization problems in terms of decision 
problems. For example, the minimum spanning tree decision problem 
might be: Given a weighted graph G and an integer k, does G have a 
spanning tree whose weight is at most k? 

• This may seem like a less interesting formulation of the problem. It does 
not ask for the weight of the minimum spanning tree, and it does not even 
ask for the edges of the spanning tree that achieves this weight. 

• However, our job will be to show that certain problems cannot be solved 
efficiently. 

• If we show that the simple decision problem cannot be solved efficiently, 
then the more general optimization problem certainly cannot be solved 
efficiently either. 

• Observe that a decision problem can also be thought of as a language 
recognition problem. We could define a language L 

L = {(G, k) : G has a MST of weight at most k}: 

• This set consists of pairs, the first element is a graph (e.g. the adjacency matrix 
encoded as a string) followed by an integer k encoded as a binary number. 

• At first it may seem strange expressing a graph as a string, but obviously anything 
that is represented in a computer is broken down somehow into a string of bits. 

• When presented with an input string (G, k), the algorithm would answer ``yes'' if 
(G, k) L implying that G has a spanning tree of weight at most k, and ``no'' 
otherwise.

• In the first case we say that the algorithm ``accepts'' the input and otherwise it 
``rejects'' the input. 

• Given any language, we can ask the question of how hard it is to determine 
whether a given string is in the language. 

• For example, in the case of the MST language L, we can determine membership 
easily in polynomial time. We just store the graph internally, run Kruskal's 
algorithm, and see whether the final optimal weight is at most k. If so we accept, 
and otherwise we reject. 

∈

Language Recognition Problems
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• Define P to be the set of all languages for which membership can be tested in 
polynomial time. (Intuitively, this corresponds to the set of all decisions problems 
that can be solved in polynomial time.) 

• Note that languages are sets of strings, and P is a set of languages. P is defined in 
terms of how hard it is computationally to recognized membership in the language. 

• A set of languages that is defined in terms of how hard it is to determine 
membership is called a complexity class. 

• Since we can compute minimum spanning trees in polynomial time, we have L P. 

• Here is a harder one.  M = {(G, k) : G has a simple path of length at least k} 

• Given a graph G and integer k how would you ``recognize'' whether it is in the 
language M? 

• You might try searching the graph for a simple paths, until finding one of length at 
least k. 

• If you find one then you can accept and terminate. However, if not then you may 
spend a lot of time searching (especially if k is large, like n-1, and no such path 
exists). So is M P?  No one knows the answer. In fact, we will see that M is NP-
complete. 

•In what follows, we will be introducing a number of classes. We will jump back 
and forth between the terms ``language'' and ``decision problems'', but for our 
purposes they mean the same things.

∈
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Complexity Classes: Definitions

Polynomial Time Verification and Certificates 
• Before talking about the class of NPcomplete problems, it is important to introduce the 
notion of a verification algorithm. 

• Many language recognition problems that may be very hard to solve, but they have the 
property that it is easy to verify whether a string is in the language. 

• Consider the following problem, called the Hamiltonian cycle problem. 

• Given an undirected graph G, does G have a cycle that visits every vertex exactly once. 
(There is a similar problem on directed graphs, and there is also a version which asks whether 
there is a path that visits all vertices.) 

• We can describe this problem as a language recognition problem, where the language is               
HC = {(G) : G has a Hamiltonian cycle},                                           

where (G) denotes an encoding of a graph G as a string. 

• The Hamiltonian cycle problem seems to be much harder, and there is no known 
polynomial time algorithm for this problem. 

• For example, the figure below shows two graphs, one which is Hamiltonian and one which 
is not.  However, suppose that a graph did have a Hamiltonian cycle. Then it would be a very 
easy matter for someone to convince us of this. They would simply say ``the cycle is                    

“. 
13173 ,...,,, vvvv

•We could then inspect the graph, and check that this 
is indeed a legal cycle and that it visits all the 
vertices of the graph exactly once. 

• Thus, even though we know of no efficient way to 
solve the Hamiltonian cycle problem, there is a very 
efficient way to verify that a given graph is in HC. 



3

Polynomial Time Verification and Certificates (cont.)

• The given cycle is called a certificate. This is some piece of information which 
allows us to verify that a given string is in a language. 

• More formally, given a language L, and given x    L, a verification algorithm is an 
algorithm which given x and a string y called the certificate, can verify that x is in 
the language L using this certificate as help. If x is not in L then there is nothing to 
verify. 

• Note that not all languages have the property that they are easy to verify. For 
example, consider the following languages: 

UHC = {(G) : G has a unique Hamiltonian cycle},                                                    
HC = {(G) : G has no Hamiltonian cycle}. 

• Suppose that a graph G is in the language UHC. What information would someone 
give us that would allow us to verify that G is indeed in the language? They could 
give us an example of the unique Hamiltonian cycle, and we could verify that it is a 
Hamiltonian cycle, but what sort of certificate could they give us to convince us that 
this is the only one? 

• They could give another cycle that is NOT Hamiltonian, but this does not mean 
that there is not another cycle somewhere that is Hamiltonian. They could try to list 
every other cycle of length n, but this would not be at all efficient, since there are n!
possible cycles in general. Thus, it is hard to imagine that someone could give us 
some information that would allow us to efficiently convince ourselves that a given 
graph is in the language. 

∈

The Class NP
Definition: Define NP to be the set of all languages that can be verified by a 
polynomial time algorithm.

• Why is the set called ``NP'' rather than ``VP''? The original term NP stood for 
``non-deterministic polynomial time''. This referred to a program running on a non-
deterministic computer that can make guesses. Basically, such a computer could 
non-deterministically guess the value of certificate, and then verify that the string is 
in the language in polynomial time. 

• We have avoided using non-determinism here. 

• Like P, NP is a set of languages based on some complexity measure (the 
complexity of verification). Observe that P    NP. In other words, if we can solve a 
problem in polynomial time, then we can certainly verify membership in 
polynomial time. (More formally, we do not even need to see a certificate to solve 
the problem, we can solve it in polynomial time anyway). 

• However it is not known whether P = NP. It seems unreasonable to think that this 
should be so. In other words, just being able to verify that you have a correct 
solution does not help you in finding the actual solution very much. 

• Most experts believe that P     NP, but no one has a proof of this. 

• Next we will define the notions of NPhard and NPcomplete. 

⊆
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Summary 

•The following concepts are important. 

• Decision Problems: are problems for which the answer is either yes or no. NP-
complete problems are expressed as decision problems, and hence can be thought of 
as language recognition problems, assuming that the input has been encoded as a 
string. We encode inputs as strings. 

• For example:     HC = {G : G has a Hamiltonian cycle} 

MST = {(G; x): G has a MST of cost at most x}. 

• P: is the class of all decision problems which can be solved in polynomial time,  
for some constant k. For example MST  P but HC is not known (and 

suspected not) to be in P. 

• Certificate: is a piece of evidence that allows us to verify in polynomial time that a 
string is in a given language. For example, suppose that the language is the set of 
Hamiltonian graphs. To convince someone that a graph is in this language, we could 
supply the certificate consisting of a sequence of vertices along the cycle. It is easy 
to access the adjacency matrix to determine that this is a legitimate cycle in G. 
Therefore HC   NP. 

• NP: is defined to be the class of all languages that can be verified in polynomial 
time. Note that since all languages in P can be solved in polynomial time, they can 
certainly be verified in polynomial time, so we have P    NP. However, NP also 
seems to have some pretty hard problems to solve, such as HC. 
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NP-Completeness: Reductions

• The class of NPcomplete problems consists of a set of decision problems (languages) (a 
subset of the class NP) that no one knows how to solve efficiently, but if there were a 
polynomial time solution for even a single NPcomplete problem, then every problem in NP
would be solvable in polynomial time. 

• To establish this, we need to introduce the concept of a reduction.

• Before discussing reductions, let us just consider the following question. Suppose that there 
are two problems, A and B. You know (or you strongly believe at least) that it is impossible to 
solve problem A in polynomial time. You want to prove that B cannot be solved in 
polynomial time. How would you do this? 

• We want to show that (A   P) � (B    P). 

• To do this, we could prove the contrapositive,  (B    P) � (A    P): 

• In other words, to show that B is not solvable in polynomial time, we will suppose that there 
is an algorithm that solves B in polynomial time, and then derive a contradiction by showing 
that A can be solved in polynomial time. 

• How do we do this? Suppose that we have a subroutine that can solve any instance of 
problem B in polynomial time. Then all we need to do is to show that we can use this 
subroutine to solve problem A in polynomial time. Thus we have ``reduced'' problem A to 
problem B. 

• It is important to note here that this supposed subroutine is really a fantasy. We know (or 
strongly believe) that A cannot be solved in polynomial time, thus we are essentially proving 
that the subroutine cannot exist, implying that B cannot be solved in polynomial time. 

• Be sure that you understand this, this is the basis behind all reductions.

∉ ∉
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• Let us consider an example to make this clearer.  The following problem is well-
known to be NPcomplete, and hence it is strongly believed that the problem cannot 
be solved in polynomial time. 

3coloring (3Col): Given a graph G, can each of its vertices be labeled with one of 3 
different ``colors'', such that no two adjacent vertices have the same label. 

• Coloring arises in various partitioning problems, where there is a constraint that 
two objects cannot be assigned to the same set of the partition. The term ``coloring'' 
comes from the original application which was in map drawing. Two countries that 
share a common border should be colored with different colors. It is well known 
that planar graphs can be colored with 4 colors, and there exists a polynomial time 
algorithm for this. But determining whether 3 colors are possible (even for planar 
graphs) seems to be hard and there is no known polynomial time algorithm. 

• In the figure below we give two graphs. One which can be colored with 3 colors, 
and one that cannot. 

Example: 3-Colorability and Clique Cover

• The 3Col problem will play the role of 

problem A, which we strongly suspect to not 

be solvable in polynomial time.

⊆
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• For our problem B, consider the following problem. 

• Given a graph G = (V, E), we say that a subset of 
vertices V’    V forms a clique if for every pair of 
vertices u, v   V’,  (u, v)    E. That is, the subgraph 
induced by V’ is a complete graph. 

Clique Cover (CCov): Given a graph G and an integer k, can we find k subsets of 
vertices                  , such that,  U              and that each      is a clique of G. 

• The clique cover problem arises in applications of clustering. We put an edge 
between two nodes if they are similar enough to be clustered in the same group. We 
want to know whether it is possible to cluster all the vertices into k groups. 

• Suppose that you want to solve the CCov problem, but after a while of fruitless 
effort, you still cannot find a polynomial time algorithm for the CCov problem. How 
can you prove that CCov is likely to not have a polynomial time solution? 

• You know that 3Col is NPcomplete, and hence experts believe that 3Col P. You 
feel that there is some connection between the CCov problem and the 3Col problem. 

• Thus, you want to show that (3Col P) � (CCov P), which you will show by 
proving the contrapositive   (CCov P) � (3Col P). 

• To do this, you assume that you have access to a subroutine CCov(G, k). Given a 
graph G and an integer k, this subroutine returns true if G has a clique cover of size 
k and false otherwise, and furthermore, this subroutine runs in polynomial time. 

kVVV ,...,, 21 iV
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• How can we use this ``alleged'' subroutine to solve the wellknown hard 3Col
problem? 

• We want to write a polynomial time subroutine for 3Col, and this subroutine is 
allowed to call the subroutine CCov(G, k) for any graph G and any integer k. 

• Both problems involve partitioning the vertices up into groups. The only 
difference here is that in one problem the number of cliques is specified as part of 
the input and in the other the number of color classes is fixed at 3. 

• In the clique cover problem, for two vertices to be in the same group they must be 
adjacent to each other. In the 3coloring problem, for two vertices to be in the same 
color group, they must not be adjacent. 

• In some sense, the problems are almost the same, but the requirement adjacent/ 
nonadjacent is exactly reversed. 

• We claim that we can reduce the 3coloring problem to the clique cover problem as 
follows. 

• Given a graph G for which we want to determine its 3colorability, output the pair 
(G, 3) where G denotes the complement of G. We can then feed the pair (G, 3) into 
a subroutine for clique cover. This is illustrated in the figure below.  

Claim: A graph G is 3colorable if and only if its complement G has a cliquecover of 
size 3. 

In other words, G 3Col iff (G, 3)    CCov. 

Proof: (�) If G 3colorable, then let                 be the three color classes. We claim 
that this is a clique cover of size 3 for G, since if u and v are distinct vertices in     , 
then (u, v)    E(G) (since adjacent vertices cannot have the same color) which 
implies that (u, v)    E(G). Thus every pair of distinct vertices in      are adjacent in 
G. 

() Suppose G has a clique cover of size 3, denoted                 . For i =1,2,3 give 
the vertices of      color i. We assert that this is a legal coloring for G, since if 
distinct vertices u and v are both in      , then (u, v)     E(G) (since they are in a 
common clique), implying that (u, v)     E(G). Hence, two vertices with the same 
color are not adjacent. 

• We now take this intuition of reducing one problem to another through the use of a 
subroutine call, and place it on more formal footing. 

• Notice that in the example above, we converted an instance of the 3coloring 
problem (G) into an equivalent instance of the Clique Cover problem (G, 3). 

∈∈
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Polynomial – Time Reduction
Definition: We say that a language (i.e. decision problem) L1 is polynomialtime
reducible to language L2 (written L1      L2 ) if there is a polynomial time 
computable function f , such that for all x,  x    L1 if and only if  f(x)   L2 . 

• In the previous example we showed that 3Col CCov. 

• In particular we have f(G) = (G, 3). Note that it is easy to complement a graph in  
(i.e. polynomial) time (e.g. flip 0's and 1's in the adjacency matrix). Thus f 

is computable in polynomial time. 

• Intuitively, saying that L1     L2 means that ``if L2 is solvable in polynomial time, 
then so is L1 .''  This is because a polynomial time subroutine for L2 could be 
applied to f(x) to determine whether f(x)   L2 , or equivalently whether x    L1 . 

• Thus, in sense of polynomial time computability, L1 is ``no harder'' than L2 . 

• The way in which this is used in NPcompleteness is exactly the converse. We 
usually have strong evidence that L1 is not solvable in polynomial time, and hence 
the reduction is effectively equivalent to saying ``since L1 is not likely to be 
solvable in polynomial time, then L2 is also not likely to be solvable in polynomial 
time.'' 

• Thus, this is how polynomial time reductions can be used to show that problems 
are as hard to solve as known difficult problems. 

∈ ∈
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NP-Completeness
• One important fact about reducibility is that it is transitive. In other words 

• The reason is that if two functions f(x) and g(x) are computable in polynomial 
time, then their composition f(g(x)) is computable in polynomial time as well. 

NPcompleteness: The set of NPcomplete problems are all problems in the 
complexity class NP, for which it is known that if any one is solvable in polynomial 
time, then they all are, and conversely, if any one is not solvable in polynomial time, 
then none are. 

• This is made mathematically formal using the notion of polynomial time 
reductions. 

Definition: A language L is NPhard if:      L’      L for all L’   NP. 

Definition: A language L is NPcomplete if:  L NP, and L is NPhard. 

• An alternative (and usually easier way) to show that a problem is NPcomplete is to 
use transitivity. 

Lemma: L is NPcomplete if         (1) L NP and 

(2) L’      L for some known NPcomplete language L’. 

• The reason is that all L’’ NP are reducible to L’ (since L’ is NPcomplete and 
hence NPhard) and hence by transitivity L’’ is reducible to L, implying that L is 
NPhard.  

.31then32and21If:Lemma LLLLLL PPP πππ
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• This gives us a way to prove that problems are NPcomplete, once we know that 
one problem is NPcomplete. 

• Unfortunately, it appears to be almost impossible to prove that one problem is NP-
complete, because the definition says that we have to be able to reduce every 
problem in NP to this problem. 

• There are infinitely many such problems, so how can we ever hope to do this? 

• We will talk about this next time with Cook's theorem. Cook showed that there is 
one problem called SAT (short for boolean satisfiability) that is NPcomplete. 

• To prove a second problem is NPcomplete, all we need to do is to show that our 
problem is in NP (and hence it is reducible to SAT), and then to show that we can 
reduce SAT (or generally some known NPC problem) to our problem.  It follows 
that our problem is equivalent to SAT (with respect to solvability in polynomial 
time). This is illustrated in the figure below. 

NP-Completeness (cont.)


