
1

Theory of Computation, Feodor F. Dragan, Kent State University 1

NP-Completeness
P: is the set of decision problems (or languages) that are solvable in polynomial time.

NP: is the set of decision problems (or languages) that can be verified in polynomial time.

Polynomial reduction: L1 L2 means that there is a polynomial time computable function f
such that x L1 if and only if f(x) L2 . A more intuitive to think about this, is that if we had a
subroutine to solve L2 in polynomial time, then we could use it to solve L1 in polynomial time

• Polynomial reductions are transitive, that is, if L1 L2 and L2 L3 , then L1 L3 .

NPHard: L is NPhard if for all L’ NP, L’ L. Thus, if we could solve L in polynomial
time, we could solve all NP problems in polynomial time.

NPComplete: L is NPcomplete if (1) L NP and (2) L is NPhard.

• The importance of NPcomplete problems should now be clear. If any NPcomplete problem
(and generally any NPhard problem) is solvable in polynomial time, then every NPcomplete
problem (and in fact every problem in NP) is also solvable in polynomial time.

• Conversely, if we can prove that any NPcomplete problem cannot be solved in polynomial
time, then every NPcomplete problem (and generally every NPhard problem) cannot be
solved in polynomial time.

• Thus all NPcomplete problems are equivalent to one another (in that they are either all
solvable in polynomial time, or none are).

∈ ∈

∈

∈

P.2thenP1and21If:Lemma

P.1thenP2and21If:Lemma

∉∉

∈∈

LLLL

LLLL

P

P

π

π

Theory of Computation, Feodor F. Dragan, Kent State University 2

NP-Completeness (cont.)
• The figure below illustrates one way that the sets P, NP, NPhard, and NP-
complete (NPC) might look. We say might because we do not know whether all of
these complexity classes are distinct or whether they are all solvable in polynomial
time.

• One is Graph Isomorphism, which asks
whether two graphs are identical up to a
renaming of their vertices. It is known that
this problem is in NP, but it is not known
to be in P.

• The other is QBF, which stands for
Quantified Boolean Formulas. In this
problem you are given a Boolean formula
with quantifiers (and) and you want to
know whether the formula is true or false.

∀∃

• An alternative way to show that a problem is NPC is to use transitivity of .

Lemma: L is NPcomplete if (1) L NP and (2) L’ L for some NPcomplete
language L’.

Note: The known NPcomplete problem L’ is being reduced to candidate NP-
complete problem L. Keep this order in mind.

Pπ

∈

2

Theory of Computation, Feodor F. Dragan, Kent State University 3

Cook-Levin's Theorem and Reductions
• Unfortunately, to use this lemma, we need to have at least one NPcomplete problem to start
the ball rolling. Stephen Cook and Leonid Levin showed (~ 1970) that such a problem existed.
Cook-Levin's theorem is rather complicated to prove. First we'll try to give a brief intuitive
argument as to why such a problem might exist.

• For a problem to be in NP, it must have an efficient verification procedure.

• Virtually all NP problems can be stated in the form, ``does there exists X such that P(X)'',
where X is some structure (e.g. a set, a path, a partition, an assignment, etc.) and P(X) is some
property that X must satisfy (e.g. the set of objects must fill the knapsack, or the path must
visit every vertex, or you may use at most k colors and no two adjacent vertices can have the
same color).

• In showing that such a problem is in NP, the certificate consists of giving X, and the
verification involves testing that P(X) holds.

• In general, any set X can be described by choosing a set of objects, which in turn can be
described as choosing the values of some Boolean variables.

• Similarly, the property P(X) that you need to satisfy, can be described as a Boolean formula.

• Cook and Levin were looking for the most general possible property he could, since this
should represent the hardest problem in NP to solve.

• They reasoned that computers (which represent the most general type of computational
devices known) could be described entirely in terms of Boolean circuits, and hence in terms of
Boolean formulas.

• If any problem were hard to solve, it would be one in which X is an assignment of Boolean
values (true/false, 0/1) and P(X) could be any Boolean formula. This suggests the following
problem, called the Boolean satisfiability problem.

Theory of Computation, Feodor F. Dragan, Kent State University 4

Boolean Satisfiability Problem
SAT: Given a Boolean formula, is there some way to assign truth values (0/1,
true/false) to the variables of the formula, so that the formula evaluates to true?

• A Boolean formula is a logical formula which consists of variables , and the
logical operations meaning the negation of x, Boolean or () and Boolean
and ().

• Given a Boolean formula, we say that it is satisfiable if there is a way to assign
truth values (0 or 1) to the variables such that the final result is 1. (As opposed to
the case where no matter how you assign truth values the result is always 0.)

For example,

is satisfiable, by the assignment On the other hand,

is not satisfiable. (Observe that the last two clauses imply that one of and
must be true and the other must be false. This implies that neither of the subclauses
involving and in the first two clauses can be satisfied, but cannot be set
to satisfy them either.)

Cook-Levin’s Theorem: SAT is NP-complete.
We will not prove this theorem. The proof would take about a full lecture.

• The proof and many other interesting results on complexities are given in the
Theory of Computation II course.

ix

x
yx ∧

yx ∨

) x)x x(())x (x (x 132321 ∨∧∧∨∧

0. x,0x,1x 321 ===

)x x()xx())x x((x))xx(x(3232321321 ∨∧∨∧∧∨∧∧∨

2x 3x

2x 3x 1x

3

Theory of Computation, Feodor F. Dragan, Kent State University 5

3Conjunctive Normal Form (3CNF)

• In fact, it turns out that a even more restricted version of the satisfiability problem
is NPcomplete.

• A literal is a variable or its negation, x or .

• A formula is in 3conjunctive normal form (3CNF) if it is the Booleanand of
clauses where each clause is the Booleanor of exactly 3 literals.

• For example is in 3CNF form.

3SAT is the problem of determining whether a formula in 3CNF is satisfiable.

• It turns out that it is possible to modify the proof of Cook's theorem to show that
3SAT is also NPcomplete.

• As an aside, note that if we replace the 3 in 3SAT with a 2, then everything
changes. If a Boolean formula is given in 2SAT, then it is possible to determine its
satisfiability in polynomial time. (It turns out that the problem can be reduced to
computing the strong components in a directed graph.)

• Thus, even a seemingly small change can be the difference between an efficient
algorithm and none.

NPcompleteness proofs

Now that we know that 3SAT is NPcomplete, we can use this fact to prove that
other problems are NPcomplete. We will start with the independent set problem.

x

)x x (x) xxx ()x x(x 432431321 ∨∨∧∨∨∧∨∨

Theory of Computation, Feodor F. Dragan, Kent State University 6

• Independent Set (IS): Given an undirected graph G = (V, E) and an integer k does
G contain a subset V’ of k vertices such that no two vertices in V’ are adjacent to
one another.
• For example, the graph shown in the figure below has an
independent set (shown with shaded nodes) of size 4.
• The independent set problem arises when there is some
sort of selection problem, but there are mutual restrictions
pairs that cannot both be selected. (For example, a company
party where an employee and his/her immediate supervisor
cannot both be invited.)

• Note that if a graph has an independent set of size k, then it has an independent set
of all smaller sizes. So the corresponding optimization problem would be to find an
independent set of the largest size in a graph.

• Often the vertices have weights, so we might talk about the problem of computing
the independent set with the largest total weight.

• However, since we want to show that the problem is hard to solve, we will
consider the simplest version of the problem.

Claim: IS is NPcomplete.

• The proof involves two parts. First, we need to show that IS NP. The certificate
consists of the k vertices of V’ . We simply verify that for each pair of vertex u,v V’,
there is no edge between them. Clearly this can be done in polynomial time, by an
inspection of the adjacency matrix.

∈
∈

Independent Set (IS) Problem

4

Theory of Computation, Feodor F. Dragan, Kent State University 7

Independent Set (reduction)
• Secondly, we need to establish that IS is NPhard, which can be done by showing that some
known NPcomplete problem (3SAT) is polynomialtime reducible to IS, that is, 3SAT IS.

• Let F be a boolean formula in 3CNF form. We wish to find a polynomial time computable
function f that maps F into an input for the IS problem, a graph G and integer k. That is, f(F)
= (G, k), such that F is satisfiable if and only if G has an independent set of size k.

• This will mean that if we can solve the independent set problem for G and k in polynomial
time, then we would be able to solve 3SAT in polynomial time.

• An important aspect to reductions is that we do not attempt to solve the satisfiability
problem. (It is NPcomplete, and there is not likely to be any polynomial time solution.)

• So the function f must operate without knowledge of whether F is satisfiable. The idea is to
translate the similar elements of the satisfiable problem to corresponding elements of the
independent set problem.

What is to be selected?

3SAT: Which variables are to be assigned the value true, or equivalently, which literals will
be true and which will be false.

IS: Which vertices will be placed in V’.

Requirements:
3SAT: Each clause must contain at least one true valued literal.
IS: V’ must contain at least k vertices.

Restrictions:

3SAT: If x is assigned true, then must be false, and vice versa.
IS: If u is selected to be in V’, and v is a neighbor of u, then v cannot be in V’.

x

Theory of Computation, Feodor F. Dragan, Kent State University 8

Independent Set (reduction: cont.)
• We want a function f , which given any 3CNF boolean formula F , converts it into a pair
(G, k) such that the above elements are translated properly.

• Our strategy will be to turn each literal into a vertex. The vertices will be in clause clusters
of three, one for each clause.

• Selecting a true literal from some clause will correspond to selecting a vertex to add to V’ .
We will set k equal to the number of clauses, to force the independent set subroutine to select
one true literal from each clause.

• To keep the IS subroutine from selecting two literals from one clause and none from some
other, we will connect all the vertices in each clause cluster with edges.

• To keep the IS subroutine from selecting a literal and its complement to be true, we will put
an edge between each literal and its complement.

• A formal description of the reduction is given below. The input is a boolean formula F in 3-
CNF, and the output is a graph G and integer k.

• If F has k clauses, then G has
exactly 3k vertices.

• Given any reasonable encoding
of F , it is an easy programming
exercise to create G (say as an
adjacency matrix) in polynomial
time.

• We claim that F is satisfiable if
and only if G has an independent
set of size k.

5

Theory of Computation, Feodor F. Dragan, Kent State University 9

Example
• Suppose that we are given the 3CNF formula:

• The reduction produces the graph shown in the following figure and sets k = 4.

• In our example, the formula is satisfied by the assignment

• Note that this implies that the first literal of the first and last clauses are 1, the
second literal of the second clause is 1, and the third literal of the third clause is 1.

• Observe that by selecting the corresponding vertices from the clusters, we get an
independent set of size k = 4.

.)x x (x) x xx () xxx()x x(x 321321321321 ∨∨∧∨∨∧∨∨∧∨∨

 0.x,1x,1x 321 ===

Theory of Computation, Feodor F. Dragan, Kent State University 10

Correctness Proof
• We claim that F is satisfiable if and only if G has an independent set of size k.

• If F is satisfiable, then each of the k clauses of F must have at least one true literal.

• Let V’ denote the corresponding vertices from each of the clause clusters (one from each
cluster).

• Because we take vertices from each cluster, there are no intercluster edges between them,
and because we cannot set a variable and its complement to both be true, there can be no
edge of the form () between the vertices of V’. Thus, V’ is an independent set of size k.

• Conversely, if G has an independent set V’ of size k. First observe that we must select a
vertex from each clause cluster, because there are k clusters, and we cannot take two vertices
from the same cluster (because they are all interconnected).

• Consider the assignment in which we set all of these literals to 1. This assignment is
logically consistent, because we cannot have two vertices labeled and in the same
cluster.

• Finally the transformation clearly runs in polynomial time. This completes the NP-
completeness proof.

• Observe that our reduction did not attempt to solve the IS problem nor to solve the 3SAT.

• Also observe that the reduction had no knowledge of the solution to either problem. (We did
not assume that the formula was satisfiable, nor did we assume we knew which variables to
set to 1.) This is because computing these things would require exponential time (by the best
known algorithms).

• Instead the reduction simply translated the input from one problem into an equivalent input
to the other problem, while preserving the critical elements to each problem.

ii xx ,

ix ix

6

Theory of Computation, Feodor F. Dragan, Kent State University 11

• Now we give a few more examples of reductions.

• Recall that to show that a problem is NPcomplete we need to show (1) that the problem is
in NP (i.e. we can verify when an input is in the language), and (2) that the problem is NP-
hard, by showing that some known NPcomplete problem can be reduced to this problem
(there is a polynomial time function that transforms an input for one problem into an
equivalent input for the other problem).

Some Easy Reductions: We consider some closely related NPcomplete problems next.

Clique (CLIQUE): The clique problem is: given an undirected graph G = (V, E) and an
integer k, does G have a subset V’ of k vertices such that for each distinct u,v V’, {u,v} E.
In other words, does G have a k vertex subset whose induced subgraph is complete.

Vertex Cover (VC): A vertex cover in an undirected graph G = (V, E) is a subset of vertices

V’ V such that every edge in G has at least one endpoint in V’ . The vertex cover problem
(VC) is: given an undirected graph G and an integer k, does G have a vertex cover of size k?

• Don't confuse the clique (CLIQUE) problem with the cliquecover (CCov) problem that we
discussed in an earlier lecture. The clique problem seeks to find a single clique of size k, and
the cliquecover problem seeks to partition the vertices into k groups, each of which is a
clique.

• We have discussed the facts that cliques are of interest in applications dealing with
clustering.

• The vertex cover problem arises in various servicing applications. For example, you have a
computer network and a program that checks the integrity of the communication links. To
save the space of installing the program on every computer in the network, it suffices to
install it on all the computers forming a vertex cover. From these nodes all the links can be
tested.

Clique and Vertex Cover Problems

∈ ∈

⊆

Theory of Computation, Feodor F. Dragan, Kent State University 12

• The CLIQUE problem is obviously closely related to the independent set problem (IS):
Given a graph G does it have a k vertex subset that is completely disconnected.

• It is not quite as clear that the vertex cover problem is related. However, the following
lemma makes this connection clear as well.

Lemma: Given an undirected graph G = (V, E) with n vertices and a subset V’ V of size k.
The following are equivalent:

(i) V’ is a clique of size k for the complement, G.

(ii) V’ is an independent set of size k for G.

(iii) V \ V’ is a vertex cover of size n-k for G.

Proof: (i)�(ii): If V’ is a clique for G, then for each u,v in V’, {u,v} is an edge of G
implying that {u,v} is not an edge of G, implying that V’ is an independent set for G.

(ii) �(iii): If V’ is an independent set for G, then for each u,v V’, {u,v} is not an edge of G,
implying that every edge in G is incident to a vertex in V \ V’, implying that V \ V’ is a VC for
G.

(iii) �(i): If V \ V’ is a VC for G, then for any u,v in V’ there is no edge {u,v} in G, implying
that there is an edge {u,v} in G, implying that V’ is a clique in G. V’ is an independent set for
G.

⊆

∈

Clique and Vertex Cover Problems (Reductions)

7

Theory of Computation, Feodor F. Dragan, Kent State University 13

• Thus, if we had an algorithm for solving any one of these problems, we could
easily translate it into an algorithm for the others. In particular, we have the
following.

Theorem: CLIQUE is NPcomplete.

CLIQUE NP: The certificate consists of the k vertices in the clique. Given such a
certificate we can easily verify in polynomial time that all pairs of vertices in the set
are adjacent.

IS CLIQUE: We want to show that given an instance of the IS problem (G, k),
we can produce an equivalent instance of the CLIQUE problem (G’,k’) in
polynomial time.

• (Important: We do not know whether G has an independent set, and we do not
have time to compute it.)

• Given G and k, set G’= G and k’= k, and output the pair (G’, k’). By the above
lemma, this instance is equivalent.

Theorem: VC is NPcomplete.

VC NP: The certificate consists of the k vertices in the vertex cover. Given such a
certificate we can easily verify in polynomial time that every edge is incident to one
of these vertices.

IS VC: We want to show that given an instance of the IS problem (G, k), we can
produce an equivalent instance of the VC problem (G’, k’) in polynomial time. We
set G’= G and k’ = n – k. By the above lemma, these instances are equivalent.

∈

∈

Clique and Vertex Cover (NP-completeness)

