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additive tree 3-spanner 
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WellWellWellWell----knownknownknownknown Tree Tree Tree Tree Tree Tree Tree Tree t t t t t t t t --------Spanner ProblemSpanner ProblemSpanner ProblemSpanner ProblemSpanner ProblemSpanner ProblemSpanner ProblemSpanner Problem

Given unweighted undirected graph G=(V,E) and integers t,r.

Does G admit a spanning tree T =(V,E’)  such that

 ),(),(,, uvdisttuvdistVvu GT ×≤∈∀

rvudistvudistVvu GT ≤−∈∀ ),(),(,,

(a multiplicative tree t-spanner of G) 

(an additive tree r-spanner of G)?

or

G T
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Some known results for the tree Some known results for the tree Some known results for the tree Some known results for the tree Some known results for the tree Some known results for the tree Some known results for the tree Some known results for the tree 
spanner problemspanner problemspanner problemspanner problemspanner problemspanner problemspanner problemspanner problem

• general graphs [CC’95]

– t ≥ 4 is NP-complete. (t=3 is still open, t ≤ 2 is P)

• approximation algorithm for general graphs [EP’04]

– O(logn) approximation algorithm 

• chordal graphs [BDLL’02]

– t ≥ 4 is NP-complete. (t=3 is still open.)

• planar graphs

– arbitrary t≥ 4, is NP-complete. (t=3 is polyl time solvable.) [FK’01]

– for each fixed t, is linear time solvable [DFG’08]

• easy to construct for some special families of graphs.

(mostly multiplicative case)
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multiplicative 2- and  additive 1-spanner of G

WellWellWellWell----knownknownknownknown Sparse Sparse Sparse Sparse Sparse Sparse Sparse Sparse t t t t t t t t --------Spanner ProblemSpanner ProblemSpanner ProblemSpanner ProblemSpanner ProblemSpanner ProblemSpanner ProblemSpanner Problem

Given unweighted undirected graph G=(V,E) and integers t,m,r.

Does G admit a spanning graph H =(V,E’) with |E’| ≤ m s.t.

 ),(),(,, uvdisttuvdistVvu GH ×≤∈∀

rvudistvudistVvu GH ≤−∈∀ ),(),(,,

(a multiplicative t-spanner of G) 

(an additive r-spanner of G)?

G H

or
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Some known results for sparse Some known results for sparse Some known results for sparse Some known results for sparse Some known results for sparse Some known results for sparse Some known results for sparse Some known results for sparse 
spanner problemsspanner problemsspanner problemsspanner problemsspanner problemsspanner problemsspanner problemsspanner problems

• general graphs
– t, m≥1 is NP-complete [PS’89]
– multiplicative (2k-1)-spanner with n1+1/k edges [TZ’01, BS’03]

• n-vertex chordal graphs (multiplicative case) [PS’89] 
(G is chordal if it has no chordless cycles of length >3)

– multiplicative 3-spanner with O(n logn) edges

– multiplicative 5-spanner with 2n-2 edges 

• n-vertex c-chordal graphs (additive case) [CDY’03, DYL’04] 
(G is c-chordal if it has no chordless cycles of length >c)

– additive (c+1)-spanner with 2n-2 edges

– additive (2 c/2 )-spanner with n log n edges
Ł For chordal graphs:  additive 4-spanner with 2n-2 edges, additive 2-

spanner with n log n edges

• planar graphs
– If t, m≥1 are constants, then in linear time [DFG’08]

– PTAS for every t≥1 [DFG’08]
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Relatively newRelatively newRelatively newRelatively new Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree 
rrrrrrrr --------Spanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners Problem

Given unweighted undirected graph G=(V,E) and integers µ, r.

Does G admit a system of µ collective additive tree r-spanners 
{T1, T2…, Tµ}                               such that

 ),(),(,0, ruvdistuvdistiandVvu GTi
≤−≤≤∃∈∀ µ

(a system of µ collective additive tree r-spanners of G )?

2 collective additive tree 2-spanners

collective multiplicative 
tree t-spanners 

can be defined similarly

,,

surplussurplus
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Relatively newRelatively newRelatively newRelatively new Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree 
r r r r r r r r --------Spanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners Problem

Given unweighted undirected graph G=(V,E) and integers µ, r.

Does G admit a system of µ collective additive tree r-spanners 
{T1, T2…, Tµ}                               such that

 ),(),(,0, ruvdistuvdistiandVvu GTi
≤−≤≤∃∈∀ µ

(a system of µ collective additive tree r-spanners of G )?

2 collective additive tree 2-spanners
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Relatively newRelatively newRelatively newRelatively new Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree 
r r r r r r r r --------Spanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners Problem

Given unweighted undirected graph G=(V,E) and integers µ, r.

Does G admit a system of µ collective additive tree r-spanners 
{T1, T2…, Tµ}                               such that

 ),(),(,0, ruvdistuvdistiandVvu GTi
≤−≤≤∃∈∀ µ

(a system of µ collective additive tree r-spanners of G )?

2 collective additive tree 2-spanners
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Relatively newRelatively newRelatively newRelatively new Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree Collective Additive Tree 
r r r r r r r r --------Spanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners ProblemSpanners Problem

Given unweighted undirected graph G=(V,E) and integers µ, r.

Does G admit a system of µ collective additive tree r-spanners 
{T1, T2…, Tµ}                               such that

 ),(),(,0, ruvdistuvdistiandVvu GTi
≤−≤≤∃∈∀ µ

(a system of µ collective additive tree r-spanners of G )?

2 collective additive 

tree 0-spanners or

multiplicative tree    

1-spanners
2 collective additive tree 2-spanners

,,
,,
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Applications of Collective Tree Applications of Collective Tree Applications of Collective Tree Applications of Collective Tree Applications of Collective Tree Applications of Collective Tree Applications of Collective Tree Applications of Collective Tree 
SpannersSpannersSpannersSpannersSpannersSpannersSpannersSpanners

• message routing in networks
Efficient  routing schemes are known for trees

but not for general graphs. For any two nodes, 
we can route the message between them in one 
of the trees which approximates the distance 
between them. 

- (µ log2n)-bit labels, 

- O(µ ) initiation,  O(1) decision 

• solution for sparse t-spanner 
problem
If a graph admits a system of µ collective additive 
tree r-spanners, then the graph admits a sparse 
additive r-spanner with at most µ(n-1) edges,

where n is the number of nodes.

2 collective tree 2-

spanners for G
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• chordal graphs, chordal bipartite graphs
– log n collective additive tree 2-spanners in polynomial time

– Ώ(n1/2) or Ώ(n) trees necessary to get +1

– no constant number of trees guaranties +2 (+3)

• circular-arc graphs
– 2 collective additive tree 2-spanners in polynomial time

• c-chordal graphs 

– log n collective additive tree 2 c/2 -spanners in polynomial time

• interval graphs 
– log n collective additive tree 1-spanners in polynomial time

– no constant number of trees guaranties +1

Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective 
tree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problem
(Dragan, Yan, Lomonosov [SWAT(Dragan, Yan, Lomonosov [SWAT’’04])04])

(Corneil, Dragan, K(Corneil, Dragan, Kööhler, Yan [WGhler, Yan [WG’’05])05])
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• AT-free graphs 

– include: interval, permutation, trapezoid, co-comparability

– 2 collective additive tree 2-spanners in linear time

– an additive tree 3-spanner in linear time (before)

• graphs with a dominating shortest path 

– an additive tree 4-spanner in polynomial time (before)

– 2 collective additive tree 3-spanners in polynomial time

– 5 collective additive tree 2-spanners in polynomial time

• graphs with asteroidal number an(G)=k 

– k(k-1)/2 collective additive tree 4-spanners in polynomial time

– k(k-1) collective additive tree 3-spanners in polynomial time

Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective 
tree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problem

(Dragan, Yan, Corneil [WG(Dragan, Yan, Corneil [WG’’04])04])
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• the only paper (before) on collective multiplicative tree 
spanners in weighted planar graphs

• any weighted planar graph admits a system of O(log n)
collective multiplicative tree 3-spanners 

• they are called there the tree-covers. 

• it follows from (Corneil, Dragan, K(Corneil, Dragan, Kööhler, Yan [WGhler, Yan [WG’’05]) 05]) 
that 

– no constant number of trees guaranties +c (for any 

constant c) 

Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective Previous results on the collective 
tree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problemtree spanners problem
(Gupta, Kumar,Rastogi [SICOMP(Gupta, Kumar,Rastogi [SICOMP’’05])05])
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Some results on collective Some results on collective Some results on collective Some results on collective Some results on collective Some results on collective Some results on collective Some results on collective additiveadditiveadditiveadditiveadditiveadditiveadditiveadditive
tree spanners of tree spanners of tree spanners of tree spanners of tree spanners of tree spanners of tree spanners of tree spanners of weightedweightedweightedweightedweightedweightedweightedweighted graphs graphs graphs graphs graphs graphs graphs graphs 

with with with with with with with with bounded parametersbounded parametersbounded parametersbounded parametersbounded parametersbounded parametersbounded parametersbounded parameters
(Dragan, (Dragan, YanYan [ISAAC[ISAAC’’04])04])

2wcw(G) ≤≤≤≤ k

c-chordal

tw(G) ≤≤≤≤ k-1 

W/o an h-vertex minor

with genus g

planar

Graph class

0

slidenext

0

0

0

rµµµµ
)( nO

)( gnO

)( 3
nhO

nk 2log

nk 2/3log

No constantNo constant number of number of 

trees guaranties trees guaranties +r+r for for 

any constant any constant r r even for even for 
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} )log/loglog( 2
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} )(nΩ

to get +0 to get +0 

to get +1 to get +1 

• w is the length of a longest edge in G
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Some results on collective Some results on collective Some results on collective Some results on collective Some results on collective Some results on collective Some results on collective Some results on collective additiveadditiveadditiveadditiveadditiveadditiveadditiveadditive tree tree tree tree tree tree tree tree 
spanners of spanners of spanners of spanners of spanners of spanners of spanners of spanners of weightedweightedweightedweightedweightedweightedweightedweighted cccccccc--------chordal graphschordal graphschordal graphschordal graphschordal graphschordal graphschordal graphschordal graphs

(Dragan, (Dragan, YanYan [ISAAC[ISAAC’’04])04])
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Unit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk Graphs

• Unit Disk Graphs are the intersection graphs 

of equal sized circles in the plane.

Model Model Model Model 
wireless wireless wireless wireless 
networksnetworksnetworksnetworks
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Known Sparse spanners for Known Sparse spanners for Known Sparse spanners for Known Sparse spanners for 
UDGsUDGsUDGsUDGs
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Unit Delaunay Triangulation Unit Delaunay Triangulation Unit Delaunay Triangulation Unit Delaunay Triangulation 
and Greedy Routingand Greedy Routingand Greedy Routingand Greedy Routing

• [KG’92] showed that Unit Delaunay triangulation is a length t-
spanner for t≈2.42. 

• (Localized) Unit Delaunay triangulation with Greedy Routing (no 
guarantee of delivery).

• Face greedy routing by [BMSU’99] guarantees delivery (4m 
moves)
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New results on collective tree New results on collective tree New results on collective tree New results on collective tree New results on collective tree New results on collective tree New results on collective tree New results on collective tree 
spanners of spanners of spanners of spanners of spanners of spanners of spanners of spanners of Unit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk Graphs

DefinitionDefinitionDefinitionDefinition: A graph G admits a system of µµµµ
collective tree   (t, r)-spanners if there is a 
system T(G) of at most µµµµ spanning trees of G
such that for any two vertices x, y of G a 
spanning tree T∈ T(G) exists such that       

dT(x,y) ≤ t dG(x,y)+r.

Theorem:Theorem:Theorem:Theorem: Any Unit Disk Graph admits a system 

of at most 2log3/2n+2 collective tree (3,12)-
spanners. Construction is in O((C+m) log n) time 
where C is the number of crossings in G.
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Planar GraphsPlanar GraphsPlanar GraphsPlanar GraphsPlanar GraphsPlanar GraphsPlanar GraphsPlanar Graphs
Two shortest paths Two shortest paths Two shortest paths Two shortest paths 

balanced separatorbalanced separatorbalanced separatorbalanced separator

Unit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk GraphsUnit Disk Graphs

r

x

y

P1

P2

≤≤≤≤ 2n/3
≤≤≤≤ 2n/3

≤≤≤≤ 2n/3
≤≤≤≤ 2n/3

S

√√√√n  balanced separatorn  balanced separatorn  balanced separatorn  balanced separator

O(logO(logO(logO(log n)  trees giving n)  trees giving n)  trees giving n)  trees giving xxxx3333O(O(O(O(√√√√nnnn)  trees giving +0)  trees giving +0)  trees giving +0)  trees giving +0

??

Lipton&Tarjan

Alber&Fiala
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Finding a Balanced Separator in Finding a Balanced Separator in Finding a Balanced Separator in Finding a Balanced Separator in Finding a Balanced Separator in Finding a Balanced Separator in Finding a Balanced Separator in Finding a Balanced Separator in 
a Unit Disk Grapha Unit Disk Grapha Unit Disk Grapha Unit Disk Grapha Unit Disk Grapha Unit Disk Grapha Unit Disk Grapha Unit Disk Graph

1. Build a layering spanning tree T for G.

2. Convert the Unit Disk Graph G into a planar 
graph Gp and T into a spanning tree Tp for Gp.

3. Apply Lipton&Tarjan’s separator theorem to the 
planar graph Gp and spanning tree Tp to find a 

balanced separator Sp for Gp.

4. (The most important Step) From Sp, reconstruct 
a balanced separator S for G.
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Step 1: Build a layering spanning tree T

for G

r
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Step 2: Convert the Unit Disk Graph G into a 

planar graph Gp and T into a spanning tree Tp

for Gp

r r

Intersection 

between a tree edge 

an a non-tree edge

Intersection 

between two 

non tree edges

Intersection between 

two tree edges
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Challenging problem: an edge Challenging problem: an edge Challenging problem: an edge Challenging problem: an edge 
has multiple intersections in has multiple intersections in has multiple intersections in has multiple intersections in GGGG

• Our algorithm can deal with this case.             
For Example:

Li

Li-1

Li

Li-1
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Step 3: Apply Lipton&Tarjan’s separator 

theorem to the planar graph Gp and spanning 

tree Tp to find a balanced separator Sp for Gp

r
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Step 4: From Sp, reconstruct a 

balanced separator S for G

r

a

d c

b

r

a

d c

b

Our algorithm will 

decide either to put 

acd or abd into P to 

make S=N3[P1∪∪∪∪ P2 ]

a balanced separator. 
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Separator theoremSeparator theoremSeparator theoremSeparator theorem

• S=N3
G [P1UP2] is a balanced separator for 

G with 2/3-split, i.e., removal of S from G
leaves no connected component with 
more than 2/3n vertices

r

x

y

P1

P2

≤≤≤≤ 2n/3

≤≤≤≤ 2n/3



Feodor F. Dragan,  Kent State University

Constructing two spanning Constructing two spanning Constructing two spanning Constructing two spanning 
trees for a balanced separatortrees for a balanced separatortrees for a balanced separatortrees for a balanced separator

r r

T1=BFS( P1 )
T2=BFS( P2 )
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Lemma for the two spanning Lemma for the two spanning Lemma for the two spanning Lemma for the two spanning 
treestreestreestrees

• Let x, y be two arbitrary vertices of G and 

P(x,y) be a (hop-) shortest path between x

and y in G. If P(x,y)∩S ≠ ø, then

– dT1(x,y) ≤ 3dG(x,y)+12 or

– dT2(x,y) ≤ 3dG(x,y)+12
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Constructing two spanning Constructing two spanning Constructing two spanning Constructing two spanning 
trees per level of decompositiontrees per level of decompositiontrees per level of decompositiontrees per level of decomposition

r

r

• For each layer of the decomposition tree, construct local spanning trees 

(shortest path trees in the subgraph)
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Theorem for collective tree Theorem for collective tree Theorem for collective tree Theorem for collective tree 
spannersspannersspannersspanners

• Any unit disk graph G with n vertices and 
m edges admits a system T(G) of at most 

2log3/2n+2 collective tree (3,12)-spanners, 
i.e., for any two vertices x and y in G, there 
exists a spanning tree T∈ T(G) with  

dT(x,y) ≤ 3dG(x,y)+12
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Applications: Distance Labeling Applications: Distance Labeling Applications: Distance Labeling Applications: Distance Labeling 
Scheme and Routing Labeling SchemeScheme and Routing Labeling SchemeScheme and Routing Labeling SchemeScheme and Routing Labeling Scheme

• Distance Labeling Scheme: The family of n-
vertex unit disk graphs admits an O(log2n) bit 
(3,12)-approximate distance labeling scheme 
with O(log n) time distance decoder.

• Routing Labeling Scheme: The family of n-
vertex unit disk graphs admits an O(log n) bit 
routing labeling scheme. The Scheme has hop 
(3,12)-route-stretch. Once computed by the 
sender in O(log n) time, headers never change, 
and the routing decision is made in constant 
time per vertex.
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Extension to routing labeling Extension to routing labeling Extension to routing labeling Extension to routing labeling 
scheme with bounded length routescheme with bounded length routescheme with bounded length routescheme with bounded length route----

stretchstretchstretchstretch

• The family of n-vertex unit disk graphs
admits an O(log n) bit routing labeling 

scheme. The scheme has length (5,13)-

route-stretch. Once computed by the 
sender in O(log n) time, headers never 

change, and the routing decision is made 

in constant time per vertex.
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Open questionsOpen questionsOpen questionsOpen questionsOpen questionsOpen questionsOpen questionsOpen questions

• Does there exist a distance or a routing

labeling scheme that can be locally 

constructed for Unit Disk Graphs?

• Does there exist a balanced separator of

form S=NG [P1UP2]?
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Thank YouThank YouThank YouThank YouThank YouThank YouThank YouThank You


