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Abstract. In this paper we study collective additive tree spanners for
families of graphs that either contain or are contained in AT-free graphs.
We say that a graph G = (V, E) admits a system of µ collective additive
tree r-spanners if there is a system T (G) of at most µ spanning trees of G
such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ dG(x, y) + r. Among other results, we show that
AT-free graphs have a system of two collective additive tree 2-spanners
(whereas there are trapezoid graphs that do not admit any additive tree
2-spanner). Furthermore, based on this collection of trees, we derive a
compact and efficient routing scheme for those graphs. Also, any DSP-
graph (there exists a dominating shortest path) admits one additive tree
4-spanner, a system of two collective additive tree 3-spanners and a sys-
tem of five collective additive tree 2-spanners.

1 Introduction

Given a graph G = (V, E), a spanning subgraph H is called a spanner if H
provides a “good” approximation of the distances in G. More formally, for t ≥ 1,
H is called a multiplicative t–spanner of G [1, 14, 13] if dH(u, v) ≤ t · dG(u, v)
for all u, v ∈ V. If r ≥ 0 and dH(u, v) ≤ dG(u, v) + r for all u, v ∈ V, then
H is called an additive r–spanner of G [8]. The parameters t and r are called,
respectively, the multiplicative and the additive stretch factors. Clearly, every
additive r-spanner of G is a multiplicative (r + 1)-spanner of G (but not vice
versa). In this paper, we continue the approach taken in [4] of studying collective
tree spanners. We say that a graph G = (V, E) admits a system of µ collective
additive tree r-spanners if there is a system T (G) of at most µ spanning trees
of G such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ dG(x, y) + r (a multiplicative variant of this notion can be
defined analogously). Clearly, if G admits a system of µ collective additive tree
r-spanners, then G admits an additive r-spanner with at most µ× (n− 1) edges
(take the union of all those trees), and if µ = 1 then G admits an additive tree r-
spanner. Note also that any graph on n vertices admits a system of at most n−1
collective additive tree 0-spanners (take n−1 Breadth-First-Search–trees rooted
at different vertices of G). In particular, we examine the problem of finding small
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systems of collective additive tree r-spanners for small values of r on classes of
graphs that are related to the well known asteroidal triple-free (AT-free) graphs,
notably the restricted families: permutation graph and trapezoid graphs and the
generalizations: DSP-graphs and graphs with bounded asteroidal number.

Once one has determined a system of collective additive tree spanners, it is
interesting to see how such a system can be used to design compact and efficient
routing schemes for the given graph. Following [12], one can give the following
formal definition. A family � of graphs is said to have an l(n)-bit routing labeling
scheme if there is a function L labeling the vertices of each n-vertex graph in
� with distinct labels of up to l(n) bits, and there exists an efficient algorithm,
called the routing decision, that given the label of a source vertex v and the label
of the destination vertex (the header of the packet), decides in time polynomial
in the length of the given labels and using only those two labels, whether this
packet has already reached its destination, and if not, to which neighbor of v to
forward the packet. The quality of a routing scheme is measured in terms of its
additive stretch, called deviation, (or multiplicative stretch, called delay), namely,
the maximum surplus (or ratio) between the length of a route, produced by the
scheme for some pair of vertices, and their distance.

1.1 Our Results

After introducing the notation and definitions used throughout the paper, we
examine various families of graphs related to AT-free graphs from the perspective
of determining whether they have a small constant number of collective additive
tree r-spanners for small constant r. In Section 2 we show that AT-free graphs
have a system of two collective additive tree 2-spanners, permutation graphs
have a single additive tree 2-spanner but there are trapezoid graphs that do
not admit any additive tree 2-spanner (thereby disproving a conjecture of [15]).
All of these tree spanners can be easily constructed in linear time. For families
that strictly contain AT-free graphs, we prove that any DSP-graph admits one
additive tree 4-spanner, a system of two collective additive tree 3-spanners and
a system of five collectible additive tree 2-spanners. Furthermore, any graph G
with asteroidal number an(G) admits a system of an(G)(an(G)− 1)/2 collective
additive tree 4-spanners and a system of an(G)(an(G) − 1) collective additive
tree 3-spanners. In Section 3, we show how the system of two collective additive
tree 2-spanners for AT-free graphs can be used to derive a compact and efficient
routing scheme. In particular we will show that any AT-free graph with diameter
D and maximum vertex degree ∆ admits a (3 log2 D+6 log2 ∆+O(1))-bit routing
labeling scheme of deviation at most 2. Moreover, the scheme is computable in
linear time, and the routing decision is made in constant time per vertex.

1.2 Basic Notions and Notation

All graphs occurring in this paper are connected, finite, undirected, loopless and
without multiple edges. In a graph G = (V, E) the length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dG(u, v)
between the vertices u and v is the length of a shortest path connecting u and
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v. The eccentricity ecc(v) of a vertex v of G is maxu∈V dG(u, v). The diameter
diam(G) of G is maxv∈V ecc(v). The ith neighborhood of a vertex v of G is the set
Ni(v) := {u ∈ V : dG(v, u) = i}. For a vertex v of G, the sets N(v) := N1(v) and
N [v] := N(v)∪{v} are called the open neighborhood and the closed neighborhood
of v, respectively. For a set S ⊆ V , by N [S] :=

⋃
v∈S N [v] we denote the closed

neighborhood of S and by N(S) := N [S] \ S the open neighborhood of S. A set
D ⊆ V is called a dominating set of a graph G = (V, E) if N [D] = V .

An independent set of three vertices such that each pair is joined by a path
that avoids the neighborhood of the third is called an asteroidal triple. A graph
G is an AT-free graph if it does not contain any asteroidal triples [2]. In [7],
the notion of asteroidal triple was generalized. An independent set A ⊆ V of a
graph G = (V, E) is called an asteroidal set of G if for each a ∈ A the vertices
of A \ {a} are contained in one connected component of G − N [a], the graph
obtained from G by removing vertices of N [a]. The maximum cardinality of an
asteroidal set of G is denoted by an(G), and called the asteroidal number of G.
The class of graphs of bounded asteroidal number extends naturally the class of
AT-free graphs; AT-free graphs are exactly the graphs with asteroidal number
at most two.

Let P be a shortest path of G. If every vertex z of G belongs to the neigh-
borhood N [P ] of P , then we say that P is a dominating shortest path of G. A
graph G is called a Dominating-Shortest-Path–graph (or DSP–graph, for short),
if it has a dominating shortest path. By the Dominating Pair Theorem given in
[2], any AT-free graph is a DSP-graph.

The class of AT-free graphs contains many intersection families of graphs,
among them the permutation graphs, the trapezoid graphs and the cocompara-
bility graphs. These three families of graphs can be defined as follows. Consider
two parallel lines (upper and lower) in the plane. Assume that each line contains
n points, labeled 1 to n, and each two points with the same label define a segment
with that label. The intersection graph of such a set of segments between two
parallel lines is called a permutation graph. Assume now that each line contains
n intervals, labeled 1 to n, and each two intervals with the same label define a
trapezoid with that label (a trapezoid can degenerate to a triangle or to a seg-
ment). The intersection graph of such a set of trapezoids between two parallel
lines is called a trapezoid graph. Clearly, every permutation graph is a trapezoid
graph, but not vice versa. The class of cocomparability graphs (which contains
all trapezoid graphs as a subclass) can be defined as the intersection graphs of
continuous function diagrams, but for this paper it would be more convenient
to define them via the existence of a special vertex ordering. A graph G is a
cocomparability graph if it admits a vertex ordering σ = [v1, v2, . . . , vn], called
a cocomparability ordering, such that for any i < j < k, if vi is adjacent to vk

then vj must be adjacent to vi or to vk. According to [11], such an ordering of a
cocomparability graph can be constructed in linear time. Note also that, given a
permutation graph G, a permutation model (i.e., a set of segments between two
parallel lines, defining G) can be found in linear time [11]. A trapezoid model for
a trapezoid graph can be found in O(n2) time [9].
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2 Collective Additive Tree Spanners

2.1 AT-free Graphs

It is known [15] that any AT-free graph admits one additive tree 3-spanner. In
this subsection we show that any AT-free graph admits a system of two collective
additive tree 2-spanners.

As a consequence of the Dominating Pair Theorem given in [2], any AT-free
graph has a dominating shortest path which can be found in linear time by
2 × LexBFS [3]. The 2 × LexBFS method first starts a lexicographic breadth-
first search (LexBFS) from an arbitrary vertex x of G and then starts a second
LexBFS from the vertex x0 last visited by the first LexBFS. Let xl be the vertex
of G last visited by the second LexBFS. As shown in [3], every shortest path
(x0, x1, . . . , xl), connecting x0 and xl, is a dominating shortest path of G. Next
we demonstrate how to use such a dominating shortest path in an AT-free graph
to show that every AT-free graph admits a system of two collective additive tree
2-spanners. We will need the following result from [6].

Lemma 1. [6] Let P := (x0, x1, . . . , xl) be a dominating shortest path of an AT-
free graph G = (V, E) constructed by 2×LexBFS. Then, for every i = 1, 2, . . . , l,
every vertex z ∈ Ni(x0) is adjacent to xi or xi−1.

Using this lemma, we construct a first spanning tree T1 = (V, E1) for an
AT-free graph G = (V, E) as follows: put into initially empty E1 all edges of
the path P := (x0, x1, . . . , xl), and then for each vertex z ∈ Ni(x0), put edge
zxi−1 into E1, if z is adjacent to xi−1 in G, and put edge zxi into E1, otherwise.
We call this spanning tree the caterpillar-tree of G (with spine P ). According
to [15], this caterpillar-tree gives already an additive tree 3-spanner for the AT-
free graph G. To get a collective additive stretch factor 2 for G, we construct a
second spanning tree T2 = (V, E2) for G as follows. Set Li := Ni(x0) for each
i = 1, 2, . . . , l.

set E2 := {all edges of the path P := (x0, x1, . . . , xl)};
set dev(xi) := 0 for each vertex xi of the path P ;
for i = 1 to l do

for each vertex z ∈ Li \ {xi} do
among all neighbors of z in Li−1 choose a neighbor w with minimum

deviation dev(w);
add edge zw to E2 and set dev(z) := dev(w) + 1;

enddo
enddo.

We call spanning tree T2 the cactus-tree of G (with stem P ). It is evident, by
construction, that the cactus-tree T2 is a special kind of breadth-first-search–tree
of G. The value dev(z) (called the deviation of z from stem P ) gives the distance
in T2 between vertex z and path P . In Figure 1 we show an AT-free graph G
along with its caterpillar-tree T1 and cactus-tree T2.

Lemma 2. Spanning trees {T1, T2} are collective additive tree 2-spanners of
AT-free graph G.
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Fig. 1. (a) An AT-free graph G with a dominating path P , (b) the caterpillar-tree T1

of G and (c) the cactus-tree T2 of G

Proof. Consider two arbitrary vertices x ∈ Li and y ∈ Lj (y �= x) of G, where
j ≤ i. If i = j, i.e., both x and y lie in the same layer Li = Lj , then the distance
in T1 between x and y is at most 3, since in the worst case one of them is adjacent
to xi in T1 and the second to xi−1. Thus, dT1(x, y) ≤ 3 ≤ dG(x, y) + 2 holds
when i = j, and therefore, we may assume that i > j.

We know that dG(x, y) ≥ i−j. By the construction of the caterpillar-tree T1,
we have dT1(y, xj) ≤ 2 and dT1(x, xi−1) ≤ 2. Hence, dT1(x, y) ≤ dT1(x, xi−1) +
dT1(xi−1, xj) + dT1(y, xj) ≤ 2 + i − 1 − j + 2 ≤ dG(x, y) + 3, and equality
dT1(x, y) = dG(x, y)+3 holds if and only if dG(x, y) = i− j, vertex x is adjacent
to xi in T1 (and thus in G, vertex x is not adjacent to xi−1) and vertex y is
adjacent to xj−1 in T1 but does not coincide with xj . We will show that in this
case in the cactus-tree T2, dT2(x, y) ≤ dG(x, y) + 2.

Consider in G a shortest path (y = y0, y1, . . . , yi−j = x) connecting vertices
y and x. Clearly, yk ∈ Lj+k for each k = 0, 1, . . . , i − j − 1, and since yk is
a neighbor of yk+1 in layer Lj+k, by construction of T2, we have dev(y0) = 1
and dev(yk+1) ≤ dev(yk) + 1 ≤ k + 2. Hence, the deviation of vertex x is at
most i − j + 1. That is, there is a path in T2 between x and a stem vertex xs

(j − 1 ≤ s ≤ i − 2) of length i − s. The latter implies the existence in T2 of
a path of length i − j + 1 between vertices x and xj−1. Therefore, dT2(x, y) ≤
dT2(x, xj−1) + 1 = i − j + 1 + 1 = dG(x, y) + 2. �	

From this lemma we immediately conclude.

Theorem 1. Any AT-free graph admits a system of two collective additive tree
2-spanners, constructable in linear time.

In the next subsection, we will show that to get a collective additive stretch
factor 2 for some AT-free graphs, one needs at least two spanning trees. There-
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fore, the result given in Theorem 1 is best possible. Furthermore, to achieve a
collective additive stretch factor 1 or 0 for some AT-free graphs, one needs Ω(n)
spanning trees.

2.2 Permutation Graphs and Trapezoid Graphs

It is known [10] that any permutation graph admits a multiplicative tree 3-
spanner. In this subsection, we show that any permutation graph admits an ad-
ditive tree 2-spanner and any system of collective additive tree 1–spanners must
have Ω(n) spanning trees for some permutation graphs. Here also we disprove
a conjecture given in [15], that any cocomparability graph admits an additive
tree 2-spanner. We show that there exists even a trapezoid graph which does not
admit any additive tree 2-spanner.

Let G = (V, E) be a permutation graph given together with a permutation
model. In what follows, “u.p.” and “l.p.” refer to a vertex’s point on the upper
and lower, respectively, line of the permutation model. Construct BFS-layers
({L0, L1, · · ·}) and the spine {x1, x2, · · ·} of G as follows (the process continues
until Li = ∅).

set x0 := the vertex whose u.p. is as far left as possible;
set L0 := {x0};
set L1 := {vertices whose l.p.s are to the left of the l.p. of x0};
set x1 := the vertex in L1 with the u.p. as far right as possible;
set L2 := {vertices whose u.p.s are between the u.p.s of x0 and x1} \ L1;
set x2 := the vertex in L2 with the l.p. as far right as possible;
for i = 3 to n do

if i is odd then
set Li := {vertices with l.p. between the l.p.s of xi−3 and xi−1} \ Li−1;
set xi := the vertex in Li with the u.p. as far right as possible;

else
set Li := {vertices whose u.p.s are between the u.p.s of xi−3 and xi−1} \ Li−1;
set xi := the vertex in Li with the l.p. as far right as possible;

enddo.

It is straightforward to show that for all i ≥ 0, if y ∈ Li+1 then xiy ∈ E.
Now by forming T to include all edges from xi to Li+1 for appropriate i, we can
conclude: (The details will be in the journal version of the paper.)

Theorem 2. Every permutation graph admits an additive tree 2-spanner, con-
structable in linear time.

In the journal version we show that there exists a trapezoid graph which does
not admit any additive tree 2-spanner, thereby disproving a conjecture from [15]
that any cocomparability graph admits an additive tree 2-spanner. We show also
that there are bipartite permutation graphs on 2n vertices for which any system
of collective additive tree 1–spanners will need to have at least Ω(n) spanning
trees.
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2.3 DSP-graphs

It follows from a result in [15] that any DSP-graph admits one additive tree
4-spanner. In this subsection we show that any DSP-graph admits a system of
two collective additive tree 3-spanners and a system of five collective additive
tree 2-spanners.

Let G = (V, E) be a DSP-graph and P := (v = x0, x1, . . . , xl = u) be a domi-
nating shortest path of G. We will build five spanning trees {T1, T2, T3, T4, T5} for
G, all containing the edges of P , in such a way that for any two vertices x, y ∈ V ,
there will be a tree T ′ ∈ {T1, T2, T3, T4, T5} with dT ′(x, y) ≤ dG(x, y) + 2.

Our first three trees T1, T2, T3 are very similar to the trees constructed for
AT-free graphs. The tree T1 = (V, E1) is constructed as follows. Add to initially
empty set E1 all edges of path P . Then, for each vertex z ∈ V \ P choose an
arbitrary neighbor wz in P and add edge zwz to E1. The tree T1 is an analog
of the caterpillar-tree constructed for an AT-free graph. The second and third
trees are analogs of the cactus-tree considered for an AT-free graph. The tree
T2 = (V, E2) is a special breadth-first-search-tree Tv with vertex v as the root,
the tree T3 = (V, E3) is a special breadth-first-search-tree Tu with vertex u as
the root. For construction of T2 we can use the algorithm given in Subsection
2.1 with one additional line at the end: for each z ∈ Nl+1(v), add edge zu to
E2 and set dev(z) := 1. T3 is constructed similarly; we simply reverse the order
of vertices of P and consider u instead of v and E3 instead of E2. The detailed
algorithm will appear in the journal version.

Our tree T4 = (V, E4) is a generalization of the tree T2 and is constructed as
follows.

set E4 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};
set dev(xi) := 0 for each vertex xi of the path P ;
for i = 1 to l do

for each vertex z ∈ Ni(v) \ {xi} do case
case (z is adjacent to xi−1 in G)

add edge zxi−1 to E4 and set dev(z) := 1;
case (z is adjacent to xi in G)

add edge zxi to E4 and set dev(z) := 1;
case (z is adjacent to a vertex w ∈ Ni(v) which is adjacent to xi−1)

choose such a w and add edge zw to E4 and set dev(z) := 2;
otherwise /* none of above */

among all neighbors of z in Ni−1(v) choose a neighbor w with
minimum deviation dev(w) (break ties arbitrarily);

add edge zw to E4 and set dev(z) := dev(w) + 1;
endcase

enddo
for each z ∈ Nl+1(v), add edge zu to E4 and set dev(z) := 1.

It is an easy exercise to show by induction that for any vertex z ∈ Ni(v),
the vertex of P closest to z in T4 is either xs or xs−1 with s = i − dev(z) + 1.
Moreover, the length of the path of T4 between z and P is dev(z). Our last tree
T5 = (V, E5) is a version of the tree T4, constructed downwards.
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set E5 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};
set dev(xi) := 0 for each vertex xi of the path P and dev(z) := ∞ for any z ∈ V \ P ;
for i = l − 1 down to 1 do

for each vertex z ∈ Ni(v) \ {xi} do case
case (z is adjacent to xi+1 in G)

add edge zxi+1 to E5 and set dev(z) := 1;
case (z is adjacent to xi in G)

add edge zxi to E5 and set dev(z) := 1;
case (z is adjacent to a vertex w ∈ Ni(v) which is adjacent to xi+1)

choose such a w and add edge zw to E5 and set dev(z) := 2;
otherwise

if z has neighbors in Ni+1(v) then
among all neighbors of z in Ni+1(v) choose a neighbor w with

minimum deviation dev(w) (break ties arbitrarily);
if dev(w) < ∞ then add edge zw to E5 and set dev(z) := dev(w) + 1;

endcase
enddo
for each vertex z with dev(z) still ∞ do

let z ∈ Ni(v);
if i = l and z is adjacent to xl then add edge zxl to E5 and set dev(z) := 1;
else add edge zxi−1 to E5;
/* this edge exists in G since P is a dominating path

and z is adjacent in G neither to xi+1 nor xi */
enddo.

Again, it is easy to see that for any vertex z ∈ Ni(v) with finite deviation
dev(z), the vertex of P closest to z in T5 is either xs or xs+1 with s = i+dev(z)−1.
The length of the path of T5 between z and P is dev(z).

We are ready to present the main result of this subsection.

Lemma 3. Let G be a DSP-graph with a dominating shortest path P := (v =
x0, x1, . . . , xl = u) and spanning trees T1, T2, T3, T4, T5 constructed starting from
P as described above. Then, for any two vertices x, y ∈ V :

1. dT1(x, y) ≤ dG(x, y) + 4;
2. there is a tree T ′ ∈ {T1, T2} such that dT ′(x, y) ≤ dG(x, y) + 3;
3. there is a tree T ′′ ∈ {T1, T2, T3, T4, T5} such that dT ′′(x, y) ≤ dG(x, y) + 2.

Proof. The proof of this lemma is quite technical and will appear in the journal
version of the paper. �	

Theorem 3. Any DSP-graph admits one additive tree 4-spanner, a system of
two collective additive tree 3-spanners and a system of five collective additive
tree 2-spanners. Moreover, given a dominating shortest path of G, all trees are
constructable in linear time.

Note that there is a DSP-graph for which two trees are necessary to get a
collective additive stretch factor 3. However, it is an open question whether to
achieve a collective additive stretch factor 2, one really needs five spanning trees.
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2.4 Graphs with Bounded Asteroidal Number

It is known [7] that any graph G with asteroidal number an(G) admits an addi-
tive tree (3an(G) − 1)-spanner. In this subsection we show that any graph with
asteroidal number an(G) admits a system of an(G)(an(G) − 1)/2 collective ad-
ditive tree 4-spanners and a system of an(G)(an(G) − 1) collective additive tree
3-spanners.

In what follows we will use the following definitions and results from [7]. An
asteroidal set A of a graph G is repulsive if for every vertex v ∈ V \N [A], not all
vertices of A are contained in one connected component of G−N [v]. According
to [7], any graph has a repulsive asteroidal set. A set D ⊆ V in a graph G is said
to be a dominating target, if D ∪S is a dominating set in G for every set S ⊆ V
for which the subgraph of G induced by D ∪ S is connected. It is shown in [7]
that any graph G has a dominating target D with D ≤ an(G). Furthermore,
every repulsive asteroidal set of G is such a dominating target of G.

In the journal version of the paper, we prove the following stronger version of
the result above. Let D ⊆ V be a repulsive asteroidal set of a graph G = (V, E).

Lemma 4. For every x, y ∈ V , there exist a, b ∈ D such that x, y ∈ N [P ] for
any path P of G between a and b.

Consider two arbitrary vertices a, b of D and a shortest path P (a, b) := (a =
x0, x1, . . . , xl = b) connecting a and b in G. We can build two spanning trees
T1(a, b) and T2(a, b) for G, both containing the edges of P (a, b), in such a way
that for any two vertices x, y ∈ N [P (a, b)], dT1(a,b)(x, y) ≤ dG(x, y) + 4 and
min{dT1(a,b)(x, y), dT2(a,b)(x, y)} ≤ dG(x, y) + 3.

Our trees T1(a, b) and T2(a, b) are very similar to the trees constructed for AT-
free graphs. The tree T1(a, b) = (V, E1) is constructed as follows. Add to initially
empty set E1 all edges of path P (a, b). Then, for each vertex z ∈ N(P (a, b))
choose an arbitrary neighbor w in P (a, b) and add edge zw to E1. The obtained
subtree of G (which covers so far only vertices from N [P (a, b)]) extends to a
spanning tree T1(a, b) arbitrarily. The tree T1(a, b) is an analog of the caterpillar-
tree constructed for an AT-free graph. The second tree is an analog of the cactus-
tree considered for an AT-free graph. The tree T2(a, b) = (V, E2) is a special
breadth-first-search-tree Ta with vertex a as the root. The detailed algorithm
for constructing T2(a, b) and the proof of the following lemma will appear in the
journal version.

Lemma 5. For any two vertices x, y ∈ N [P (a, b)]:

1. dT1(a,b)(x, y) ≤ dG(x, y) + 4;
2. there is a tree T ′ ∈ {T1(a, b), T2(a, b)} such that dT ′(x, y) ≤ dG(x, y) + 3.

If we construct trees T1(a, b) and T2(a, b) for each pair of vertices a, b ∈ D,
from Lemma 4 and Lemma 5, we get (recall that |D| ≤ an(G)):

Theorem 4. Any graph G with asteroidal number an(G) admits a system of
an(G)(an(G) − 1)/2 collective additive tree 4-spanners and a system of
an(G)(an(G) − 1) collective additive tree 3-spanners.
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Corollary 1. Any graph G with asteroidal number bounded by a constant admits
a system of a constant number of collective additive tree 3-spanners. Moreover,
given a repulsive asteroidal set of G, all trees are constructable in total linear
time.

3 Routing Labeling Schemes in AT-free Graphs

In this section, we use the results obtained above to design compact and effi-
cient routing labeling schemes for AT-free graphs. For DSP-graphs and graphs
with bounded asteroidal number, corresponding routing labeling schemes are
described in the journal version of the paper. We will show that any AT-free
graph with diameter D := diam(G) and maximum vertex degree ∆ admits a
(3 log2 D + 6 log2 ∆ + O(1))-bit routing labeling scheme of deviation at most 2.
Moreover, the scheme is computable in linear time, and the routing decision is
made in constant time per vertex.

It is worth mentioning that any AT-free graph admits a (log2 D + 1)-bit
distance labeling scheme of deviation at most 2 (see [5]). That is, there is a
function L labeling the vertices of each AT-free graph G with (not necessarily
distinct) labels of up to log2 D+1 bits such that given two labels L(v), L(u) of two
vertices v, u of G, it is possible to compute in constant time, by merely inspecting
the labels of u and v, a value d̂(u, v) such that 0 ≤ d̂(u, v) − dG(u, v) ≤ 2. To
the best of our knowledge, the method of [5] cannot be used (at least directly)
to design a routing labeling scheme for AT-free graphs.

Labels. In subsection 2.1, we showed that any AT-free graph G = (V, E) admits
a system of two collective additive tree 2-spanners. During the construction of
the cactus-tree T2 for G, each vertex z ∈ V received a deviation number dev(z)
which is the distance in T2 between z and the stem P := (x0, x1, . . . , xl) of T2.
To simplify the routing decision, it will be useful to construct one more spanning
tree T ′ = (V, E′) for G. Let P := (x0, x1, . . . , xl) be the dominating path of G
described in Lemma 1.

set E′ := {all edges of the path P := (x0, x1, . . . , xl)};
set dev′(xi) := 0 for each xi of the path P and dev′(z) := l + 1 for any z ∈ V \ P ;
for each z ∈ Nl(x0) which is adjacent to xl, set dev′(z) := 1 and add edge zxl to E′;
for i = l − 1 down to 1 do

for each vertex z ∈ Ni(x0) \ {xi} do
if z is adjacent to xi in G then add edge zxi to E′ and set dev′(z) := 1;
else if z has neighbors in Ni+1(x0) then

among all neighbors of z in Ni+1(x0), choose a neighbor w with
minimum deviation dev′(w) (break ties arbitrarily);

if dev′(w) < l + 1 then add edge zw to E′ and set dev′(z) := dev′(w) + 1;
enddo

enddo
for each vertex z with dev′(z) still l + 1 do

let z ∈ Ni(x0);
add edge zxi−1 to E′;

enddo.
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We name tree T ′ the willow-tree of G. As a result of its construction, each
vertex z ∈ V received a second deviation number dev′(z), which is either l + 1
or the distance in T ′ between z and the path P := (x0, x1, . . . , xl) of T ′.

Now we are ready to describe the routing labels of the vertices of G. For each
vertex xi ∈ P (i = 0, 1, . . . , l), we have

Label(xi) := (b(xi), level(xi), portup(xi), portdown(xi)),

where

– b(xi) := 1, a bit indicating that xi belongs to P ;
– level(xi) (= i) is the index of xi in P , i.e., the distance dG(xi, x0);
– portup(xi) is the port number at vertex xi of the edge xixi+1 (if i = l,

portup(xi) := nil);
– portdown(xi) is the port number at vertex xi of the edge xixi−1 (if i = 0,

portdown(xi) := nil).

For each vertex z ∈ V \ P , we have

Label(z) := (b(z), level(z), av(z), portv−in(z), portv−out(z), ah(z), porth−in(z),

porth−out(z), dev(z), portdown(z), dev′(z), portup(z)),

where

– b(z) := 0, a bit indicating that z does not belong to P ;
– level(z) is the distance dG(z, x0);
– av(z) is a bit indicating whether z is adjacent to xlabel(z)−1;
– portv−in(z) is the port number at vertex xlabel(z)−1 of the edge xlabel(z)−1z

(if z and xlabel(z)−1 are not adjacent in G, then portv−in(z) := nil);
– portv−out(z) is the port number at vertex z of the edge zxlabel(z)−1 (if z and

xlabel(z)−1 are not adjacent in G, then portv−out(z) := nil);
– ah(z) is a bit indicating whether z is adjacent to xlabel(z);
– porth−in(z) is the port number at vertex xlabel(z) of the edge xlabel(z)z (if z

and xlabel(z) are not adjacent in G, then porth−in(z) := nil);
– porth−out(z) is the port number at vertex z of the edge zxlabel(z) (if z and

xlabel(z) are not adjacent in G, then porth−out(z) := nil);
– dev(z) is the deviation of z in tree T2;
– portdown(z) is the port number at vertex z of the edge zw, where w is the

father of z in T2;
– dev′(z) is the deviation of z in tree T ′;
– portup(z) is the port number at vertex z of the edge zw, where w is the

father of z in T ′ (if dev′(z) = l + 1, portup(z) := nil).

Clearly, the label size of each vertex of G is at most 3�log2 l�+6�log2 ∆�+3 ≤
3 log2 D + 6 log2 ∆ + O(1) bits.

Routing Decision. The routing decision algorithm is obvious. Suppose that
a packet with the header (address of destination) Label(y) arrives at vertex x.
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The vertex x can use the following constant time algorithm to decide where to
submit the packet. Note that each vertex v of G is uniquely identified by its
label Label(v).

function routing decision AT-free(Label(x), Label(y))

if Label(x) = Label(y) then return “packet reached its destination”;
else do case

case (b(x) = 1)
/* x belongs to P and routing is performed on the caterpillar-tree T1 of G */

do case
case (level(x) > level(y))

send packet via portdown(x);
case (level(x) < level(y))

if b(y) = 1 then send packet via portup(x);
else if level(y) = level(x) + 1 and av(y) = 1 then

send packet via portv−in(y);
else send packet via portup(x);

case (level(x) = level(y))
if ah(y) = 1 then send packet via porth−in(y);
else send packet via portdown(x);

endcase;
/* now x does not belong to P */
case (level(x) > level(y))

do case
case (av(x) = 1)

send packet via portv−out(x); /* routing is performed on T1 */
case (b(y) = 1 or b(y) = 0 and ah(y) = 1)

send packet via porth−out(x); /* routing is performed on T1 */
otherwise /* here we have dT1(x, y) = level(x) − level(y) + 3 */

if dev(x) ≤ level(x) − level(y) + 1 then send packet via portdown(x);
/* the cactus-tree T2 of G is used for routing */

else send packet via porth−out(x); /* routing is performed on T1 */
endcase;

case (level(x) < level(y))
do case

case (ah(x) = 1)
send packet via porth−out(x); /* routing is performed on T1 */

case (b(y) = 1 or b(y) = 0 and av(y) = 1)
send packet via portv−out(x); /* routing is performed on T1 */

otherwise /* here we have dT1(x, y) = level(y) − level(x) + 3 */
if dev′(x) ≤ level(y) − level(x) + 1 then send packet via portup(x);

/* the willow-tree T ′ of G is used for routing */
else send packet via portv−out(x); /* routing is performed on T1 */

endcase;
case (level(x) = level(y)) /* routing is performed on T1 */

if ah(x) = 1 then send packet via porth−out(x);
else send packet via portv−out(x);

endcase.

Thus, we have the following result.
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Theorem 5. Every AT-free graph of diameter D := diam(G) and of maximum
vertex degree ∆ admits a (3 log2 D+6 log2 ∆+O(1))-bit routing labeling scheme
of deviation at most 2. Moreover, the scheme is computable in linear time, and
the routing decision is made in constant time per vertex.
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