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Abstract

To implement high-performance global interconnect without impact-
ing the performance of existing blocks, the use of buffer blocks is in-
creasingly popular in structured-custom and block-based ASIC/SOC
methodologies. Recent works by Cong et al. [6] and Tang and Wong
[25] give algorithms to solve the buffer block planning problem. In
this paper we address the problem of how to perform buffering of
global nets given an existing buffer block plan. Assuming as in
[6, 25] that global nets have been already decomposed into two-pin
connections, we give a provably good algorithm based on a recent
approach of Garg and Könemann [8] and Fleischer [7]. Our method
routes connections using available buffer blocks, such that required
upper and lower bounds on buffer intervals – as well as wirelength
upper bounds per connection – are satisfied. Unlike [6, 25], our
model allows more than one buffer to be inserted into any given con-
nection. In addition, our algorithm observes buffer parity constraints,
i.e., it will choose to use an inverter or a buffer (= co-located pair of
inverters) according to source and destination signal parity. The al-
gorithm outperforms previous approaches [6] and has been validated
on top-level layouts extracted from a recent high-end microprocessor
design.

1 Introduction

A key consequence of the semiconductor technology roadmap [23]
is the dominant effect of interconnect in deep-submicron design. As
clock frequencies reach and exceed the gigahertz level, each top-
level global net must undergo repeater insertion (among other opti-
mizations; see [5, 18, 20]) to maintain signal integrity and reason-
able signal delay.1 Estimates of the need for repeater insertion range
up to O(106) repeaters for top-level on-chip interconnect when we
reach the 50nm technology node. These repeaters are large (any-
where from 40� to 200� minimum inverter size), affect global rout-
ing congestion, can entail non-standard cell height and special power
routing requirements, and can act as noise sources. In a block-
or reuse-based methodology, designers seek to isolate repeater for
global interconnect from individual block implementations.

For these reasons, a buffer block methodology has become in-
creasingly popular in structured-custom and block-based ASIC/SOC
methodologies. Two recent works by Cong et al. [6] and Tang and
Wong [25] give algorithms to solve the buffer block planning prob-
lem. Their buffer block planning formulation is roughly stated as:
Given a placement of circuit blocks, and a set of two-pin connec-
tions with a feasible region for a single buffer per connection, plan
the shape and location of buffer blocks so as to maximally use avail-
able free space and minimally impact the existing floorplan.

�This work was partially supported by Cadence Design Systems, Inc. and the
MARCO Gigascale Silicon Research Center. Andrew B. Kahng is now Professor of
Computer Science and Engineering, and of Electrical and Computer Engineering, at
the University of California, San Diego. Feodor Dragan is now Associate Professor of
Mathematics and Computer Science at Kent State University. Sudhakar Muddu is now
with Sanera Systems, Inc.

1Following the literature, we will use the terms buffer and repeater fairly inter-
changeably. When we need to be more precise: a repeater can be implemented as either
an inverter or as a buffer (= two co-located inverters).

The formulation of [6, 25] requires a single buffer per connec-
tion. This allows use of computational geometry and network flows
with respect to feasible regions, and the buffer block plan implicitly
contains the global buffering solution for the netlist of connections.
However, in reality, multiple buffers are often needed per connec-
tion. For example, global repeater rules for a high-end micropro-
cessor design in 0.25µm CMOS [14] require repeater intervals of at
most 4500µm.2 The number of buffers needed for a given connec-
tion depends strongly on the length of the connection; as noted in
[14], the repeater interval is not only required for delay reduction,
but also for crosstalk noise immunity and edge slewtime control. We
also note that buffer block resources may not always be completely
plannable – buffer sites are often embedded in IP blocks or in block
“collars” within a hierarchical ASIC/SOC methodology.

In this paper, we address the problem of how to perform buffer-
ing of global nets given an existing buffer block plan. (Hence, our
work is compatible with and complements the methods in [6, 25].)
Assuming as in [6, 25] that global nets have been already decom-
posed into two-pin connections, we give a provably good algorithm
based on a recent approach of Garg and Könemann [8] and Fleischer
[7]. Our method routes connections using available buffer blocks,
such that required upper and lower bounds on repeater interval – as
well as length upper bounds per connection – are satisfied. Notably,
unlike [6, 25] our model allows more than one buffer to be inserted
into any given connection. In addition, our algorithm observes re-
peater parity constraints, i.e., it will choose to use an inverter or a
buffer (= co-located pair of inverters) according to source and desti-
nation signal parity. Informally, our problem is defined as follows.

Given:
� a planar region with rectangular obstacles;
� a set of source-destination pairs (point pairs) in the region;
� each pair has a parity requirement;
� each (timing-driven) source-destination pair has a limit on the

length of its path, i.e., there is a prescribed bound that limits
the number of used repeaters;

� a set of buffer blocks, each with given capacity; and
� an interval [L;U ] that defines lower and upper bounds on the

distance between repeaters.

Global Buffering Problem: Construct a route for each source-
destination pair, such that each route passes through zero or more
repeaters, subject to:

� the distance between the source of a route and its first repeater
is between L and U ;

� the distance between any two consecutive repeaters on any
given route is between L and U ;3

� the distance between the last repeater on a route and the route’s
destination is again between L and U ;

� the number of routes passing through any given buffer block
does not exceed that block’s capacity;

2Chip side length is now routinely at 20000µm. Multiple repeaters per connection
are also implicit in the cycle time modeling of the technology roadmap [23].

3Our approach can also handle the case where L and U bounds differ for different
source-destination pairs, and depend on the position (from source) of two consecutive
repeaters on the routing path.

104

 
Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.



� the number of repeaters on each source-destination route
should be of the given parity (if necessary, to achieve the parity
condition, the route can use two sites in a single buffer block,
i.e., a buffer instead of an inverter; in this case we use two units
of the block’s capacity);

� the number of repeater sites on each source-destination route
should not exceed the given limit (upper bound).4

Note that coupling awareness is built into the user-prescribed re-
peater interval, via the switch-factor methodology [13] which ac-
counts for best- and worst-case Miller coupling between adjacent
nets. Typically, switch factors between 0 and 2, or between -1 and
3, are used to multiply the nominal victim-aggressor coupling ca-
pacitance when doing timing analysis. Then, repeater intervals are
calculated to maximize interconnect performance, subject to bounds
on noise and delay uncertainty [12].

The most simple-minded implementation of our approach will
treat all source-sink paths as “equally critical”: buffers are inserted
at the same regular interval along each source-sink path, independent
of the path’s length. However, we note that if a particular source-sink
path is not timing-critical, our method allows net ordering that would
process it last, or net weighting that would decrease the priority of
its claim on buffer resources. Post-processing of the solution could
remove inserted buffers (starting at most-used blocks) until further
removal violates some actual timing budget. On the other hand, in
early chip planning stages it is typical for aggressive or “optimal”
buffering to be performed, so that all global paths are as fast as possi-
ble [9]. This breaks the chicken-egg problem of budgeting between-
block and within-block paths in pre-synthesis RTL planning; it also
allows maximum timing budgets for within-block timing paths.5

Our paper is organized as follows. In Section 2, we reduce the
Global Buffering Problem to a generalized version of integer multi-
commodity flow (MCF), and in Section 3 we give algorithms for ap-
proximating the optimal fractional relaxation of this MCF – for both
maximum-routing and minimum-routing-cost formulations – within
any desired accuracy. Our algorithm is based on recent results of
[8] and [7], which we extend to a vertex-capacitated context. Sec-
tion 4 describes a randomized rounding procedure that converts near-
optimal fractional MCF solutions to near-optimal integral solutions.
MCF based heuristics (with or without randomized rounding) have
been applied to VLSI global routing [24, 3, 11]. However, global
routing appears less naturally suited for MCF than our Global buffer-
ing problem; it does not seem to yield as strong theoretical bounds
nor as effective implementations. Section 5 describes the four Global
Buffering heuristics that we have implemented: (i) Greedy, (ii) ε-
approximate MCF (ε-MCF), (iii) Greedy enhancement of ε-MCF
(ε-MCFG), and (iv) “1-Shot”. Finally, Section 6 gives the results
of these heuristics on test cases extracted from top-level layout of a
recent high-end microprocessor, and Section 7 concludes with a list
of open research directions.

2 Integer Multicommodity Flow Formulation

Assume that we have K pairs of terminals (sk;tk), and n buffer
blocks fr1; : : : ;rng. Denote S = fs1; : : : ;sKg, T = ft1; : : : ;tKg, R =
fr1; : : : ;rng. Let also c(r)2N denote the capacity of the buffer block
r2R, ak 2feven, oddg be the parity requirement for pair (sk;tk), and
lk be the prescribed upper bound on the number of buffers on path
between source sk and destination tk.

We construct a graph G = (V;E) as follows. Let pxy be a recti-
linear path connecting points x and y of a planar region that avoids
all rectangular obstacles given in the region. Denote by d(x;y) the
length of a shortest such path. The vertex set V of G is S[T [R.

4Our approach also handles the variant where each source-destination pair has a
weight (importance or criticality of each pair) and a measure of cost is to be minimized.

5Thus, blocks can go through synthesis, place and route with more aggressive area
targets. A strategy of uniform buffering of as many global nets as possible also helps
control signal integrity and delay uncertainty issues.

The edge set E contains all edges of type vv, v 2 R, (such an edge
is called a loop), as well as all edges xy for which L � d(x;y) �U .
(This graph can be constructed using, e.g., shortest paths in visibility
graphs [22].)

We will use the following definition of an (sk;tk)-path. A path
p = (sk;v1;v2; : : : ;vl ;tk) in G between the kth source sk and sink tk is
an (sk;tk)-path if

� vi 2 R for each i = 1; : : : ; l,
� there exists at most one pair of different indices i; j 2 f1; : : : ; lg

such that vi = v j (i.e., vi and vj represent the same buffer
block), and in this case we must have ji� jj= 1,

� the parity of l is ak ,
� l � lk.

Having this graph and the definition of (sk;tk)-path, our problem
is as follows. For every pair of terminals (sk;tk), k = 1; : : : ;K, find
an (sk;tk)-path, subject to the constraint that the number of times
any vertex r 2 R is used in these paths should not exceed the capac-
ity c(r) of r. If the problem has no solution, we want to maximize the
number of pairs (sk;tk) that can be connected without violating ca-
pacity, parity and timing-driven constraints. Let us call this problem
the Maximum Routing-Via-Buffer-Blocks (MRVBB) problem.

The MRVBB problem can be formulated as a maximum integral
multicommodity flow problem on a graph with vertex capacities. An
instance consists of a graph G= (V;E) with vertex capacities c :V !
N and K pairs of terminals (sk;tk), with one commodity associated
with each pair. We seek a multicommodity flow such that the sum of
the flows of all commodities is maximized.

Define capacities on all vertices of G as follows:

c(v) :=

�
1 if v 2 S[T;
capacity of buffer block if v 2 R:

Let Pk be the set of all possible (sk;tk)-paths. We define P to be
the union of all Pk , i.e., P =

SK
k=1 Pk. For p2 P , let fp be a variable

denoting the flow along this path. The commodity to which this
flow corresponds is clear from looking at indices of the end vertices
of p. Thus, we have the following integer linear program:

maximize ∑p2P fp

subject to ∑p2P qp(v) fp � c(v) 8v 2V
fp 2 f0;1g 8p 2 P .

where

qp(v) :=

8<
:

0 if v =2 p;
1 if v 2 p;but vv is not a loop on p;
2 if v 2 p; and vv is a loop on p:

Rather than solve the integer program directly, we consider the
LP relaxation, substituting the last constraint by

fp � 0 8p 2 P .

We call the problem of finding an optimal solution to this LP
the Maximum Fractional Routing-Via-Buffer-Blocks (MFRVBB)
problem. After solving the fractional routing problem, we will apply
randomized rounding to get an approximate solution for the initial
MRVBB problem. (Note that, in fact, this MCF formulation can
also handle routing congestion, e.g., by putting on each edge of the
graph G a new vertex (pseudo buffer block) with suitable capacity.)
The dual of this LP is

minimize ∑v2V w(v)c(v)
subject to ∑v2p w(v)� 1 8p 2 P

w(v)� 0 8v 2V .

The dual can be viewed as an assignment of non-negative
weights, w(�), to the vertices of G such that the weight of any
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path p 2 P is at least 1; the objective is to minimize the sum
∑v2V w(v)c(v). Here, the weight of the path is the sum of the weights
of vertices forming this path (since p is by definition a sequence of
vertices, not a set of vertices, if the path uses a loop vv then vertex
v contributes twice to the weight of the path). The approximation
algorithm given in the next section simultaneously solves both pri-
mal and dual problems – the dual solution is then used in proving the
approximation guarantee of the algorithm.

3 Approximation of Node-Capacitated Fractional MCF

The fractional routing problem, MFRVBB, can be solved exactly in
polynomial time by any polynomial-time LP algorithm. However,
such algorithms are very inefficient in practice. Two recent results
in approximation algorithms allow us to obtain high-quality solu-
tions efficiently. Our algorithm for solving the MFRVBB problem
is based on the fast approximate algorithm for the maximum mul-
ticommodity flow problem on graphs with edge capacities due to
Garg and Könemann [8]. Small modifications allow us to adapt their
method to our context of vertex-capacitated graphs, source-sink path
parity constraints and timing-driven constraints. Moreover, we ap-
ply an idea of Fleischer [7] to reduce the number of minimum weight
path computations made by the algorithm.

Denote D(w) = ∑v2V w(v)c(v) and let α(w) be the weight of a
minimum weight path from P (with respect to w(�)). The dual prob-
lem is equivalent to finding a weight function w : V ! R+ such that

β =
D(w)
α(w) is minimized (see [8]). Algorithm 1 solves the MFRVBB

problem for any given approximation ratio.

Algorithm 1: MFRVBB Algorithm

Input: Graph G with source-sink pairs (sk;tk), node capacities c(v)
Output: Flows fk(v) 2 [0;1], k = 1; : : : ;K, v 2V (G) satisfying
capacity constraints

1. Set f = 0.

2. Set w(v) = δ for all v 2V .

3. Set fk(v) = 0 for all v 2V and k = 1; : : : ;K.

4. For i = 1 to log1+2ε
1+2ε

δ do

For k = 1 to K do

Find a path p in Pk with minimum weight w.r.t. w(�).

While weight(p) < minf1;δ(1+2ε)ig do
f = f +1;
For all v 2 p, if p uses a loop vv then set

fk(v) = fk(v)+2 and w(v) = w(v)(1+ 2ε
c(v) ); else set

fk(v) = fk(v)+1 and w(v) = w(v)(1+ ε
c(v) ).

Find a path p in Pk with minimum weight w.r.t. w(�).

End while
End for

End for
5. Output f

2 log1+2ε
1+2ε

δ
, and

fk(v)
2 log1+2ε

1+2ε
δ

for each v 2V and

k = 1; : : : ;K.

In the algorithm, fk(v) denotes the flow of commodity k passing
through a vertex v, and f denotes the total flow routed. The algorithm
associates a weight with each vertex, and every time it routes an unit
flow along some (sk;tk)-path p from Pk (k = 1; : : : ;K) it multiplies
the weight of every vertex on this path by 1+ ε=c(v) for a fixed ε
(if the path uses a loop vv, then the weight of v is multiplied by
1+2ε=c(v)). Initially, every vertex v has weight δ for some constant
δ. Thus, the heavier the vertex the greater the flow through it.

According to Garg and Könemann’s approximate algorithm [8],
we must route a unit flow along a lightest (with respect to current
weight function w(�)) path from P , if the weight of this path is less
than 1. We also must stop after t iterations where t is the small-
est number such that α(w), computed with respect to vertex weights
w(�) of this iteration, is at least 1. Fleischer [7] noted that instead of
finding the lightest path in P , one can settle for some path within a
factor of (1+ 2ε) of the lightest while obtaining a similar approxi-
mation guarantee.

Let wi�1(�) be the weight function at the beginning of the ith

iteration. We have w0(v) = δ for each v 2 V . For brevity denote
α(wi), D(wi) by α(i), D(i) respectively. Following Fleischer, we
cycle through the commodities, sticking with a commodity until the
lightest source-sink path for that commodity is above an 1+2ε fac-
tor times a lower bound estimate of the overall lightest path. Let
ᾱ(i) be a lower bound on α(i). To start, we set ᾱ(0) = δ. As long
as there is some p 2 P with weight(p) � minf1;(1+ 2ε)ᾱ(i)g, we
augment flow along p. When this no longer holds, we know that
the weight of the lightest path is at least (1+2ε)ᾱ(i), and so we set
ᾱ(i+ 1) = (1 + 2ε)ᾱ(i). Thus, throughout the course of the algo-
rithm, ᾱ takes on values in the set fδ(1+2ε)igi2N . Since α(0)� δ
and α(t � 1) < 1, α(t) < 1 + 2ε. Thus, when we stop, ᾱ(t) is be-
tween 1 and 1+2ε. Each increase of ᾱ is by an 1+2ε factor, hence
the number of increases of ᾱ is log1+2ε

1+2ε
δ (and the final value of i

is blog1+2ε
1+2ε

δ c).
Between updates to ᾱ, the algorithm proceeds by considering

each commodity one by one. As long as the lightest path for com-
modity k has weight less than the minimum of 1+2ε times the cur-
rent value of ᾱ and 1, flow is augmented along such a lightest path.
When minp2Pk

weight(p) � (1+ 2ε)ᾱ, commodity k + 1 is consid-
ered. After all K commodities are considered, ᾱ is updated. A total
of at most K log1+2ε

1+2ε
δ minimum weight path computations are

used to update α over the course of the algorithm.
Note also that the number of possible augmentations is at most

K log1+2ε
1+2ε

δ . Indeed, at the start w(v) = δ for each vertex v. The
last time the weight of a vertex is updated, it is on a path of weight
less than one, and it is increased by at most a factor of 1+2ε. Hence,
the final weight of any vertex is at most 1+2ε. Since every augmen-
tation increases the weight of some sink tk (k = 1; : : : ;K) by a factor
of at least 1+ 2ε, the number of possible augmentations is at most
K log1+2ε

1+2ε
δ . This, together with our observation on the number

of times ᾱ is recomputed, implies a runtime of O(Km log1+2ε
1+2ε

δ )
for our algorithm, where m is the number of edges between buffer
blocks in our graph G.

Theorem 1 Algorithm 1 yields a (1 + 8ε)-approximation for the

MFRVBB problem by choosing δ = (1 + 2ε)((1 + 2ε)L)�
1
2ε and

ε < :07, where L is the number of vertices in the longest simple path
of G between any source-sink pair.

Proof. Our proof is an extension of the proof of Fleischer [7]
(see also [8]) to vertex-capacitated case, and is omitted due to space
constraints.

In Algorithm 1 we need to solve the following problem. Let
Gk (k = 1; : : : ;K) be a subgraph of the graph G induced by vertices
fsk;tkg[R (recall that each vertex v 2 R has a loop vv 2 E). Let
also each vertex v of Gk have a non-negative weight w(v). Find a
minimum weight path pk in Gk connecting sk with tk which passes
through an even (odd, depending on ak) number of vertices, with the
number of vertices not exceeding lk. This path may contain at most
one loop. So, the vertex weight will contribute either once or twice
(in case of loop) to the weight of the path.

We will reduce this problem to the usual shortest path problem on
a edge-weighted directed acyclic graph (dag) Dk with 2+nlk vertices
and at most n+n2(lk �1)+ndli=2e arcs, constructed as follows:

� V (Dk) = sk [fri; j j 1 � i � n, 1 � j � lkg[ftkg
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� E(Dk) = E1[E2[E3, where

E1 = f(sk;ri;1 j 1 � i� n, (sk;ri) 2 E(G)g
E2 = f(ri; j ;ri0; j+1) j 1 � i; i0 � n, 1� j < lk,

(ri;ri0 ) 2 E(G)g
E3 = f(ri; j ;tk) j 1� i � n, 1 � j � lk,

j � ak(mod 2), (ri;tk) 2 E(G)g

Here, we assume that ak = 0 if it is even, and ak = 1 if it is odd. The
weight of each arc (x;y) in Dk equals w(x). Clearly, any path from sk
to tk in Dk visits at most lk buffers, and the number of visited buffers
has the parity prescribed by ak. Moreover,

Lemma 2 The shortest path from sk to tk in Dk contains at most one
edge of the form (ri; j;ri; j+1).

Proof. Suppose it contains two such edges. Then, by “sliding-up”
the path along the two edges we obtain a shorter path that visits two
fewer buffers and hence still has the right parity.

Notice also that, since Dk is acyclic, the shortest path connecting
sk to tk can be computed in O(jE(Dk)j) time.6

4 Rounding of Fractional MCF

In the previous section we presented an algorithm for approximat-
ing the optimum fractional multicommodity flow within any desired
accuracy. Since the total flow ft provides an upper bound on the
optimum integral multi-commodity flow, we will be able to con-
nect no more than ft source-sink pairs under the given capacity,
parity, and path-length constraints. In this section we show how
to use the fractional flow to obtain a valid routing that contains al-
most ft paths. The construction is based on the randomized round-
ing technique of Raghavan and Thomson [21] (see also [19]). For
k = 1; : : : ;K, let fk(e) denote the flow of commodity k routed along
arc e 2 E(Dk), fk(u) denote the flow of commodity k routed through
vertex u 2V (Dk), and fk = fk(sk) denote the total flow of commod-
ity k. Since the underlying graph is in our case directed and acyclic,
randomized rounding can be efficiently implemented as a random
walk; see Algorithm 2.

Algorithm 2: Randomized MCF rounding

Input: Flows fk(e) 2 [0;1], k = 1; : : : ;K, e 2 E(G) satisfying capacity
constraints
Output: Set P of paths connecting pairs (sk;tk)

1. For each k = 1; : : : ;K, with probability fk, do

// Find path from sk to tk using a random walk based on fk(e)’s

u sk

While u 6= tk do

Pick arc (u;v) with probability fk(u;v)= fk(u)
u v

Note that the set P of paths of the given graph G produced by the
randomized MCF rounding algorithm contains a path connecting the

6We have also considered the variant formulation where an overall cost bound B is
given, along with a weight bk for each source-destination pair (sk; tk). Define the cost of
a route to be “the number of used buffer sites, times the weight of the source-destination
pair”. Then, we would like to solve the problem of maximizing ∑p2P fp , subject to
the additional constraint that the total cost of all (fractional) routes is not more than
B. A variant of Algorithm 1 provably achieves a (1+ 8ε)-approximation for this Cost-
Constrained MFRVBB problem; we omit the details of this algorithm due to space
constraints.

kth source-sink pair with probability fk. Hence, P contains on aver-
age ∑K

i=1 fk = ft source-sink pairs. It is easy to see that the proba-
bility that node v is visited during the random walk for commodity k
is equal to fk(v). As suggested in [19] for the edge-capacitated case,
ensuring that no node capacities are exceeded can be accomplished
by solving a multicommodity flow problem with capacities scaled
down by a factor of 1� ε for a sufficiently small ε. Using Cher-
noff bounds on the sum of independent Bernoulli trials [21, 19] we
can prove that, with high probability, this method routes an almost
optimum number of nets without violating any node capacity:

Theorem 3 If c(v)� 5:2ln(4n) for every vertex v in the given graph
G, then, for any positive ε < (

p
5� 1)=2), jPj � (1� ε)2OPT with

probability of at least 1� 1
n �2e�0:38ε2OPT , where OPT is the opti-

mum number of routable nets.

In our experiments we have found that instead of scaling down
node capacities, it is preferable to use a simpler approach: repeatedly
drop the path in P that visits the most over-used nodes, until feasi-
bility is achieved. We will call this the greedy-deletion algorithm.

5 Implemented Algorithms

In this section we will describe all implemented algorithms for the
Global Buffering Problem. We first give a naive greedy algorithm
and then describe a full implemented version of the solution based
on the rounded approximate solution of the corresponding multicom-
modity flow. Finally, we describe a so-called 1-Shot heuristic which
tries to find an integer solution avoiding fractional relaxation.

Greedy Algorithm. If we just connect all source-sink pairs with
shortest paths, then we may greatly overuse the buffer resource and
obtain a non-feasible solution. If we make it feasible by using the
“negative” greedy algorithm from the previous section, some pairs
may still be routable afterward. We suggest a simpler algorithm
which obtains a maximal feasible solution, i.e., such that no discon-
nected pairs can be routed. The running time is O(KE) where K is
the number of source-sink pairs and E is the number of edges in the
graph G.

Algorithm 3: Greedy Routing Algorithm

Input: Graph G with the source-sink pairs (si;ti)
Output: Set of paths connecting pairs (sk;tk)

1. For each sink-source pair (si;ti) do

if there exists an (si� ti)-path satisfying parity and length
constraints

then �nd the shortest such path P and for each bu�er block r
on P decrease the capacity of r by 1 unit

if resulting capacity of r is 0, then delete r from the graph G

ε-MCFG Algorithm. The rounded ε-approximate solution for the
multi-commodity flow formulation will give us a feasible solution
for the Global Buffering Problem. Since the fractional relaxation is
solved only approximately, the rounded solution may be not maxi-
mal, i.e., some extra pairs can be routed. Experimental results below
show that the Greedy Algorithm applied on top of the rounded solu-
tion can significantly increase the number of routed nets.

The 1-Shot Heuristic. The approximation algorithm for frac-
tional multi-commodity flow uses a very simple increment of buffer
block weights used in the shortest (si;ti)-path. Intuitively, the weight
increment forces subsequently routed nets to avoid usage of these
buffer blocks. The idea of the 1-Shot heuristic is to apply that ap-
proach directly to the integer flow formulation. The resulting flow
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Algorithm 4: ε-MCF Algorithm with Greedy Enhancement
(ε-MCFG)

Input: Graph G with the source-sink pairs (si;ti)
Output: Set of paths connecting pairs (sk;tk)

1. Solve the Fractional MCF Problem with ε-approximation
Fleischer's algorithm (Algorithm 1)

2. Round the approximate fractional solution using random walk
algorithm (Algorithm 2)

3. Using the greedy-deletion algorithm �nd feasible integer
solution of Global Bu�ering Problem

4. Using Algorithm 3, augment the solution from step (3) to
obtain a maximal feasible solution.

may be infeasible due to overuse of some buffer blocks, therefore
we use the greedy-deletion algorithm to make it feasible. Finally we
apply the same greedy enhancement that we use in ε-MCFG (Algo-
rithm 4).

Algorithm 5: 1-Shot Heuristic

Input: Graph G with the source-sink pairs (si;ti)
Output: Set of paths connecting pairs (sk;tk)

1. Assign weight 1 to each bu�er block in the graph G.

2. While total overused capacity does not go down for 10
iteration do

For each i, �nd a shortest (si;ti)-path Pi in G

For each bu�er block r,

set w(r) = w(r) � (1+ cu(r)=c(r))

3. Using greedy-deletion algorithm �nd feasible solution of Global
Bu�ering Problem

4. Using Algorithm 3, augment the solution from step (3) to
obtain a maximal feasible solution.

6 Implementation Experience

6.1 Experimental setup

All experiments were conducted on an SGI Origin 2000 with 16
195MHz MIPS R10000 processors (only one of which is actually
used by the sequential implementations included in our comparison)
and 4GB of internal memory, running under IRIX 6.4 IP27. Timing
(reported in CPU seconds) was performed using low-level Unix in-
terval timers, under similar load conditions for all experiments. All
algorithms were coded in C and compiled using gcc version egcs-
2.90.27 with -O4 optimization.

The test instances used in our experiments were extracted from
the next-generation microprocessor chip at SGI. We used an opti-
mized floorplan of the circuit blocks and also optimized the location
of the source/sink pin locations based on coarse timing budgets. We
used U = 4000µm, and varied L between 500µm and 2000µm (for
L = 500µm the design is typically gate dominated, for L = 2000µm
the design tends to be totally wire dominated). Path-length upper
bounds were computed with the formula li = dist(sk;tk)/1000. In our
experiments, we used two different block capacities: 400, respec-
tively 50, buffers per block. The latter value heavily constrains the
routing – only a little over half of the nets can be routed – while the
former usually allows routing of all nets.

At very early stages of chip planning, where our work applies, it
is reasonable to consider a single repeater size (typically between
60x and 80x times minimum inverter, to give good energy-delay
product as well as global line delay [2]). This is reasonable since
delay is actually not very sensitive to either repeater size or repeater
location (within reasonable bounds), and since we are considering
very long global wires. Of course, source resistance and sink input
capacitance can be significantly different from those of the standard
repeater: to address this, shorter distances between source and the
first repeater, or longer distances between the sink and the last re-
peater, can be enforced by constructing a restricted set of graph G
edges incident to sources and sinks.

In all instances considered the number of nets was large (around
4000), and the number of buffer blocks small (50); such values are
typical for this application. Our implementation attempted to exploit
this particular structure of the problem for achieving practical MCF
running times. To our knowledge, MCF instances of this size have
never been solved before, neither exactly, using linear programming
methods [1, 4, 15], nor approximately [17, 10]. A key speed-up
idea was to keep individual directed acyclic graphs for each source-
sink pair. This allows shortest path computations to be performed on
graphs with no useless arcs (i.e., arcs leading into different sinks).
Although this representation introduces some redundancy – buffer
blocks and the arcs between them are now represented K times –
this representation still fits comfortably in the internal memory of a
workstation.

6.2 Results

Table 1 shows the number of routed nets and the running time re-
quired by each of the algorithms included in our comparison. Note
that the running time of ε-MCFR grows quadratically in 1=ε. As
proved in Section 3 and illustrated in Figure 1, the quality of the
fractional MCF depends linearly on ε, and this clearly affects the
quality of the integral solution obtained by rounding. Quite surpris-
ingly, however, this does not necessarily mean that we always need
to solve the fractional flow with very good precision. As shown in
Figure 1, running the Greedy routing algorithm starting from the so-
lution obtained by randomized rounding leads to almost the same
quality solutions for all values of ε.

It can be noted that the 1-Shot heuristic, which is only slightly
slower than the Greedy routing, gives significantly improved solu-
tions. On lightly constrained instances (block capacity of 400) the 1-
Shot heuristic almost matches the performance of ε�MCFG. How-
ever, on highly constrained instances ε�MCFG retains an advantage
over the 1-Shot heuristic, especially for small values of ε.

7 Conclusions and Future Directions

In this paper, we addressed the problem of how to perform buffering
of global nets given an existing buffer block plan. Assuming as in
[6, 25] that global nets have been already decomposed into two-pin
connections, we gave a provably good algorithm based on a recent
approach of Garg and Könemann [8] (see also [7]). Our method
routes connections using available buffer blocks, such that required
upper and lower bounds on buffer intervals – as well as wirelength
upper bounds per connection – are satisfied. Unlike [6, 25], our
model allows more than one buffer to be inserted into any given
connection. In addition, our algorithm observes buffer parity con-
straints, i.e., it will choose to use an inverter or a buffer (= co-located
pair of inverters) according to source and destination signal parity.
The algorithm outperforms an implementation of “greedy ripup and
reroute”, and has been validated on top-level layouts extracted from
a recent high-end microprocessor design. It gives very good results
on real-world test cases.

Our current research pursues several extensions of the MCF
based approach. Examples include the following. (1) We incorporate
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ID L U C K Greed 1-Shot ε-MCFG
ε = 0:16 ε = 0:08 ε = 0:04 ε = 0:02 ε = 0:01

i1 2000 4000 400 3962 3883 / 19.86 3960 / 33.92 3962 / 109.26 3962 / 292.48 3962 / 1118.79 3962 / 4412.43 3962 / 16239.83
i2 1000 4000 400 4191 4070 / 27.34 4186 / 38.28 4191 / 109.59 4191 / 345.35 4191 / 1298.24 4191 / 4912.63 4191 / 18835.71
i3 500 4000 400 4212 4101 / 28.79 4207 / 39.62 4212 / 107.09 4212 / 334.17 4212 / 1211.52 4212 / 4639.23 4212 / 17929.95
i4 2000 4000 50 3962 2148 / 19.77 2179 / 23.21 2325 / 074.55 2334 / 233.80 2339 / 850.85 2347 / 3293.29 2340 / 13106.98
i5 1000 4000 50 4191 2216 / 27.32 2236 / 34.23 2378 / 109.75 2369 / 295.99 2393 / 916.63 2394 / 3659.62 2392 / 14523.98
i6 500 4000 50 4212 2223 / 28.81 2232 / 36.14 2378 / 093.26 2382 / 274.63 2389 / 916.61 2392 / 3627.42 2394 / 15872.07

Table 1: Number of routed nets / running time for the implemented algorithms
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Figure 1: The benefit of running Greedy on top of rounded MCF on
instances i3 (a) and i6 (b)

more precise cost models for usage of buffer blocks. For example,
in a regime where power routing to buffer blocks is expensive, the
first time a given buffer block is used should incur fixed cost, while
second and subsequent uses (up to capacity of the station) each in-
cur marginal cost. (2) We would like to group source-sink pairs that
have a common source, so as to achieve Steiner routing solutions
for multi-pin nets. On each source-sink path, the repeater interval
constraint [L,U] would still hold. (3) With N-layer metal processes,
different wiring “tiers” (layer-pairs) have different performance at-
tributes. Thus, for example, the repeater interval would be between
2500-3000µm on M3-M4, and between 4000-5000µm on M7-M8.
We would like to solve the Global Buffering Problem when several
routing tiers are available (each with a certain capacity for pin-to-
buffer and buffer-to-buffer connections), and each connection must
be routed entirely on a single tier. (4) Finally, we believe that im-

proved solutions to the original buffer block planning (placement)
problem are still possible.
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