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Abstract 

Let P be a simple rectilinear polygon with n vertices, endowed with rectilinear metric. Let us assign to points 
Xl,..., xk E P positive weights ~1, . . . , wk. The median problem consists in the computing the point minimizing 
the total weighted distances to the given points. We present an 0 (n + k log n ) algorithm for solving this median 
problem. If all weighted points are vertices of a polygon P, then the running time becomes O(n + k). 
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1. Introduction 

Let P be a simple rectilinear polygon in the 
plane [w* (i.e., a simple polygon having all edges 
axis-parallel) with n edges. A rectilinear path 7c 
is a polygonal chain consisting of axis-parallel 
segments lying inside P. The length of the path 
71 in the &-metric is defined as the sum of the 
length of the segments n consists of. In other 
words, the length of a rectilinear path in the LI- 
metric is equal to its Euclidean length. For any 
two points u and v in P, the rectilinear distance 
between u and v, denoted by d (u, v ) , is defined 
as the length af the minimum length rectilinear 
path connecting u and v. The interval Z (u, v) 
between two points u, v consists of all points z 
between u and v, that is, 

Z(U,V) 

= {z E P: d(u,v) = d(u,z) + d(z,v)}. 

* Corresponding author. Email: chepoi(a)university. 
moldova.su. 

Now assume that points zl,. . . , zk of a polygon 
P have positive weights wl, . . . , wk, respectively. 
The total weighted distance of a point z in P is 
given by 

F(z) = 5wid(z,zi). 
i=l 

A point z of P minimizing this expression is 
a median of P respect to the weight function 
w, and the set of all medians is the median set 
Med, (P). By the median problem we will mean 
the problem of finding the median of a polygon 
P. If all the weighted points are vertices of P then 
we obtain the vertex-restricted median problem. 

In this paper we present an 0 (II + k) time 
algorithm for solving the vertex-restricted me- 
dian problem and an 0 (n + k log n ) time algo- 
rithm for the general problem. The median prob- 
lem in different classes of metric spaces has nu- 
merous applications, for example in facility loca- 
tion [ 13 ] and as a consensus procedure in group 
choice and cluster analysis [3,4]. On the other 
hand, linear time algorithms for finding medi- 
ans are known only for trees and space IWd with 
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rectilinear distance [ 9,131. These algorithms are 
mainly based on a well-known “majority rule” 
from the group choice [ 3,4]. Later similar algo- 
rithms have been developed for median graphs 
and discrete median spaces; see [ I,12 1. Unfor- 
tunately, although these algorithms use the lo- 
cal search and majority rule and avoid the di- 
rect computation of distances, their complexity 
and used storage depends on the time of prepro- 
cessing of a median graph. In this case the pre- 
processing is nothing else than the isometric em- 
bedding of a median graph into a hypercube and 
require more than linear time. We pay attention 
to these results since our algorithm is also based 
on a majority rule and on the fact that any sim- 
ple rectilinear polygon endowed with rectilinear 
distance is a median space. 

2. Median properties of a simple rectilinear 
polygon 

Recall that the metric space (X, d ) is a median 
space if every triple of points u, w , w E X admits 
a unique “median” point z, such that 

d(u,v) = d(u,z) + d(z,v), 

d(u,w) = d(u,z) + d(z,w), 

d(w,w) = d(v,z) + d(z,w). 

A basic example of a median space is the tree 
equipped with the standard graph-metric. For 
classical results on median spaces and their par- 
ticular instances (median semilattices, median 
algebras, median graphs and median normed 
spaces) the reader is referred to [2,11,14,15]. 
The subset M of a metric space (X, d ) is convex 
if for any points u, v E M and z E X the equal- 
ity d(u,z) + d(z,v) = d(u,v) implies that 
z E M. Recall also that the subset M is called 
gated [7], provided every point x E X admits 
a gate in A!, i.e. a point xM E M such that 
JIM E Z (x, y ) for all y E M. Any gated subset 
of a metric space is convex [7]. The converse 
holds for median spaces: 

Lemma 1. Any convex compact subset of a me- 
dian space is gated. 

About the proof of this and more general re- 
sults consult for example [ 14 1. The following re- 
sult is a well-known property of metric spaces; 
see [14]. 

Lemma 2. Zfx, y, z, v arepoints ofa metricspace 
(X,d) such that v E Z(x,y) and z E Z(x,v) 
then v E Z(z, y). 

An axis-parallel segment is called a cut seg- 
ment of a polygon P if it connects two edges of 
P and lies entirely inside P. Note that any edge 
or any cut segment of a polygon P is a convex 
subset of P. 

Lemma 3. A simple rectilinear polygon P 
equipped with rectilinear distance is a median 
space. 

Proof. We proceed by induction on the number 
of vertices of a polygon P. The statement is evi- 
dent for n = 4: for any points u, V, w of a rect- 
angle, the median of these points is a point p = 
(x,, yp ), where x, is the median of x-coordinates 
and yP is the median of y-coordinates of u, v 
and w. 

Now assume that n > 4 and let c be the cut 
segment of P with one end-point at the concave 
vertex of P. Then c cuts P into two rectilinear 
polygons P’ and P” with at most n - 1 vertices 
each. By induction assumption P’ and P” are 
median spaces. The segment c is a closed convex 
subset of each of these subpolygons. By Lemma 1 
c is a gated set in P’ and P”. Note also that P’ 
and P” are closed convex subsets of P. Let u, 
VJ and w be arbitrary points of P. If all these 
points belong to the same subpolygon P’ or P” 
then by induction hypothesis this triple has a 
unique median. So assume for example that u E 
P’ and V, w E PI’. Denote by uc the gate of u in 
c. Choose any point p E P”. Any shortest path 
from u to p intersects the cut c in some point 
u’. Since uc E Z(u, 21) and u’ E Z(u,p), then we 
immediately obtain that uc E Z (u,p ), i.e. uc is 
a gate for point u in the subpolygon P”. Let z 
be the median of points uc, v and w. Since uc E 
Z(u,v)nZ(u,w), zisamedianofpointsu,w,w 
too. Now assume that z+ is another median of 
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this triple. Since P” is convex and V, w E P” 
then z+ E P”. Further, since uc E Z(u, z+ ) then 
by Lemma 2 we conclude that z+ E Z ( uc, v ) n 
Z ( uc, w ). Therefore the triple uc, 21, w admits in 
P” two median points z and z + , in contradiction 
with our induction assumption. 0 

For any subpolygon PO of a polygon P put 

w(Po) = C&E& Wi. Then for any cut c and sub- 
polygons P’ and P” defined by this cut we have 

w(P’) + w(P”) = w(P) + w(c). 

Lemma 4 (Majority rule). Zf w (P’) > w (P”) 
then Med, (P ) c P’, otherwise if w (P’ ) = 
w (P” ) then Med, (P ) n c # 0. 

Proof. First assume that w (P’) > w (P”), how- 
ever the subpolygon P” contains a median point 
z. Let z, be the gate for z in P’. Since for any 
point zi E P’ we have d(z,zi) = d(z,z,) + 
d (z,, zi), we have 

F(z) - F(z,) 

i=l 

= C wid(z,zc) 

Z&P' 

ZiEP-P' 

a (w(P’) -w(P”))d(z,,z) > 0, 

in contradiction with our assumption. Now sup- 
pose that w (P' ) = w (P”) and choose any me- 
dian point z. Assume for example that z E P” 
and let z, be the gate of z in the subpolygon P’. 
As in the preceding case we obtain that 

F(z) - F(z,) 

2 d(z,,z)(w(P’) - w(P”)) = 0, 

i.e. z, E c is a median point too. 0 

3. Computing the median of P 

In this section an algorithm for solving the 
median problem in a simple rectilinear polygon 

Fig. 1. The tree associated to the partition of P. 

P is given. The algorithm is based on a Chazelle 
algorithm for computing all vertex-edge visi- 
ble pairs [ 5 ] and on a Goldman algorithm for 
finding the median of a tree [ 9 1. By first algo- 
rithm we obtain a decomposition of a polygon 
P into rectangles, using only horizontal cuts. 
The dual graph of this decomposition is a tree 
T(P) [ 51: vertices of this tree are the rect- 
angles and two vertices are adjacent in T(P) 
iff the corresponding rectangles in the decom- 
position are bounded by a common cut; see 
Fig. 1. Assign to each vertex of T(P) the weight 
of their rectangle. In order to compute these 
weights first we have to compute which rect- 
angles of the decomposition of P contain each 
of the weighted points. Using one of the opti- 
mal point location methods [&lo] this can be 
done in time 0 (k log n) with a structure that 
uses O(n) storage. Observe that the induced 
subdivision (decomposition) is monotone, and, 
hence, the point location structure can be built 
in linear time. Therefore the weights of vertices 
of a tree T(P) can be defined in total time 
0 (k log n + n). For the vertex-restricted me- 
dian problem this assignment takes 0 (~1 + k ) 
time. 

Now using the Goldman algorithm [9] com- 
pute the median v of a tree T(P). According to 
majority rule for trees the vertex TJ has the fol- 
lowing property. Let u be some adjacent to 21 
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vertex of T(P). Denote by T, and T,, the sub- 
trees obtained by deleting the edge (v, u ). Then 
w(T,) 3 w(T,) [9]. Now we retain to our 
polygon P. Let R (21) and R (u ) are rectangles of 
the subdivision of P which correspond to ver- 
tices VJ and u. These rectangles have a common 
part c* of a some horizontal cut c (it is possible 
that c* = c). Note that c* is a cut of polygon P. 
Let P, and Pu be the subpolygons defined by c* 
and let R(v) c PV and R(u) c P,,. All rectan- 
gles that correspond to vertices from T, lie in the 
subpolygon Pv. Hence w ( Pu ) B w (P,). Since 
such an inequality holds for all rectangles adja- 
cent to R (v ) and the rectangle R (V ) coincides 
with the intersection of the subpolygons of the 
type PV, then from Lemma 4 we conclude that 
Me&(P) n R(v) # 0. 

Finally, we concentrate on a finding of the 
median point from R (21). Assume that R (Y ) is 
bounded by the horizontal cuts c’ and c” of our 
decomposition. Let P’ and P” be the subpoly- 
gons of P defined by c’ and c” and disjoint with 
rectangle R (v ). In other words, P = P’U R ( TJ ) u 
P”. Now, for any weighted point zi we will find 
its gate gi in R (V ). Note that gi E C’ if zi E P’, 
gi E C” if zi E P” and gi = zi if zi E R(W). Fur- 
ther, define the maximal histograms H’ and H” 
inside P’ and P” with c’ and c” as their bases, 
respectively; see Fig. 2. (A histogram is a recti- 
linear polygon that has one distinguished edge, 
its base, whose length is equal to the sum of the 
lengths of the other edges that are parallel to it; 
see for example [ 61. ) The vertical edges of these 
histograms divide the polygons P’ and P” into 
subpolygons, called pockets. Consider for exam- 
ple the pockets from P’. Note that all points from 
the same pocket have one and the same gate. 
This is a point of a cut c’ which has the same X- 
coordinate with the cut that separates the pocket 
and histogram H’. Hence it is enough to find 
the location of weighted points into the pockets. 
This can be done using the partition of P’ and 
P” into rectangles by vertical vertex-edge visi- 
ble pairs. For any point zi E P’ U P” assign the 
weight Wi to its gate gi, the weights of points 
zi from R (w ) remain unchanged. As a result we 
obtain a median problem in the rectangle R ( v ) . 
Note that any solution of this problem is a solu- 
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Fig. 2. Histograms H and H’. 

tion of an initial median problem. To see this, 
observe that for any two points z’, z” E R ( VJ ) we 
have 

F(z’) - F(z”) 

= 6 Wi(d(Z', Zi) - d(Z", Zj)) 
i=l 

k 

i=l 

The new median problem on R (V ) may 
be solved by decomposing into two one- 
dimensional median problems and applying to 
them the Goldman algorithm [ 9 1. 

Summarizing the results of this section, we 
have the following theorem. 

Theorem 5. The median problem in the sim- 
ple rectilinear polygon can be solved in time 
0 (k log n + n ). The vertex-restricted median 
problem can be solved in 0 (n + k ) time. 
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