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Abstract. A spanning tree T of a graph G is called a tree t-spanner of G if the distance between
every pair of vertices in T is at most t times their distance in G. In this paper, we present an algorithm
which constructs for an n-vertex m-edge unweighted graph G:

– a tree (2blog2 nc)-spanner in O(m log n) time, if G is a chordal graph (i.e., every induced cycle
of G has length 3);

– a tree (2ρblog2 nc)-spanner in O(mn log2 n) time or a tree (12ρblog2 nc)-spanner in O(m log n)
time, if G is a graph admitting a Robertson-Seymour’s tree-decomposition with bags of radius
at most ρ in G; and

– a tree (2dt/2eblog2 nc)-spanner in O(mn log2 n) time or a tree (6tblog2 nc)-spanner in O(m log n)
time, if G is an arbitrary graph admitting a tree t-spanner.

For the latter result we use a new necessary condition for a graph to have a tree t-spanner: if a graph
G has a tree t-spanner, then G admits a Robertson-Seymour’s tree-decomposition with bags of radius
at most dt/2e and diameter at most t in G.

1 Introduction

Given a connected graph G and a spanning tree T of G, we say that T is a tree t-spanner of G
if the distance between every pair of vertices in T is at most t times their distance in G. The
parameter t is called the stretch (or stretch factor) of T . The tree t-spanner problem asks, given
a graph G and a positive number t, whether G admits a tree t-spanner. Note that the problem
of finding a tree t-spanner of G minimizing t is known in literature also as the Minimum Max-
Stretch spanning Tree problem (see, e.g., [27] and literature cited therein). This paper concerns
the tree t-spanner problem on unweighted graphs. The problem is known to be NP-complete
even for planar graphs and chordal graphs (see [10, 14, 28]), and the paper presents an efficient
algorithm which produces a tree t-spanner with t ≤ 2 log2 n for every n-vertex chordal graph and
a tree (2dt/2eblog2 nc)-spanner for an arbitrary n-vertex graph admitting a tree t-spanner. To
obtain the latter result, we show that every graph having a tree t-spanner admits a Robertson-
Seymour’s tree-decomposition with bags of radius at most dt/2e in G. This tree-decomposition
is a generalization of the well-known notion of a clique-tree of a chordal graph, and allows us to
extend our algorithm developed for chordal graphs to arbitrary graphs admitting tree t-spanners.

There are many applications of tree spanners in various areas. Tree spanners are useful in de-
signing approximation algorithms for combinatorial and algorithmic problems that are concerned
with distances in a finite metric space induced by a graph. An arbitrary metric space (in particu-
lar a finite metric defined by a graph) might not have enough structure to exploit algorithmically.
If we approximate the graph distances by the distances in a tree, we can solve the problem on



the tree and interpret the solution on the original graph. Tree spanners find applications also in
network design and, in particular, in the context of distributed systems. One such application is
the arrow distributed directory protocol introduced in [20]. This protocol supports the location of
mobile objects in a distributed network. It is implemented over a spanning tree T that spans the
network, and, as shown in [38], the worst case overhead ratio of the protocol is proportional to
the stretch of T . Therefore, a good candidate for the backbone of the arrow protocol is a spanning
tree with low stretch (see also [33]). Another application of tree spanners is in message routing in
communication networks. In order to maintain succinct routing tables, efficient routing schemes
can use only the edges of a tree spanner. A very efficient routing scheme is available for trees [42].
We refer to the survey paper of Peleg [37] for an overview on spanners and their applications.

Related work. Substantial work has been done on the tree t-spanner problem on unweighted
graphs. Cai and Corneil [14] have shown that, for a given graph G, the problem to decide whether
G has a tree t-spanner is NP-complete for any fixed t ≥ 4 and is linear time solvable for t = 1, 2
(the status of the case t = 3 is open for general graphs)1. The NP-completeness result was
further strengthened in [10] and [11], where Branstädt et al. showed that the problem remains
NP-complete even for the class of chordal graphs (i.e., for graphs where each induced cycle has
length 3) and every fixed t ≥ 4, and for the class of chordal bipartite graphs (i.e., for bipartite
graphs where each induced cycle has length 4) and every fixed t ≥ 5.

The tree t-spanner problem on planar graphs was studied in [28, 39]. In [39], Peleg and
Tendler presented a polynomial time algorithm for the minimum value of t for the tree t-
spanner problem on outerplanar graphs. In [28], Fekete and Kremer proved that the tree t-
spanner problem on planar graphs is NP-complete (when t is part of the input) and polynomial
time solvable for t = 3. They also gave a polynomial time algorithm that for every fixed t decides
for planar graphs with bounded face length whether there is a tree t-spanner. For fixed t ≥ 4,
the complexity of the tree t-spanner problem on arbitrary planar graphs was left as an open
problem in [28]. This open problem was recently resolved in [24], where it was shown that the
tree t-spanner problem is linear time solvable for every fixed constant t on the class of apex-
minor-free graphs which includes all planar graphs and all graphs of bounded genus. Note also that
a number of particular graph classes (like interval graphs, permutation graphs, asteroidal-triple–
free graphs, strongly chordal graphs, dually chordal graphs, and others) admit tree t-spanners for
small values of t (we refer reader to [9–11, 14, 24, 27, 28, 34, 35, 37–40] and papers cited therein).

An O(log n)-approximation algorithm for the minimum value of t for the tree t-spanner
problem is due to Emek and Peleg [27], and until recently that was the only O(log n)-approximation
algorithm available for the problem. Let G be an n-vertex m-edge unweighted graph and t∗ be
the minimum value such that a tree t∗-spanner exists for G. Emek and Peleg gave an algorithm
which produces for every G a tree (6t∗dlog2 ne)-spanner in O(mn log2 n) time. Furthermore, they
established that unless P = NP, the problem cannot be approximated additively by any o(n) term.
Hardness of approximation is established also in [35], where it was shown that approximating the
minimum value of t for the tree t-spanner problem within factor better than 2 is NP-hard
(see also [38] for an earlier result). Recently, another logarithmic approximation algorithm for the
tree t-spanner problem was announced in [5], but authors did not provide any details.

A number of papers have studied the related but easier problem of finding a spanning tree
with good average stretch factor (see [1, 2, 25] and papers cited therein). One should also mention

1 When G is an unweighted graph, t can be assumed to be an integer.
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paper of Elkin and Peleg [26] which describes an algorithm that, given a graph G admitting a
tree t-spanner, constructs a t-spanner of G with O(n log n) edges.

Our contribution. In this paper, we present a new algorithm which constructs for an n-vertex
m-edge unweighted graph G:

– a tree (2blog2 nc)-spanner in O(m log n) time, if G is a chordal graph;
– a tree (2ρblog2 nc)-spanner in O(mn log2 n) time or a tree (12ρblog2 nc)-spanner in O(m log n)

time, if G is a graph admitting a Robertson-Seymour’s tree-decomposition with bags of radius
at most ρ in G; and

– a tree (2dt/2eblog2 nc)-spanner in O(mn log2 n) time or a tree (6tblog2 nc)-spanner in O(m log n)
time, if G is an arbitrary graph admitting a tree t-spanner.

For the latter result we employ a new necessary condition for a graph to have a tree t-spanner: if
a graph G has a tree t-spanner, then G admits a Robertson-Seymour’s tree-decomposition with
bags of radius at most dt/2e and diameter at most t in G. The algorithm needs to know neither
an appropriate Robertson-Seymour’s tree-decomposition of G nor the true value of t. It works
directly on an input graph G.

A high-level description of our method is similar to that of [27], although the details are very
different. We find a ”small radius” balanced disk-separator of a graph G = (V, E), that is, a disk
Dr(v,G) of radius r and centered at vertex v such that removal of vertices of Dr(v, G) from G
leaves no connected component with more that n/2 vertices. We recursively build a spanning tree
for each graph formed by a connected component Gi of G[V \Dr(v, G)] with one additional vertex
v added to Gi to represent the disk Dr(v, G) and its adjacency relation to Gi. The spanning trees
generated by recursive invocations of the algorithm on each such graph are glued together at
vertex v and then the vertex v of the resulting tree is substituted with a single source shortest
path spanning tree of Dr(v,G) to produce a spanning tree T of G. Analysis of the algorithm
relies on an observation that the number of edges added to the unique path between vertices x
and y in T , where xy is an edge of G, on each of blog2 nc recursive levels is at most 2r.

Comparing with the algorithm of Emek and Peleg ([27]), one variant of our algorithm has
the same approximation ratio but a better run-time, other variant has the same run-time but a
better constant term in the approximation ratio.2 Our algorithm and its analysis, in our opinion,
are conceptually simpler due to a new necessary condition for a graph to have a tree t-spanner.

Outline of the paper. In Section 2, we present the basic notions and notations used throughout
the paper. As a warm up, in Section 3, we demonstrate our method on a simpler case, on the class
of chordal graphs. The result of this section is of independent interest as it demonstrates that
every chordal graph admits a logarithmic tree spanner, i.e., a tree t-spanner with t ≤ 2blog2 nc.
We complement this with a lower bound result which says that there are chordal graphs for which
any tree t-spanner has to have t ≥ log2

n
3 + 2. In Section 4, we extend our method to all graphs

admitting a Robertson-Seymour’s tree-decomposition with bags of radius at most ρ. Section 5 is
devoted to general (unweighted) graphs. We show there that any graph having a tree t-spanner
admits a Robertson-Seymour’s tree-decomposition with bags of radius at most dt/2e and diameter
at most t. Combining this with the result of Section 4, we obtain our approximation algorithms
for general graphs. Section 6 concludes the paper.
2 We realize that it is perfectly possible that the authors of [27] did not try to optimize the constants in their

analysis, and it may be the case that a more careful analysis of their algorithm may lead to an improved leading
constant.
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2 Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected, loopless and
without multiple edges. We call G = (V,E) an n-vertex m-edge graph if |V | = n and |E| = m.
A clique is a set of pairwise adjacent vertices of G. By G[S] we denote a subgraph of G induced
by vertices of S ⊆ V . Let also G \ S be the graph G[V \ S] (which is not necessarily connected).
A set S ⊆ V is called a separator of G if the graph G[V \ S] has more than one connected
component, and S is called a balanced separator of G if each connected component of G[V \ S]
has at most |V |/2 vertices. A set C ⊆ V is called a balanced clique-separator of G if C is both a
clique and a balanced separator of G. For a vertex v of G, the sets NG(v) = {w ∈ V : vw ∈ E}
and NG[v] = NG(v) ∪ {v} are called the open neighborhood and the closed neighborhood of v,
respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number of edges in the
path. The distance dG(u, v) between vertices u and v is the length of a shortest path connecting
u and v in G. The diameter in G of a set S ⊆ V is maxx,y∈S dG(x, y) and its radius in G is
minx∈V maxy∈S dG(x, y) (in some papers they are called the weak diameter and the weak radius
to indicate that the distances are measured in G not in G[S]). The disk of G of radius k centered
at vertex v is the set of all vertices at distance at most k to v: Dk(v, G) = {w ∈ V : dG(v, w) ≤ k}.
A disk Dk(v,G) is called a balanced disk-separator of G if the set Dk(v, G) is a balanced separator
of G.

Let G be a connected graph and t be a positive number. A spanning tree T of G is called a
tree t-spanner of G if the distance between every pair of vertices in T is at most t times their
distance in G, i.e., dT (x, y) ≤ t dG(x, y) for every pair of vertices x and y of G. It is easy to see
that the tree t-spanners can equivalently be defined as follows.

Proposition 1. Let G be a connected graph and t be a positive number. A spanning tree T of G
is a tree t-spanner of G if and only if for every edge xy of G, dT (x, y) ≤ t holds.

This proposition implies that the stretch of a spanning tree of a graph G is always obtained on
a pair of vertices that form an edge in G. Consequently, throughout this paper t can be considered
as an integer which is greater than 1 (if a graph G admits a tree t-spanner with t = 1 then G
itself must be a tree).

3 Tree spanners of chordal graphs

As we have mentioned earlier the tree t-spanner problem is NP-complete for every t ≥ 4 even
for the class of chordal graphs [10]. Recall that a graph G is called chordal if each induced cycle
of G has length 3. In this section, we show that every chordal graph with n vertices admits a tree
t-spanner with t ≤ 2 log2 n and that there are chordal graphs for which any tree t-spanner has to
have t ≥ log2

n
3 + 2.

3.1 Lower bound

We use the construction of ”bad” chordal graphs (so called snowflakes) presented in [34]. Let Cl

denote a simple cycle with l edges. A snowflake with one layer (denoted by SF1) is just a triangle
C3, i.e., an outerplanar graph whose outer face is C3. A snowflake with two layers (denoted by
SF2) is obtained from SF1 by adding, for each edge of the outer face C3 of SF1, a new vertex
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adjacent in SF2 only to endvertices of that edge. New vertices are placed in the outer face of SF1

to have a nice layered embedding of SF2 on the plane (see Fig. 1 for an illustration). Clearly, SF2

is an outerplanar graph with the outer face (second layer) being C6. Generally, a snowflake with
k layers, k ≥ 2, (denoted by SFk) is obtained from the outerplanar graph SFk−1 by adding, for
each edge of the outer face C3·2k−2 of SFk−1, a new vertex adjacent in SFk only to endvertices
of that edge. Again, all new vertices are placed in the outer face of SFk−1. Clearly, SFk is an
outerplanar graph with the outer face being C3·2k−1 .

Fig. 1. Left picture: snowflakes SF1, SF2 and SF3. Right picture: any tree t-spanner of SF3 has to have t ≥ 4.

Proposition 2. For every integer k ≥ 1, graph SFk is outerplanar and chordal, it has n = 3·2k−1

vertices and has no tree t-spanners with t < k + 1 = log2
n
3 + 2.

Proof. Clearly, SFk is an outerplanar graph with n = 3 · 2k−1 vertices (the number of vertices in
SFk is twice the number of vertices in SFk−1). SFk is a chordal graph (even a 2-tree) since it can
be constructed from an edge by repeatedly adding a new vertex and making it adjacent to two
old adjacent vertices (see survey [12] for details). Assume that SFk is naturally embedded on the
plane (see the construction above and Fig. 1). To show that the outerplanar graph SFk has no
tree t-spanners with t < k + 1, consider an arbitrary spanning tree T of SFk. Since T is a planar
graph with only the outer face, we can connect by a Jordan curve C a point in the outer face of
SFk with a point of the plane inside the central triangle of SFk (i.e., the triangle of SF1; see Fig.
1) without intersecting the tree T . Let 4 be the first non-outer face of SFk crossed by C and xy
be the edge of 4 crossed first. Clearly, for x and y, dT (x, y) ≥ k + 1 holds, while dG(x, y) = 1.
Thus, the stretch factor of T is at least k + 1. For an alternative proof of the fact that SFk has
no tree t-spanners with t < k + 1, see [34]. ut

3.2 Upper bound

We start with three lemmas that are crucial to our method.
Let G = (V, E) be an arbitrary connected graph with a clique-separator C, i.e., there is a clique

C ⊆ V in G such that the removal of the vertices of C from G results in a graph with more than
one connected component. Let G1, . . . , Gk be those connected components of G[V \ C]. Denote
by Si := {x ∈ V (Gi) : dG(x,C) = 1} the neighborhood of C with respect to Gi. Let also G+

i be
the graph obtained from component Gi by adding a vertex ci (representative of C) and making
it adjacent to all vertices of Si, i.e., for a vertex x ∈ V (Gi), cix ∈ E(G+

i ) if and only if there
is a vertex xC ∈ C with xxC ∈ E(G) (see Fig. 2 for an illustration). Clearly, given a connected
m-edge graph G and a clique-separator C of G, the graphs G+

1 , . . . , G+
k can be constructed in

total time O(m). Note also that the total number of edges in graphs G+
1 , . . . , G+

k does not exceed
the number of edges in G.
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Fig. 2. A graph G with a clique-separator C and the corresponding graphs G+
1 , . . . , G+

4 obtained from G.

Denote by G/e the graph obtained from G by contracting its edge e. Recall that edge e
contraction is an operation which removes e from G while simultaneously merging together the
two vertices e previously connected. If a contraction results in multiple edges, we delete duplicates
of an edge to stay within the class of simple graphs. The operation may be performed on a set of
edges by contracting each edge (in any order).

Lemma 1. If a graph G is chordal then G/e is chordal as well, for any edge e ∈ E(G). Conse-
quently, if a graph G is chordal then G+

i is chordal as well, for each i = 1, . . . , k.

Proof. Clearly, contracting any edge e in a chordal graph G cannot result in creating in G/e an
induced cycle with more than 3 vertices (otherwise, a similar induced cycle must be present in
G as well, which is impossible). We can get G+

i from G by repeatedly contracting (in any order)
edges of G that are not incident to vertices of Gi. ut

Let Ti (i = 1, . . . , k) be a spanning tree of G+
i such that for any edge xy ∈ E(G+

i ), dTi(x, y) ≤ α
holds, where α is some positive integer independent of i. We can form a spanning tree T of G
from trees T1, . . . , Tk and the vertices of the clique C in the following way. For each i = 1, . . . , k,
rename vertex ci in Ti to c. Glue trees T1, . . . , Tk together at vertex c obtaining a tree T ′ (see
Fig. 3). For the original clique C of G, pick an arbitrary vertex rC of C and create a spanning
star STC for C centered at rC . Substitute vertex c in T ′ by that star STC . For each former edge
xc of T ′, create an edge xxC in T where xC is a vertex of C adjacent to x in G. We can show that
for any edge xy ∈ E(G), dT (x, y) ≤ α + 2 holds. Evidently, the tree T of G can be constructed
from trees T1, . . . , Tk and the vertices of the clique C in O(m) time.

Lemma 2. Let G be an arbitrary graph with a clique-separator C and G+
1 , . . . , G+

k be the graphs
obtained from G as described above. Let also Ti (i ∈ {1, . . . , k}) be a spanning tree of the graph
G+

i , and T be a spanning tree of G constructed from T1, . . . , Tk and the clique C as described
above. Assume also that there is a positive integer α such that, for each i ∈ {1, . . . , k} and every
edge xy ∈ E(G+

i ), dTi(x, y) ≤ α holds. Then, for every edge xy ∈ E(G), dT (x, y) ≤ α + 2 must
hold.

Proof. Consider an arbitrary edge xy of G. If both x and y belong to C, then evidently dT (x, y) ≤
2 < α + 2. Assume now that xy is an edge of Gi for some i ∈ {1, . . . , k}. Then, xy is an edge of
G+

i and therefore dTi(x, y) ≤ α. If the path P of Ti connecting x and y does not contain vertex
ci, then dT (x, y) = dTi(x, y) ≤ α must hold. If ci is between x and y in Ti (i.e., ci ∈ P ), then the
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Fig. 3. Spanning trees T1, . . . , T4 of G+
1 , . . . , G+

4 , resulting tree T ′, and a corresponding spanning tree T of G.

distance in T between x and y is at most dTi(x, y)+2 (the path of T between x and y is obtained
from P by substituting the vertex c = ci by a path of star STC with at most 2 edges). It remains
to consider the case when x ∈ C and y ∈ V (Gi). By construction of G+

i , there must exist an edge
ciy in G+

i . We have dTi(ci, y) ≤ α. Let z be the neighbor of ci in the path of Ti connecting vertices
y and ci (y = z is possible). Evidently, z ∈ V (Gi). By construction, in T we must have an edge
zzc where zC is a vertex of C adjacent to z in G. Vertices x and zC both are in C and the distance
in T between them is at most 2. Thus, dT (x, y) ≤ dT (zC , y) + 2 = dTi(ci, y) + 2 ≤ α + 2. ut

The third important ingredient to our method is the famous chordal balanced separator result
of Gilbert, Rose, and Edenbrandt [31].

Lemma 3. [31] Every chordal graph G with n vertices and m edges contains a maximal clique
C such that if the vertices in C are deleted from G, every connected component in the graph
induced by any remaining vertices is of size at most n/2. Such a balanced clique-separator C of a
connected chordal graph G can be found in O(m) time.

Now let G = (V, E) be a connected chordal graph with n vertices and m edges. Using Lemma 1
and Lemma 3, we can build a (rooted) hierarchical-tree H(G) for G, which can be constructed as
follows. If G is a connected graph with at most 5 vertices or is a clique of size greater than 5, then
H(G) is a one node tree with root node (G, nil). Otherwise, find a balanced clique-separator C of
G (which exists by Lemma 3 and which can be found in O(m) time) and construct the associated
graphs G+

1 , . . . , G+
k . For each graph G+

i , i ∈ {1, . . . , k}, which is chordal by Lemma 1, construct
a hierarchical-tree H(G+

i ) recursively and build H(G) by taking the pair (G,C) to be the root
and connecting the root of each tree H(G+

i ) as a child of (G,C). The depth of this tree H(G) is
the smallest integer k such that

n

2k
+

1
2k−1

+ . . . +
1
2

+ 1 ≤ 5,

that is, the depth is at most log2 n− 1.
To build a tree t-spanner T of G, we use the hierarchical-tree H(G) and a bottom-up con-

struction. We know from Proposition 1 that a spanning tree T is a tree t-spanner of a graph G if
and only if for any edge xy of G, dT (x, y) ≤ t holds. For each leaf (L, nil) of H(G) (we know that
graph L is a clique or a connected chordal graph with at most 5 vertices), we construct a tree
2-spanner TL of L. It is easy to see that L admits such a tree 2-spanner. Hence, for any edge xy
of L, we have dTL

(x, y) ≤ 2. Consider now an inner node (H,K) of H(G), and assume that all its
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children H+
1 , . . . , H+

l in H(G) have tree α-spanners T1, . . . , Tl for some positive integer α. Then,
a tree (α + 2)-spanner of H can be constructed from T1, . . . , Tl and clique K of H as described
above (see Lemma 2 and paragraph before it). Since the depth of the hierarchical-tree H(G) is at
most log2 n− 1 and all leaves of H(G) admit tree 2-spanners, applying Lemma 2 repeatedly, we
will move from leaves to the root of H(G) and get a tree t-spanner T of G with t being no more
than 2 log2 n.

It is also easy to see that, given a chordal graph G with n vertices and m edges, a hierarchical-
tree H(G) as well as a tree t-spanner T of G with t ≤ 2 log2 n can be constructed in O(m log n)
total time since there are at most O(log n) levels in H(G) and one needs to do at most O(m)
operations per level.

Thus, we have the following result for the class of chordal graphs.

Theorem 1. Any connected chordal graph G with n vertices and m edges admits a tree (2blog2 nc)-
spanner constructible in O(m log n) time.

4 Tree spanners of generalized chordal graphs

It is known that the class of chordal graphs can be characterized in terms of existence of so-
called clique-trees. Let C(G) denote the family of maximal (by inclusion) cliques of a graph G. A
clique-tree CT (G) of G has the maximal cliques of G as its nodes, and for every vertex v of G,
the maximal cliques containing v form a subtree of CT (G).

Theorem 2. [13, 30, 43] A graph is chordal if and only if it has a clique-tree.

In their work on graph minors [41], Robertson and Seymour introduced the notion of tree-
decomposition which generalizes the notion of clique-tree. A tree-decomposition of a graph G is a
tree T (G) whose nodes, called bags, are subsets of V (G) such that:

(1)
⋃

X∈V (T (G)) X = V (G),
(2) for each edge vw ∈ E(G), there is a bag X ∈ V (T (G)) such that v, w ∈ X, and
(3) for each v ∈ V (G) the set of bags {X : X ∈ V (T (G)), v ∈ X} forms a subtree Tv(G) of T (G).

Tree-decompositions were used in defining at least two graph parameters. The tree-width of
a graph G is defined as minimum of maxX∈V (T (G)) |X| − 1 over all tree-decompositions T (G)
of G and is denoted by tw(G) [41]. The length of a tree-decomposition T (G) of a graph G is
maxX∈V (T (G)) maxu,v∈X dG(u, v), and the tree-length of G, denoted by tl(G), is the minimum of
the length, over all tree-decompositions of G [23]. These two graph parameters are not related
to each other. For instance, cliques (or, generally, all chordal graphs) have unbounded tree-width
and tree-length 1, whereas cycles have tree-width 2 and unbounded tree-length.

For the purpose of this paper, we introduce yet another graph parameter based on the notion
of tree-decomposition. It is very similar to the notion of tree-length but is more appropriate for our
discussions, and moreover it will lead to a better constant in our approximation ratio presented
in Section 5.1 for the tree t-spanner problem on general graphs.

Definition 1. The breadth of a tree-decomposition T (G) of a graph G is the minimum integer
k such that for every X ∈ V (T (G)) there is a vertex vX ∈ V (G) with X ⊆ Dk(vX , G) (i.e.,
each bag X has radius at most k in G). Note that vertex vX does not need to belong to X. The
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tree-breadth of G, denoted by tb(G), is the minimum of the breadth, over all tree-decompositions
of G. We say that a family of graphs G is of bounded tree-breadth, if there is a constant c such
that for each graph G from G, tb(G) ≤ c.

Evidently, for any graph G, 1 ≤ tb(G) ≤ tl(G) ≤ 2tb(G) holds. Hence, if one parameter is bounded
by a constant for a graph G then the other parameter is bounded for G as well.

In what follows, we will show that any graph G with tree-breadth tb(G) ≤ ρ admits a tree
(2ρblog2 nc)-spanner, thus generalizing the result for chordal graphs of Section 3 (if G is chordal
then tl(G) = tb(G) = 1). It is interesting to note that the tree t-spanner problem is NP-
complete for graphs of bounded tree-breadth (even for chordal graphs for every fixed t > 3; see
[10]), while it is polynomial time solvable for all graphs of bounded tree-width (see [40]).

First we present a balanced separator result.

Lemma 4. Every graph G with n vertices, m edges and with tree-breadth at most ρ contains a
vertex v such that if the vertices of disk Dρ(v, G) are deleted from G, every connected component
in the graph induced by any remaining vertices is of size at most n/2.

Proof. The proof of this lemma follows from acyclic hypergraph theory. First we review some
necessary definitions and an important result characterizing acyclic hypergraphs. Recall that a
hypergraph H is a pair H = (V, E) where V is a set of vertices and E is a set of non-empty subsets
of V called hyperedges. For these and other hypergraph notions see [7].

Let H = (V, E) be a hypergraph with the vertex set V and the hyperedge set E . For every
vertex v ∈ V , let E(v) = {e ∈ E : v ∈ e}. The 2–section graph 2SEC(H) of a hypergraph H
has V as its vertex set and two distinct vertices are adjacent in 2SEC(H) if and only if they are
contained in a common hyperedge of H. A hypergraph H is called conformal if every clique of
2SEC(H) is contained in a hyperedge e ∈ E , and a hypergraph H is called acyclic if there is a
tree T with node set E such that for all vertices v ∈ V , E(v) induces a subtree Tv of T . It is a
well-known fact (see, e.g., [3, 6, 7]) that a hypergraph H is acyclic if and only if H is conformal
and 2SEC(H) of H is a chordal graph.

Let now G be a graph with tb(G) = ρ and T (G) be its tree-decomposition of breadth ρ.
Evidently, property (3) in the definition of tree-decomposition can be restated as follows: the
hypergraph H = (V (G), {X : X ∈ V (T (G))}) is an acyclic hypergraph. Since each edge of G is
contained in at least one bag of T (G), the 2–section graph G∗ := 2SEC(H) of H is a chordal
supergraph of the graph G (each edge of G is an edge of G∗, but G∗ may have some extra edges
between non-adjacent vertices of G contained in a common bag of T (G)). By Lemma 3, the
chordal graph G∗ contains a balanced clique-separator C ⊆ V (G). By conformality of H, C must
be contained in a bag of T (G). Hence, there must exist a vertex v ∈ V (G) with C ⊆ Dρ(v,G). As
the removal of the vertices of C from G∗ leaves no connected component in G∗[V \C] with more
that n/2 vertices and since G∗ is a supergraph of G, clearly, the removal of the vertices of Dρ(v,G)
from G leaves no connected component in G[V \Dρ(v, G)] with more that n/2 vertices. ut

We do not need to know a tree-decomposition T (G) of breadth ρ to find such a balanced
disk-separator Dρ(v,G) of G. For a given graph G and an integer ρ, checking whether G has a
tree-decomposition of breadth ρ could be a hard problem. For example, while graphs with tree-
length 1 (as they are exactly the chordal graphs) can be recognized in linear time, the problem
of determining whether a given graph has tree-length at most λ is NP-complete for every fixed
λ > 1 (see [36]).
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Instead, we can use the following result.

Proposition 3. For an arbitrary graph G with n vertices and m edges a balanced disk-separator
Dr(v,G) with minimum r can be found in O(nm) time.

Proof. We need to show that for each vertex v of G a balanced disk-separator Dr(v, G) with
minimum r can be found in O(m) time. Then we can iterate over all vertices of G and find a
vertex v∗ whose Dr(v∗, G) has the smallest radius r.

Construct a layering L0, L1, . . . , Lq of G with respect to v, where Li = {u ∈ V : dG(v, u) = i},
i ∈ {0, 1, 2, . . . , q} and q := maxx∈V dG(v, x). Let G1

i , . . . , G
li
i be the connected components of

the graph G[V \ Di−1(v, G)], i ∈ {1, 2, . . . , q}. Let also nj
i := |V (Gj

i )|, i ∈ {1, 2, . . . , q} and
j ∈ {1, 2, . . . , li}. We need to find the smallest r such that all nj

r+1, j ∈ {1, 2, . . . , lr+1} are less
than or equal to n/2, and for some j ∈ {1, 2, . . . , lr}, nj

r is larger than n/2. All we need is to
iteratively compute values nj

i starting with i = q and ending with i = r. For this we can use
the following simple procedure (which needs to work on a copy of the original graph G since the
input graph gets modified during the procedure).

Initially, mult(x) := 1 for each vertex x of G; /* multiplicity of a vertex is set to 1 */

Compute connected components Ĝ1
q, . . . , Ĝ

lq
q of the graph G[Lq] = G[V \Dq−1(v, G)];

Compute the corresponding cardinalities nj
q := |V (Ĝj

q)| = |V (Gj
q)|, j ∈ {1, 2, . . . , lq};

For i = q downto 1 do
If for all j ∈ {1, 2, . . . , li}, nj

i ≤ n/2

Change G by contracting in G each component Ĝj
i to a vertex aj

i , j = 1, 2, . . . , li;
Define the multiplicity of aj

i as mult(aj
i ) := nj

i ;

Set L̂i−1 := Li−1 ∪ {a1
i , . . . , a

li
i };

Compute the connected components Ĝ1
i−1, . . . , Ĝ

li−1
i−1 of the graph G[L̂i−1];

Set nj
i−1 :=

∑
x∈V (Ĝ

j
i−1)

mult(x), j ∈ {1, 2, . . . , li−1};
Else output i− 1.

Clearly, for each vertex v of G, this method finds in linear O(m) time a balanced disk-separator
Dr(v,G) with minimum r. ut

Now let G = (V, E) be an arbitrary connected n-vertex m-edge graph with a disk-separator
Dr(v,G). As in the case of chordal graphs, let G1, . . . , Gk be the connected components of G[V \
Dr(v,G)]. Denote by Si := {x ∈ V (Gi) : dG(x,Dr(v, G)) = 1} the neighborhood of Dr(v,G)
with respect to Gi. Let also G+

i be the graph obtained from component Gi by adding a vertex
vi (representative of Dr(v, G)) and making it adjacent to all vertices of Si, i.e., for a vertex
x ∈ V (Gi), vix ∈ E(G+

i ) if and only if there is a vertex xD ∈ Dr(v, G) with xxD ∈ E(G). Given
graph G and its disk-separator Dr(v, G), the graphs G+

1 , . . . , G+
k can be constructed in total time

O(m). Furthermore, the total number of edges in the graphs G+
1 , . . . , G+

k does not exceed the
number of edges in G, and the total number of vertices in those graphs does not exceed the
number of vertices in G[V \Dr(v, G)] plus k.

Let again G/e be the graph obtained from G by contracting its edge e.

Lemma 5. For any graph G and its edge e, tb(G) ≤ ρ implies tb(G/e) ≤ ρ. Consequently, for
any graph G with tb(G) ≤ ρ, tb(G+

i ) ≤ ρ holds for each i = 1, . . . , k.

Proof. Let G be a graph with tb(G) = ρ and T (G) be its tree-decomposition of breadth ρ. Let
e = xy be an arbitrary edge of G. We can obtain a tree-decomposition T (G/e) of graph G/e by
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replacing in each bag X ∈ V (T (G)) vertices x and y with a new vertex x′ representing them
(if some bag A contained both x and y, only one copy of x′ is kept). Evidently, properties (1)
and (2) in the definition of tree-decomposition are fulfilled for T (G/e). Furthermore, the topology
of the tree-decomposition did not really change. Still, for any vertex v 6= x′ of G/e, the bags of
T (G/e) containing v form a subtree in T (G/e). Since vertices x and y were adjacent in G, there
was a bag A of T (G) containing both those vertices. Hence, a subtree of T (G/e) formed by bags
of T (G/e) containing vertex x′ is nothing else but the union of two subtrees (one for x and one
for y) of T (G) sharing at least one common bag A. Also, contracting an edge can only reduce the
distances in a graph. Hence, still, for each bag B of T (G/e), there must exists a corresponding
vertex b in G/e with B ⊆ Dρ(b,G/e).

We can get G+
i from G again by repeatedly contracting (in any order) edges of G that are

not incident to vertices of Gi. ut
As in Section 3, let Ti (i = 1, . . . , k) be a spanning tree of G+

i such that for any edge xy ∈
E(G+

i ), dTi(x, y) ≤ α holds, where α is some positive integer independent of i. For the disk
Dr(v,G) of G, construct a shortest path tree SPTD rooted at vertex v (and spanning all and only
the vertices of the disk). We can form a spanning tree T of G from trees T1, . . . , Tk and SPTD

in the following way. For each i = 1, . . . , k, rename vertex vi in Ti to v. Glue trees T1, . . . , Tk

together at vertex v obtaining a tree T ′ (consult with Fig. 3). Substitute vertex v in T ′ by the
tree SPTD. For each former edge xv of T ′, create an edge xxD in T where xD is a vertex of
Dr(v,G) adjacent to x in G. We can show that for any edge xy ∈ E(G), dT (x, y) ≤ α + 2r holds.
Evidently, the tree T of G can be constructed from trees T1, . . . , Tk and SPTD in O(m) time.

Lemma 6. Let G be an arbitrary graph with a disk-separator Dr(v, G) and G+
1 , . . . , G+

k be the
graphs obtained from G as described above. Let also Ti (i ∈ {1, . . . , k}) be a spanning tree of the
graph G+

i , and T be a spanning tree of G constructed from T1, . . . , Tk and a shortest path tree
SPTD of the disk Dr(v,G) as described above. Assume also that there is a positive integer α such
that, for each i ∈ {1, . . . , k} and every edge xy ∈ E(G+

i ), dTi(x, y) ≤ α holds. Then, for every
edge xy ∈ E(G), dT (x, y) ≤ α + 2r must hold.

Proof. The proof is done along the lines of the proof of Lemma 2. Consider an arbitrary edge xy
of G. If both x and y belong to Dr(v, G), then evidently dT (x, y) ≤ 2r < α+2r. Assume now that
xy is an edge of Gi for some i ∈ {1, . . . , k}. Then, xy is an edge of G+

i and therefore dTi(x, y) ≤ α.
If the path P of Ti connecting x and y does not contain vertex vi, then dT (x, y) = dTi(x, y) ≤ α
must hold. If vi is between x and y in Ti (i.e., vi ∈ P ), then the distance in T between x and
y is at most dTi(x, y) + 2r (the path of T between x and y is obtained from P by substituting
the vertex v = vi by a path of tree SPTD with at most 2r edges). It remains to consider the
case when x ∈ Dr(v, G) and y ∈ V (Gi) (see Fig. 4 for an illustration). By construction of
G+

i , there must exist an edge viy in G+
i . We have dTi(vi, y) ≤ α. Let z be the neighbor of vi

in the path of Ti connecting vertices y and vi (y = z is possible). Evidently, z ∈ V (Gi). By
construction, we must have in T an edge zzD where zD is a vertex of Dr(v,G) adjacent to z in
G. Vertices x and zD both are in Dr(v,G) and the distance in T between them is at most 2r.
Thus, dT (x, y) ≤ dT (zD, y) + 2r = dTi(vi, y) + 2r ≤ α + 2r. ut

Now we have all necessary ingredients to apply the technique used in Section 3 and show that
each graph G admits a tree (2tb(G)blog2 nc)-spanner.

Let G = (V, E) be a connected n-vertex, m-edge graph and assume that tb(G) ≤ ρ. Lemma
4 guaranties that G has a balanced disk-separator Dr(v, G) with r ≤ ρ. Proposition 3 says that

11



Fig. 4. Illustration to the proof of Lemma 6.

such a balanced disk-separator Dr(v,G) of G can be found in O(nm) time by an algorithm that
works directly on graph G and does not require the construction of a tree-decomposition of G of
breadth ≤ ρ. Using this and Lemma 5, we can build as before a (rooted) hierarchical-tree H(G)
for G. Only now, the leaves of H(G) are connected graphs with at most 9 vertices. It is not hard
to see that any leaf of H(G) has a tree t-spanner with t ≤ 4ρ. Furthermore, a simple analysis
shows that the depth of this tree H(G) is at most log2 n− 2.

To build a tree t-spanner T of G, we again use the hierarchical-tree H(G) and a bottom-up
construction. Each leaf (L, nil) of H(G) has a tree (4ρ)-spanner. A tree t-spanner with minimum
t of such a small graph L can be computed directly. Consider now an inner node (H, Dr(v,G))
of H(G) (where Dr(v,G) is a balanced disk-separator of H), and assume that all its children
H+

1 , . . . ,H+
l in H(G) have tree α-spanners T1, . . . , Tl for some positive integer α. Then, a tree

(α + 2r)-spanner of H can be constructed from T1, . . . , Tl and a shortest path tree SPTD of the
disk Dr(v,G) as described above (see Lemma 6 and paragraph before it). Since the depth of
the hierarchical-tree H(G) is at most log2 n− 2 and all leaves of H(G) admit tree (4ρ)-spanners,
applying Lemma 6 repeatedly, we move from leaves to the root ofH(G) and get a tree t-spanner T
of G with t being no more than 2ρ log2 n. It is also easy to see that, given a graph G with n vertices
and m edges, a hierarchical-tree H(G) as well as a tree t-spanner T of G with t ≤ 2tb(G) log2 n
can be constructed in O(nm log2 n) total time. There are at most O(log n) levels in H(G), and
one needs to do at most O(nm log n) operations per level since the total number of edges in the
graphs of each level is at most m and the total number of vertices in those graphs can not exceed
O(n log n).

Here is a summarized recursive version of our algorithm. G is an arbitrary input graph.

Tree Spanner(G)
If G has at most 9 vertices

Find a tree t-spanner T of G with minimum t directly;
Output T .

Else
Find a balanced disk-separator Dr(v, G) of G with minimum r (see Proposition 3);
Find connected components G1, . . . , Gk of graph G[V \Dr(v, G)];
Build graphs G+

1 , . . . , G+
k as described before Lemma 5;

Set Ti :=Tree Spanner(G+
i ), for each i = 1, . . . , k;

Construct a shortest path tree SPTD of G[Dr(v, G)] rooted at vertex v;
Construct a spanning tree T of G from trees T1, . . . , Tk and SPTD as described before Lemma 6;
Output T .
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Note that the algorithm does not need to know the value of tb(G), neither it needs to know
any appropriate Robertson-Seymour’s tree-decomposition of G. It works directly on an input
graph. To indicate this, we say that the algorithm constructs an appropriate tree spanner from
scratch.

Thus, we have the following results.

Theorem 3. There is an algorithm that for an arbitrary connected graph G with n vertices and
m edges constructs a tree (2tb(G)blog2 nc)-spanner of G in O(nm log2 n) total time.

Corollary 1. Any connected n-vertex, m-edge graph G with tb(G) ≤ ρ admits a tree (2ρblog2 nc)-
spanner constructible in O(nm log2 n) time from scratch.

Corollary 2. Any connected n-vertex, m-edge graph G with tl(G) ≤ λ admits a tree (2λblog2 nc)-
spanner constructible in O(nm log2 n) time from scratch.

There is another natural generalization of chordal graphs. A graph G is called k-chordal if its
largest induced cycle has length at most k. Chordal graphs are exactly 3-chordal graphs. It was
shown in [29] that every k-chordal graph has tree-length at most k/2. Thus, we have one more
corollary.

Corollary 3. Any connected n-vertex, m-edge k-chordal graph G admits a tree (2bk/2cblog2 nc)-
spanner constructible in O(nm log2 n) time from scratch.

5 Approximating tree t-spanners of general graphs

In this section, we show that the results obtained for tree t-spanners of generalized chordal graphs
lead to an approximation algorithm for the tree t-spanner problem on general (unweighted)
graphs.

5.1 Graphs admitting tree t-spanners have tree-breadth at most dt/2e
Here, we show that every graph G admitting a tree t-spanner has tree-breadth at most dt/2e.
From this and Theorem 3 it will follow that there is an algorithm which produces for every n-
vertex and m-edge graph G a tree (2dt/2eblog2 nc)-spanner in O(nm log2 n) time, whenever G
admits a tree t-spanner. The algorithm does not even need to know the true value of t.

Fig. 5. From tree T to tree-decomposition T with t = 2.
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Lemma 7. If a graph G admits a tree t-spanner then its tree-breadth is at most dt/2e.

Proof. Let T be a tree t-spanner of G. We can transform this tree T to a tree-decomposition T of
G by expanding each vertex x in T to a bag X and putting all vertices of disk Ddt/2e(x, T ) into
that bag (note that the disk here is considered in T ; see Fig. 5 for an illustration). The edges of
T and of T are identical: XY is an edge in T if and only if xy ∈ E(T ), where X is a bag that
replaced vertex x in T and Y is a bag that replaced vertex y in T . Since dG(u, v) ≤ dT (u, v) for
every pair of vertices u and v of G, we know that every bag X := Ddt/2e(x, T ) is contained in a
disk Ddt/2e(x,G) of G. Thus, it remains to show that all three properties of tree-decomposition
are fulfilled for T .

Evidently, every vertex x of G is in at least one bag of T . Consider an arbitrary edge uv of
G. Since T is a tree t-spanner of G, dT (u, v) ≤ t holds. Let x be a middle vertex of the path
connecting vertices u and v in T . Then, both u and v belong to the disk Ddt/2e(x, T ), i.e, there
is a bag X = Ddt/2e(x, T ) containing u and v. For a vertex v ∈ V (G) consider the set of all bags
{Xi = Ddt/2e(xi, T ) : i = 1, 2, . . . , l} of T containing vertex v. This set of bags induces a subtree
in T since the corresponding vertices x1, . . . , xl induce a subtree in T . Note that v ∈ Xi if and
only if dT (v, xi) ≤ dt/2e. ut

Combining Lemma 7 with Theorem 3 we get our main result.

Theorem 4. There is an algorithm that for an arbitrary connected graph G with n vertices and
m edges constructs a tree (2dt/2eblog2 nc)-spanner in O(nm log2 n) time, whenever G admits a
tree t-spanner.

5.2 Improving run-time on expense of approximation ratio

The complexity of our algorithm is dominated by the complexity of finding a balanced disk-
separator Dr(v, G) of a graph G with minimum r. Proposition 3 says that for an n-vertex,
m-edge graph such a balanced disk-separator can be found in O(nm) time. In this subsection,
we show that a balanced disk-separator with a slightly larger radius can be found in linear O(m)
time. This will immediately lead to an O(m log n) algorithm (as in the case of chordal graphs;
see Section 3), which produces for every graph G a tree (6tblog2 nc)-spanner, whenever G admits
a tree t-spanner.

We will need the notion of layering partition introduced in papers [9, 15] and recently used in
a slightly more general form in both approximation algorithms for embedding graph metric into
trees [4, 5, 18] as well as in some other similar contexts [16–19, 22, 23].

Let G = (V,E) be a connected graph with n vertices and m edges and with a distinguished
vertex s. Consider a layering L0, L1, . . . , Lq of G with respect to s, where Li = {u ∈ V : dG(s, u) =
i}, i ∈ {0, 1, 2, . . . , q} and q := maxx∈V dG(s, x). A layering partition LP (s) = {L1

i , . . . , L
pi
i : i =

0, 1, 2, . . . , q} of G is a partition of each Li into clusters L1
i , . . . , L

pi
i such that two vertices u, v ∈ Li

belong to the same cluster Lj
i if and only if they can be connected by a path outside the disk

Di−1(s,G). It was shown in [15] that for a given graph G such a layering partition can be found
in O(m) time. Let Γ be a graph whose vertex set is the set of all clusters Lj

i in a layering partition
LP of G. Two vertices C = Lj

i and C ′ = Lj′
i′ are adjacent in Γ if and only if there exist u ∈ Lj

i

and v ∈ Lj′
i′ such that u and v are adjacent in G (see Fig. 6). It was shown in [15] that Γ is a

tree, called the layering tree of G, and that Γ is computable in linear time in the size of G.
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Fig. 6. A layering partition of G and the tree Γ associated with this layering partition.

Let assign to each vertex Lj
i of Γ a weight wj

i := |Lj
i |. Clearly, W :=

∑
i=0,1,2,...,q,j=1,2,...,pi

wj
i

is equal to n. It is known that every vertex-weighted tree T with the total weight of vertices equal
to W has a vertex x, called a median of T , such that the total weight of vertices in each subtree
of T \ {x} does not exceed W/2. Furthermore, such a vertex x of T can be found in O(|V (T )|)
time [32]. Let C = Lj

i (i ∈ {0, 1, 2, . . . , q}, j ∈ {1, 2, . . . , pi}) be a median vertex of weighted tree
Γ . Then, each subtree of Γ \ {C} has total weight of vertices not exceeding n/2. It is clear from
the construction of tree Γ that the set C separates in G any two vertices that belong to clusters
from different subtrees of Γ \{C}. Consequently, C is a balanced separator of G as any connected
component of G[V \C] has no more than n/2 vertices. Note that, given a graph G, such a cluster
C of a layering partition LP of G can be found in linear time in the size of G.

We show now that if graph G has tree-breadth ρ then there is a vertex v in G such that
C ⊆ D3ρ(v,G).

Lemma 8. If a graph G has tree-breadth ρ then for any cluster C of a layering partition LP of
G there exists a vertex vC ∈ V (G) such that C ⊆ D3ρ(vC , G).

Proof. The proof is analogous to the proof of a similar result for graphs with tree-length λ (see
[22], Lemma 5). Let T be a tree-decomposition of G with breadth ρ. It is known [21] that if
X1X2 is an edge of a tree-decomposition T of G, and T1, T2 are the subtrees of T obtained after
removing edge X1X2 from T , then I = X1 ∩X2 separates in G vertices belonging to bags of T1

but not to I from vertices belonging to bags of T2 but not to I. We will need this property of a
tree-decomposition below.

Assume that T is rooted at a bag containing vertex s, the source of layering partition LP .
Let C be a cluster from layer Li (i.e, C = Lj

i for some j ∈ {1, 2, . . . , pi}). We have dG(x, s) = i
for every x ∈ C. Let Z be the nearest common ancestor of all bags of T containing vertices of C.
Let z be a vertex of G such that Z ⊆ Dρ(z,G).

Consider an arbitrary vertex x of C. It is easy to see that there is a vertex y ∈ C and two
bags X and Y of T containing vertices x and y, respectively, such that Z = NCAT (X, Y ) (i.e.,
Z is the nearest common ancestor of X and Y in T ; see Fig. 7). Let P be a shortest path of G
from s to x. Necessarily, P intersects Z. Let a be a vertex of P ∩Z closest to s in G. Since x and
y both are in C, there exists a path Q from x to y in G using only intermediate vertices w with
dG(w, s) ≥ i. Assume Q intersects Z at vertex b. We have dG(s, x) = i = dG(s, a) + dG(a, x) and
i ≤ dG(s, b) ≤ dG(s, a) + dG(a, z) + dG(z, b) ≤ dG(s, a) + 2ρ. Hence, dG(a, x) = i− dG(s, a) ≤ 2ρ
and therefore dG(x, z) ≤ dG(x, a) + dG(a, z) ≤ 2ρ + ρ = 3ρ.

Thus, any vertex x of C is at distance at most 3ρ from z in G, i.e., C ⊆ D3ρ(z,G). ut
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Fig. 7. Illustration to the proof of Lemma 8.

Given a cluster C of a layering partition of G, although we know that a vertex vC ∈ V (G)
exists such that C ⊆ D3ρ(vC , G), we do not currently know how to find vC in O(m) time. Instead,
we can consider any vertex v of C and use D6ρ(v,G) as a ”small radius” balanced disk-separator
of G. Clearly, C ⊆ D6ρ(v,G) and therefore D6ρ(v, G) is a balanced disk-separator of G.

Corollary 4. There is an algorithm that for an arbitrary connected graph G with n vertices and
m edges finds a balanced disk-separator D6ρ(v, G) of G in linear O(m) time, where ρ = tb(G).

As a consequence, we have the following variant of Theorem 3.

Theorem 5. There is an algorithm that for an arbitrary connected graph G with n vertices and
m edges constructs a tree (12tb(G)blog2 nc)-spanner of G in O(m log n) total time.

This theorem already implies that there is an algorithm that for an arbitrary connected graph
G with n vertices and m edges constructs a tree (12dt/2eblog2 nc)-spanner in O(m log n) time,
whenever G admits a tree t-spanner. But, if we decided to use an arbitrary vertex v of C as the
center of a balanced disk-separator, we can get a similar (even slightly better for odd ts) result
using just notions of tree-length and t-powers of trees. We can prove the following result.

Theorem 6. There is an algorithm that for an arbitrary connected graph G with n vertices and
m edges constructs a tree (6tblog2 nc)-spanner in O(m log n) time, whenever G admits a tree
t-spanner.

Proof. First, we can show that if G = (V,E) admits a tree t-spanner, then the tree-length of G
is at most t. Indeed, let T be a tree t-spanner of G. The t-power T t of T is a graph obtained
from T by adding to T all new edges between vertices at distance at most t in T , i.e., for each
x, y ∈ V , xy ∈ E(T t) if and only if dT (x, y) ≤ t. Since T is a tree t-spanner of G, i.e., dT (x, y) ≤ t
for every edge xy of G, G is a spanning subgraph of T t. It is known that any power of a tree is
a chordal graph (see, e.g., [12]). Consequently, T t is chordal and has a clique-tree (see Theorem
2). This clique-tree of T t gives a tree-decomposition of G. Each bag of that tree-decomposition
forms a clique in T t and, therefore, is a set of vertices S ⊆ V such that dG(x, y) ≤ dT (x, y) ≤ t
for every x, y ∈ S. Thus, tl(G) ≤ t.

Second, it was proven in [22] that if tl(G) ≤ t, then for any cluster C of a layering partition
LP of G and every two vertices x, y ∈ C, dG(x, y) ≤ 3t holds. Hence, for any vertex v ∈ C,

16



C ⊆ D3t(v,G). Moreover, given G, we can find a balanced disk-separator D3t(v, G) of G in total
O(m) time (see the discussion before Lemma 8).

Third, it is easy to see that if tl(G) ≤ t then tl(G/e) ≤ t for any edge e of G (see the proof of
Lemma 5).

Consequently, these facts together with Lemma 6, plugged into our method, prove the theorem.
ut

6 Concluding remarks

In this paper, we examined the tree t-spanner problem on chordal graphs, generalized chordal
graphs and general graphs. Using a graph decomposition technique based on balanced disk-
separators, we developed an algorithm which produces for any input unweighted graph a tree
t-spanner with t close to minimum.

We conclude the paper with some problems for future research.
1. Investigate graphs with bounded tree-breadth. A better structural understanding may lead to

a better approximation algorithm for the tree t-spanner problem. Is o(log n)-approximation
algorithm for the tree t-spanner problem achievable?

2. Characterize and recognize graphs with tree-breadth 1 (with tree-breadth at most ρ).
3. Get faster algorithms for finding a ”small radius” balanced disk-separator of a graph. Can a

balanced disk-separator with minimum radius be found in o(nm) time (in O(m) time)?
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