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Spanning Trees, Tree Covers and 
Spanners

• Consider a weighted connected graph G=(V, E, w), where w:E→R assigns a 
nonnegative weight w(e) to each edge e, representing its length. In the 
following we only consider unweighted graphs. We omit the weight function 
w. For each edge of the graph, we assume its weight as 1.

• Definition Given a graph G=(V, E, w) and a spanning subgraph G’=(V, E’) of 
G such that E’⊆E, we define the following parameters. For a distinguished 
root vertex r0∈V, define the root-stretch (or simply the stretch) of G’ with 
respect to r0 as
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The stretch factor of G’ is
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Relevant Parameters

• Sparsity measures Usually stretch factor is not enough. We also need 
the sparsity of the spanner G’=(V’, E’). In an unweighted graph, it’s 
the size of the spanner G’, which is simply the number of edges it 
contains, |E’|. The second measure is its total weight.

• Size and Girth Girth of a graph G is its minimum unweighted length 
of a cycel in G. We have the following lemma. 
Lemma 15.1.2 1. For every integer r≥3 and n-vertex, m-edge graph 
G=(V, E) with Girth(G)≥r, m≤n1+2/(r-2)+n.
2. For every integer r≥3, there exist (infinitly many) n-vertex, m-edge 
graph G=(V, E) with Girth(G)≥r and m≥1/4*n1+1/r
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Spanning Trees

• Definition 15.2.1 The shortest path spanning tree, or SPT, 
of G with respect to a given root r0 is a spanning tree TS
with the property that for every other vertex v≠r0, the path 
leading from r0 to v in the tree is the shortest possible, or 
in other words, Stretch(TS, r0)=1

• Controlling Tree Degrees Another parameter of revelance 
to skeletal representations involves vertex degrees. We 
define {∆(G)=max
(degG(v)}, ∀x∈V. We want this parameter to be as small as 
possible.
Given a tree T we run TREE_EMBED algorithm to 
construct its virtual tree S

Spanning Trees (cont.)

• Theorem 15.2.2 For any rooted weighted tree T and 
integer m≥2, the embedded virtual tree S constructed by 
Algorithm TREE_EMBED satisfies the following 
properties.
(1) ∆(S)≤2m,
(2) each edge of S corresponds to a path of length at most 
two in T, and
(3) DepthS(v)≤(2logm∆(T)-1)⋅DepthT(v) for every vertex v.
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Spanning Tree (cont.)

For every vertex v in the tree T do:
1. Let d0 be v’s degree.

Let v’s children be v0, ⋅⋅⋅ , vd0-1 ordered in non decreasing      
order of depth.

2. For every 0≤i≤m-1 do:
Make v the parent of vi in the tree S, just as in T.

3. For every m≤i≤d0-1 do:
(a) Set j =  i/ m  -1.
(b) Make vj the parent of vi in the tree S. 

Minimum Total Distance Trees

• Definition 15.3.1 For a subgraph G’ spanning the graph 
G=(V, E), let Tot_D(G’) denote the sum of the distances 
between any two vertices in G’, namely,
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The minimum total distance tree, or MTDT, of G is a 
spanning tree TD minimizing Tot_D(T) over all spanning 
trees T of G. 
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MTDT Problems (cont.)

• MTDT is known to be NP-hard problem. On the bright 
side, ther is a simple approximation algorithm for the 
problem.

• Lemma 15.3.2 For every n-vertex instance of the MTDT 
problem, there is a vertex w∈V such that the SPT of G with 
respect to w, T, satisfies Tot_D(T)∈2Tot_D(T*).
Proof We let pu=Σv∈VdistT(u, v). We just choose the vertex 
w with minimum pw. Let T be the SPT rooted at w. It’s easy 
to show Tot_D(T)≤ 2Tot_D(T*), where T* is the MTDT.

Proximity-preserving spanners

• Good tree spanners are usually hard to find. 
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This motivated us to find good graph spanners.
Definitions 15.4.1 Given a weighted graph G=(V, E, w), we 
that the subgraph G’=(V, E’) (where E’⊆E) is a k-spanner of
G if Stretch(G’)≤ k.
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Trees Covers

• Definition 15.5.1 Given a weighted graph G=(V, E, w), a ρ-tree cover, 
or a tree cover for Γ’ρ(v), is a collection TC of trees in G with the 
property that for every vertex v∈V, there is a tree T∈ TC that spans its 
entire ρ-neighborhood, namely,     Γρ(v)⊆V(T). The depth of a tree 
cover TC is 

Depth(TC)=max{Depth(T)}, for all T ∈TC
the maximum degree of TC is 

∆TC(TC)=max{∆(T)},  for all T∈TC
and the overlap of TC is the maximum, over all vertices v, of the 
number of different trees containing v,

Overlap(TC)=max{|{T∈TC|v∈V(T)}|}

Trees Covers (cont.)

1. Set 6 = Γ ‘ρ(V)

2. Construct a coarsening cover 5 for 
�

as in the 
Maximum Cover Theorem 12.4.1, using Algorithm 
Max_Cover with parameter κ

3. For each cluster R∈5 do
Select a shortest-path tree T(R) rooted at some center of 
R.

4.     Set TCκ,ρ={T(R)| R∈5 }
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Tree Covers (cont.)

• Theorem 15.5.2 For every weighted graph G=(V, E, w), 
|V|=n and integers κ, ρ≥1, Algorithm Tree_Cover 
constructs a ρ-tree cover TC=TCκ,ρ for G with Depth(TC) 
≤(2κ−1)ρ and Overlap(TC)≤ 2κn1/κ .


