## Spanning Trees, Tree Covers and Spanners

- Consider a weighted connected graph $G=(V, E, w)$, where $w: E \rightarrow R$ assigns a nonnegative weight $w(e)$ to each edge $e$, representing its length. In the following we only consider unweighted graphs. We omit the weight function $w$. For each edge of the graph, we assume its weight as 1.
- Definition Given a graph $G=(V, E, w)$ and a spanning subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ of $G$ such that $E^{\prime} \subseteq E$, we define the following parameters. For a distinguished root vertex $r_{0} \in V$, define the root-stretch (or simply the stretch) of $G$ ' with respect to $r_{0}$ as

$$
\operatorname{Stretch}\left(G^{\prime}, r_{0}\right)=\max _{v \in V}\left\{\frac{\operatorname{dist}_{G^{\prime}}\left(r_{0}, v\right)}{\operatorname{dist}_{G}\left(r_{0}, v\right)}\right\}
$$

The stretch factor of $G$ ' is

$$
\operatorname{Stretch}\left(G^{\prime}\right)=\max _{u, w \in V}\left\{\frac{\operatorname{dist}_{G^{\prime}}(u, w)}{\operatorname{dist}_{G}(u, w)}\right\}
$$

## Relevant Parameters

- Sparsity measures Usually stretch factor is not enough. We also need the sparsity of the spanner $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. In an unweighted graph, it's the size of the spanner $G^{\prime}$, which is simply the number of edges it contains, $\left|E^{\prime}\right|$. The second measure is its total weight.
- Size and Girth Girth of a graph $G$ is its minimum unweighted length of a cycel in $G$. We have the following lemma.
Lemma 15.1.2 1. For every integer $r \geq 3$ and $n$-vertex, m-edge graph $G=(V, E)$ with $\operatorname{Girth}(G) \geq r, m \leq n^{1+2 /(r-2)}+n$.

2. For every integer $r \geq 3$, there exist (infinitly many) $n$-vertex, m-edge graph $G=(V, E)$ with $\operatorname{Girth}(G) \geq r$ and $m \geq 1 / 4 *^{1+1 / r}$

## Spanning Trees

- Definition 15.2.1 The shortest path spanning tree, or SPT, of $G$ with respect to a given root $r_{0}$ is a spanning tree $T_{S}$ with the property that for every other vertex $v \neq r_{0}$, the path leading from $r_{0}$ to $v$ in the tree is the shortest possible, or in other words, $\operatorname{Stretch}\left(T_{S}, r_{0}\right)=1$
- Controlling Tree Degrees Another parameter of revelance to skeletal representations involves vertex degrees. We define $\{\Delta(G)=$ max
$\left(d e g_{G}(v)\right\}, \forall x \in V$. We want this parameter to be as small as possible.
Given a tree $T$ we run TREE_EMBED algorithm to construct its virtual tree $S$


## Spanning Trees (cont.)

- Theorem 15.2.2 For any rooted weighted tree $T$ and integer $m \geq 2$, the embedded virtual tree $S$ constructed by Algorithm TREE_EMBED satisfies the following properties.
(1) $\Delta(S) \leq 2 m$,
(2) each edge of $S$ corresponds to a path of length at most two in $T$, and
(3) $\operatorname{Depth}_{S}(v) \leq\left(2 \log _{m} \Delta(T)-1\right) \cdot$ Depth $_{T}(v)$ for every vertex $v$.


## Spanning Tree (cont.)

For every vertex $v$ in the tree $T$ do:
1 . Let $d_{0}$ be $v$ ' $s$ degree.
Let $v$ 's children be $v_{0}, \cdots, v_{d 0-1}$ ordered in non decreasing order of depth.
2. For every $0 \leq i \leq m$ - 1 do:

Make $v$ the parent of $v_{i}$ in the tree $S$, just as in $T$.
3. For every $m \leq i \leq d_{0}-1$ do:
(a) Set $j=\lfloor i / m\rfloor-1$.
(b) Make $v_{j}$ the parent of $v_{i}$ in the tree $S$.

## Minimum Total Distance Trees

- Definition 15.3.1 For a subgraph $G^{\prime}$ spanning the graph $G=(V, E)$, let Tot_ $\mathrm{D}\left(G^{\prime}\right)$ denote the sum of the distances between any two vertices in $G^{\prime}$, namely,

$$
\text { Tot_D }\left(G^{\prime}\right)=\sum_{u, v \in V} \operatorname{dist}_{G^{\prime}}(u, v)
$$

The minimum total distance tree, or MTDT, of $G$ is a spanning tree $T_{D}$ minimizing $\operatorname{Tot}_{-} \mathrm{D}(T)$ over all spanning trees $T$ of $G$.

## MTDT Problems (cont.)

- MTDT is known to be NP-hard problem. On the bright side, ther is a simple approximation algorithm for the problem.
- Lemma 15.3.2 For every n-vertex instance of the MTDT problem, there is a vertex $w \in V$ such that the SPT of $G$ with respect to $w, T$, satisfies $\operatorname{Tot} \_\mathrm{D}(T) \in 2 \operatorname{Tot} \_\mathrm{D}\left(T^{*}\right)$.
Proof We let $p_{u}=\Sigma_{v \in V} d i s t_{T}(u, v)$. We just choose the vertex $w$ with minimum $p_{w}$. Let $T$ be the SPT rooted at $w$. It's easy to show Tot_ $\mathrm{D}(T) \leq 2 \operatorname{Tot} \mathrm{D}\left(T^{*}\right)$, where $T^{*}$ is the MTDT.


## Proximity-preserving spanners

- Good tree spanners are usually hard to find.

|  | Arbitrary <br> Graph | Planar <br> Graph | Chordal <br> Graph |
| :---: | :---: | :---: | :---: |
| $t=2$ | P | P | P |
| $t=3$ | $?$ | P | $?$ |
| $t \geq 4$ | NP | NP | NP |

This motivated us to find good graph spanners.
Definitions 15.4.1 Given a weighted graph $G=(V, E$, w), we that the subgraph $G^{\prime}=\left(V, E^{\prime}\right)\left(\right.$ where $\left.E^{\prime} \subseteq E\right)$ is a $k$-spanner of $G$ if $\operatorname{Stretch}\left(G^{\prime}\right) \leq k$.

## Trees Covers

- Definition 15.5.1 Given a weighted graph $G=(V, E, w)$, a $\rho$-tree cover, or a tree cover for $\Gamma_{\rho}{ }^{\prime}(v)$, is a collection TC of trees in $G$ with the property that for every vertex $v \in V$, there is a tree $T \in \underline{T C}$ that spans its entire $\rho$-neighborhood, namely, $\quad \Gamma_{\rho}(v) \subseteq V(T)$. The depth of a tree cover TC is
$\operatorname{Depth}(\underline{T C})=\max \{\operatorname{Depth}(T)\}$, for all $T \in \underline{T C}$
the maximum degree of TC is
$\Delta^{T C}(\underline{T C})=\max \{\Delta(T)\}$, for all $T \in \underline{T C}$
and the overlap of $\underline{T C}$ is the maximum, over all vertices $v$, of the number of different trees containing $v$,

Overlap $(\underline{T C})=\max \{|\{T \in \underline{T C} \mid v \in V(T)\}|\}$

## Trees Covers (cont.)

1. $\quad$ Set $S=\Gamma^{\prime}{ }_{\rho}(V)$
2. Construct a coarsening cover $R$ for $S$ as in the Maximum Cover Theorem 12.4.1, using Algorithm Max_Cover with parameter $\kappa$
3. For each cluster $R \in R$ do

Select a shortest-path tree $T(R)$ rooted at some center of $R$.
4. Set $\underline{\mathrm{TC}}_{\kappa, \rho}=\{T(R) \mid R \in R\}$

## Tree Covers (cont.)

- Theorem 15.5.2 For every weighted graph $G=(V, E, w)$, $|V|=n$ and integers $\kappa, \rho \geq 1$, Algorithm Tree_Cover constructs a $\rho$-tree cover $\underline{T C}=\underline{T C} \mathcal{K}_{\kappa, \rho}$ for $G$ with Depth $(\underline{T C})$ $\leq(2 \kappa-1) \rho$ and $\operatorname{Overlap}(\underline{C C}) \leq\left\lceil 2 \kappa n^{1 / \kappa}\right\rceil$.

