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Abstract— Proteins have been discovered to contain ordered
regions and disordered regions, where ordered regions have a
defined three-dimensional (3D) structure and disordered regions
do not. While in the past it was believed that proteins only
function in a defined 3D structure, proteins with disordered
regions have been discovered to have at least 28 distinct functions.
It is now important to be able to determine the ordered and
disordered regions in proteins. Several experimental techniques
such as X-ray crystallography, NMR spectroscopy, circular
dichroism, protease digestion, and Stokes radius determination,
along with several computational techniques such as artificial
neural networks (ANNs), support vector machines (SVMs),
logistic regression, and discriminant analysis have so far been
used to detect disordered proteins. Past research has shown
that ANNs and amino acid properties are an effective tool at
predicting protein disorder. This research uses a feed-forward
neural network implemented using JavaNNS and the hydropathy
values of amino acids to predict protein disorder. The results
show that hydropathy is an important amino acid property for
disorder.

I. INTRODUCTION

In the dilemma of predicting protein function, it has gen-
erally been assumed that the three-dimensional (3D) structure
of a protein determines its function. While this is accurate
for some proteins [1], it does not hold for all proteins,
as some proteins have been found to function without a
defined 3D structure [2]–[5]. These proteins are referred to
as natively unfolded [6], intrinsically unstructured [2], [3], or
intrinsically disordered [5], [7]–[9]. Proteins that fold into a
defined 3D shape to function are correspondingly referred to as
folded, structured, or ordered. Disordered proteins can either
be locally disordered, composed of regions that are disordered
and other regions that are ordered, or globally disordered (e.g.
where the entire protein does not have a defined 3D structure).

As ordered proteins are composed of different types of
secondary structures such as alpha-helixes and beta-sheets,
disordered proteins are also composed of distinct character-
istics [10]. The Protein Trinity [5] proposes three functional
states for proteins described as ordered, molten globule, and
random coil, where molten globule and random coil are types
of disorder. The molten globule state is defined as a form
with regular secondary structure without a well defined tertiary
structure [10], [11]. Random coil is defined as an extended
flexible form without secondary structure [12]. The Protein
Quartet model [6] takes this a step further adding a pre-

molten globule state as another type of disorder. The disor-
dered proteins and regions differ in attributes from ordered
proteins including amino acid frequency, net charge, flexibility,
sequence complexity, hydropathy, side chain polarity, surface
area, and coordination number [9], [13]–[16].

Currently, the disordered regions have been associated with
28 different functions including cell cycle regulation, tran-
scriptional and translational regulation, modulation of protein
activity, assembly of other proteins, cell signaling, DNA
recognition, protein-RNA recognition, membrane fusion and
transport, and regulation of nerve cell function [2]–[4], [6], [7],
[17]. Proteins associated with cancer may contain regions of
disorder and are important in the development of anti-cancer
drugs [17]. It is also suggested that disordered proteins can
have different structural behaviors when functioning. Some
completely disordered proteins can permanently bind to a
partner, and for the rest of their lifetimes they exist in an
ordered state [5], [7]. Others can change between disordered
and ordered states when binding with partners [5]–[7]. Yet, in
some cases disordered proteins carry out function without ever
developing an ordered state [5]. For a more complete view of
specific disordered proteins and their functions see [2]–[6].

It is obvious that disordered proteins are just as important
biologically as ordered proteins. In fact, recent research, based
on computational inference, has proposed that approximately
25-41% of eukaryotic proteins have at least one long disor-
dered region consisting of more than 50 amino acids, 35-51%
with more than 40 amino acids, and 48-63% with more than
30 amino acids [7]. Bacteria and Archaea also contain long
disordered regions, but at lower percentages than eukaryotes
[7]. With this discovery, it is increasingly important to de-
velop techniques to accurately distinguish between regions of
disorder and regions of order in proteins.

II. BACKGROUND

Disordered proteins or regions of disorder in proteins can
be identified experimentally by several methods, but these
methods are labor intensive and costly. The most common
lab methods are X-ray crystallography, NMR spectroscopy,
circular dichroism (CD) spectroscopy, protease digestion, and
Stokes radius determination [5], [8], [11], [12], [18], [19].
Each of these methods can detect different characteristics of
disorder. In X-ray crystallography, some proteins have regions



of protein structure that lack electron density. This lack of
electron density can be caused by ordered wobbly regions,
disordered regions, or technical difficulties [20]. Additional
experiments are usually needed to determine the structure
of these regions. For example, the amino acid compositions
of long regions that lack electron density are similar to the
amino acid compositions of disordered regions found using
NMR [20]. In NMR, disorder is indicated by sharp peaks,
or using a 15N-1H heteronuclear nuclear Overhauser effect
(NOE) measurement, ordered amino acids receive positive
values and disordered amino acids receive negative values
[5], [8]. However, while NMR can detect random coil dis-
order, it has difficulties in detecting molten globule regions
[5]. Circular dichroism uses UV spectra to examine protein
structure, and disorder is indicated by low intensity wavelength
ranging between 210 to 240nm [8]. Protease digestion is used
to break proteins into smaller components. Disordered regions
experimentally tend to digest faster than ordered regions [5].
This method is useful in combination with the other methods.
For example, it can be used to determine if a region lacking
electron density from X-ray crystallography is a wobbly region
or a disordered region [5] In Stoke’s radius determination,
disorder is indicated when a given molecular weight has
abnormally large radii [5].

For some time, secondary structure has been predicted
from amino acid sequence using computational techniques.
It has been determined that disorder can also be predicted
from amino acid sequence [12], [14], [16], [18], [21]–[23].
Disordered proteins and regions have been predicted with
increasing accuracy using many computational techniques
including artificial neural networks (ANNs) [7], [8], [10],
[12], [15], [16], [18]–[22], [24]–[28], support vector machines
(SVMs) [29], [30], logistic regression [20], [22], [25], and
discriminant analysis [22]. Specific disorder predictors that
have been developed include DisEMBL [19], RONN [27],
GlobPlot [31], DISOPRED and DISOPRED2 [28], [30], [32],
and an entire group named PONDRs [5], [7], [8], [10], [26].

This research was designed with the hypothesis that the hy-
dropathy of the amino acids in a protein sequence significantly
contributes to the ordered/disordered state of proteins. Previous
research has demonstrated that straight amino acid composi-
tion or frequency is often enough to predict protein disorder
[5], [10], [20], [29]. Other attributes have also been used, usu-
ally in combination, to predict protein disorder such as amino
acid frequency, flexibility, sequence complexity, hydropathy,
coordination number, net charge, amino acid volumes, side
chain polarity, surface area, bulkiness, refraction, secondary
structure attributes, and electron-ion interaction potential [8],
[10], [12], [15], [18], [20]–[22], [24]–[26]. While it is certain
that the many different properties of the amino acids contribute
to the state of a protein, this project aims to examine the
degree to which hydropathy affects the state of order and
disorder and whether the attribute alone can be used to predict
disorder. This hypothesis is further motivated by experimental
findings that indicate that lower hydropathy is associated with
disorder [33]. The hydropathy of amino acids is indicated by

TABLE I

FOR EACH SUBSET, THE NUMBER OF AMINO ACIDS IN EACH TYPE OF

REGION IS GIVEN ALONG WITH THE TOTAL NUMBER OF AMINO ACIDS IN

THE SUBSET.

Subset Ordered Disordered Unknown Total

1 5524 5523 12,138 23,185

2 5092 5092 10,586 20,770

3 5193 5195 10,002 20,390

4 5367 5368 12,871 23,606

5 5795 5795 12,269 23,859

Totals 26,971 26,973 57,866 111,810

a numerical value where a positive value indicates the amino
acid is hydrophobic (i.e. water hating) and a negative value
indicates the amino acid is hydrophilic (i.e. water loving). For
the purpose of this project, all hydropathy values have been
normalized to positive values by increasing the lowest negative
number to zero, and increasing all other values by the same
amount.

III. METHODS

A. Dataset

The disordered dataset used for training and testing was
obtained from DisProt [34], version 2.2 in FASTA format,
which contains proteins with disordered regions and com-
pletely disordered proteins. After removing proteins from that
version that were indicated on the web page to contain errors,
the disordered dataset contained 183 protein sequences.

The sequences in the ordered dataset (i.e., containing
completely ordered sequences) were obtained by manually
searching PDB entries with structures determined using X-ray
diffraction. Similar sequences were removed from the search
to prevent redundancy and only proteins with a resolution of
2Å were examined to keep some similarity in the structure
determination of the proteins in the dataset. Proteins were
excluded from the dataset if the X-ray remarks indicated
either that residues were missing or that residues were missing
atoms, since this can either indicate disorder or procedural
errors [12]. Proteins were included if no visible indication in
the X-ray structure showed that residues were missing. For
proteins with multiple chains, only one chain was selected
since some chains in proteins can be identical or similar. The
longest chain was chosen for the dataset to give more amino
acids in the dataset; however, in the case that the chains were
the same length, the first was chosen. Chains less than 81
amino acids in length were not considered since they would
be smaller than the larger attribute window sizes.

The total number of ordered, disordered, and unknown
amino acids in each sequence was collected, and this informa-
tion was used to manually split the disordered dataset into five
subsets for use in a five-fold cross-validation experimental de-
sign. Each subset contained completely disordered sequences
and partially disordered sequences (i.e., containing ordered
and disordered regions or containing unknown and disordered



Fig. 1. The attributes of a completely ordered protein calculated using
overlapping windows of various sizes

Fig. 2. The attributes of a completely ordered protein calculated using gapped
windows of various sizes

regions). Ordered sequences were added to each subset so
that each subset contained approximately the same number
of ordered and disordered amino acids. Each subset contained
sequences of various ranges of lengths. One of the problems
with using all of the error free sequence data from the DisProt
database is that many regions in these sequences contain amino
acids labeled as unknown. At this initial stage of our project
we have included all sequences containing these regions of
unknown order/disorder and assigned the residues a third class
label for training purposes. This is discussed in further detail
in the next subsection. The goal of this dataset preparation
was to reduce the likelihood that the neural network training
would result in a particular state being predicted more often
only because it was more common in the training set.

B. Attributes

An attribute vector and a class vector were created for each
amino acid a in a sequence. The attribute vector contained
the attribute information calculated for a as described below.
The class vector represented the expected prediction by the
neural network for each type of region, disordered, ordered,
or unknown. Specifically, class vector v = 0, 1 indicates that
residue a is part of a disordered region, v = 1, 0 indicates

Fig. 3. The attributes of a completely disordered protein calculated using
overlapping windows of various sizes

Fig. 4. The attributes of a completely disordered protein calculated using
gapped windows of various sizes

that residue a is part of an ordered region, and v = 0.5, 0.5
indicates that residue a is part of an unknown region. The
attribute vectors and class vectors make up the patterns used
to train the neural network. The actual prediction is made
by assigning to the residue the class of the output neuron
receiving the highest activation when processing the test data.
Keep in mind that this process allows us to make an initial
guess as to the ordered/disordered propensity of those residues
labeled as unknown in the test data. The representation of
v = 0.5, 0.5 for unknown regions allowed us to transmit to the
neural network during training that a residue is not apriori
known to be part of either a disordered or ordered region.
Recall that the output layer of the neural network contains
only two nodes representing the class label. The absolute
value of the difference in the activation values of the two
output neurons is recorded as a measure of confidence in the
prediction and can thus also be used as an initial guess of the
actual label of unknown residues.

The attributes in an attribute vector were calculated based
upon the hydropathy values of amino acids. For a specific
position i in a protein sequence, the attributes were determined
using a subsequence inside a window of size Win where i
was the center of the window. Since short and long range



interactions between amino acids can contribute to the overall
state of a protein, the hydropathy attributes were calculated
using different sizes of Win. The values of Win were 1, 11,
41, 81, 121, giving a total of five attributes in an attribute
vector. Note that the first attribute, constructed using Win = 1,
consists of the actual hydropathy value of amino acid a at
position i in the sequence. The other attributes were averaged
hydropathy values for all amino acids, (i.e. when the window
size Win > 1).

Two windowing techniques were used in this research.
Overlapping windows included the previous windows in the
next larger window, and gapped windows excluded the pre-
vious windows from the next larger window. Figures 1 and
2 show the attributes calculated for a completely ordered
protein using overlapping and gapped windows respectively.
Figures 3 and 4 show the attributes calculated for a completely
disordered protein using overlapping and gapped windows
respectively. As can be seen from the graphs, the attributes
calculated using overlapping windows tended to average out
as the windows sizes increased, while the attributes calculated
using gapped windows retained more hydropathy information
as the windows sizes increased. Experiments were conducted
using each of the two windowing techniques to determine
whether using gapped windows retained more information than
the overlapping windows and would therefore produce poorer
predictions.

For overlapping windows, the hydropathy of position i was
calculated by summing the hydropathy values of all amino
acids present within the window Win and dividing by the
window size. Formally, for a position i of an amino acid
sequence of length N , the hydropathy of position i for a
window of size Win was calculated by

Hia =
1

wr
− wl + 1

wr

∑

j=wl

hj , (1)

where wl is the position of the left end of the window
determined by max (0, i − (Win − 1)/2), wr is the position
of the right end of the window determined by min (N − 1, i
+ (Win − 1)/2), and hj is the hydropathy of the amino acid
at position j. Note that the window size used in the attribute
calculations may not be the same as Win if no amino acids
are present in the beginning or the end of the window.

For gapped windows, the hydropathy of position i was
calculated by summing the hydropathy values of all amino
acids present within the window Win, subtracting the sum
of the hydropathy values from the previous window Win−1,
and dividing by the current window size minus the previous
window size. Formally, for a position i of an amino acid
sequence of length N , the hydropathy of position i for a
window of size Win was calculated by

Hia =
1

(wr
− wl + 1) − Win−1

wr

∑

j=wl

hj −

wr−1

∑

j=wl−1

hj , (2)

for each sequence
for i = 0 to sequence length − 1

for each window size
half = (window size − 1) / 2
left = i − half
if (left < 0)

left = 0
right = i + half
if (right > sequence length − 1)

right = sequence length − 1
window = right − left + 1
for j = left to right

sum = sum + hydropathy value at position j
attribute = sum / window

Fig. 5. Pseudocode showing how the hydropathy attributes were calculated
for the overlapping windows.

where wl is the position of the left end of the current window
determined by max (0, i − (Win − 1)/2), wr is the position of
the right end of the current window determined by min (N−1,
i + (Win − 1)/2), Win−1 equals wr−1

−wl−1 +1, wl−1 is the
position of the left end of the previous window determined by
max (0, i − (Win−1 − 1)/2), wr−1 is the position of the right
end of the previous window determined by min (N − 1, i +
(Win−1 − 1)/2), and hj is the hydropathy of the amino acid
at position j.

Table II shows the hydropathy values from the Kyte-
Doolittle scale [35] for 22 amino acids and the normalized
values used to calculate the hydropathy attributes. A PERL
script calculated the hydropathy attributes from the amino acid
sequences and created the pattern files used to train and test
a neural network. See fig. 5 for pseudocode to calculate the
hydropathy attributes for the overlapping windows.

C. Neural Network Architecture

The neural network was implemented using JavaNNS, a
Java based neural network simulator developed at the Wilhelm-
Schickard-Institute for Computer Science (WSI) in Tübingen,
Germany based on the Stuttgart Neural Network Simulator
(SNNS) 4.2 kernel. The neural network was a fully connected
feed forward neural network with three layers, an input layer
with the number of neurons equal to the number of input
attributes (i.e., five, one for each window size), a single hidden
layer with 10 neurons (10 because of the large number of
amino acids in a training set), and an output layer with two
neurons. Parameters for the neurons were a logistic activation
function and identity for the output function. The neural
network was randomly initialized using min equal to -1.0
and max equal to 1.0, and updating was by topological order.
Training of the neural network was done using five-fold cross-
validation, where four of the five subsets were used for training
and the remaining subset was withheld for the testing phase.

D. Learning Algorithm

The learning algorithm used for training was the resilient
propagation algorithm [36] using default parameters. Training



TABLE II

HYDROPATHY VALUES FOR 22 OF THE COMMON AMINO ACIDS AS

DEFINED BY THE KYTE-DOOLITTLE SCALE.

Amino Acid Hydropathy Normalized

Alanine (A) 1.8 6.3

Cysteine (C) 2.5 7.0

Aspartate (D) -3.5 1.0

Glutamate (E) -3.5 1.0

Phenylalanine (F) 2.8 7.2

Glycine (G) -0.4 4.1

Histidine (H) -3.2 1.3

Isoleucine (I) 4.5 9.0

Lysine (K) -3.9 0.6

Leucine (L) 3.8 8.2

Methionine (M) 1.9 6.4

Asparagine (N) -3.5 1.0

Proline (P) -1.6 2.9

Glutamine (Q) -3.5 1.0

Arginine (R) -4.5 0.0

Serine (S) -0.8 3.6

Threonine (T) -0.7 3.8

Valine (V) 4.2 8.7

Tryptophan (W) -0.9 3.6

Tyrosine (Y) -1.3 3.2

Aspartic Acid (B) -3.5 1.0

Glutamic Acid (Z) -3.5 1.0

was for 200 cycles using 1 step and shuffling of both patterns
and subpatterns.

E. Performance Measure

A five-fold cross-validation scheme was used to assess
the prediction accuracy of the neural network. True positives
(TP ) were the number of amino acids in disordered regions
predicted to be disordered. True negatives (TN ) were the
number of amino acids in ordered regions predicted to be
ordered. False positives (FP ) were the number of amino
acids in ordered regions predicted to be disordered. False
negatives (FN ) were the number of amino acids in disordered
regions predicted to be ordered. These counts were used in the
standard way to calculate sensitivity and specificity values. An
additional measure, Matthew’s Correlation Coefficient (MCC),
which is a method of combining sensitivity and specificity into
a single measure that is often used in the secondary structure
prediction community, was also calculated as

MCCi =
pn − ou

√

(p + o)(p + u)(n + o)(n + u)
, (3)

where p = patterns correctly assigned to class i, n = patterns
correctly assigned to not class i, o = patterns incorrectly
assigned to class i, u = patterns incorrectly assigned to not
class i. Since for our experiments we are only predicting two
possible classes the MCC value for the disorder and order
classes will be the same. Overall accuracy is measured by

TABLE III

AVERAGE PREDICTION ACCURACY FOR OVERLAPPING WINDOW AND

GAPPED WINDOW NNS

Measure Overlapping Windows Gapped Windows

Sensitivity 0.8294 0.8282

Specificity 0.6841 0.6960

Overall Accuracy 0.7606 0.7531

Matthew’s CC 0.5153 0.5391

TABLE IV

UNKNOWN RESIDUE PREDICTIONS

Test Fold Nbr of Unknowns UD Rate UO Rate

1 12,138 41.35% 58.65%

2 10,586 54.82% 45.18%

3 10,002 59.83% 40.17%

4 12,871 58.75% 41.25%

5 12,269 65.51% 34.49%

Mean 11,595 56.00% 44.00%

combining the TP and TN measures as follows:

OV ERALL =
TP + TN

2
(4)

We point out that all of these measures are calculated on a
per-residue basis. Accuracy measures for per-protein accuracy
have not yet been analyzed.

Recall that some of the amino acids in our data were
labeled as unknown, which was communicated to the neural
network with a class label vector of v = 0.5, 0.5. The actual
output of the predictor when processing unknown residues was
calculated in the same fashion as was done for disordered
residues and ordered residues (i.e. the output neuron with the
highest activation level was taken as the prediction value).
This procedure resulted in two additional measures: UD, the
number of amino acids in unknown regions predicted to be
disordered, and UO, the number of amino acids in unknown
regions predicted to be ordered.

The TP , TN , FP , and FN rates indicated the percentage
of each that were predicted. The UD and UO rates were cal-
culated to indicate what percentage of amino acids in unknown
regions were predicted as disordered and ordered respectively.
The average prediction confidence was determined for each
test, where the confidence of each single residue prediction
was determined by subtracting the lowest output value from
the highest. Ideally, an output of 1 0 or 0 1 would give a 100%
prediction confidence and an output of 0.5 0.5 would give a
0% prediction confidence.

IV. RESULTS

A feed-forward neural network was trained and tested using
hydropathy attributes calculated with overlapping windows
and then with gapped windows. Table III shows the results of
the experiments in terms of the previously defined prediction



Fig. 6. The prediction accuracy of each test including the mean is given for
the attributes calculated using overlapping windows

Fig. 7. The prediction accuracy of each test including the mean is given for
the attributes calculated using gapped windows

measures, Sensitivity, Specificity, Overall Accuracy, and MCC.
The results shown are the average values as determined from
the five test folds. For both methods, the measure of sensitivity
was between 0.8 and 0.85 and the measure of specificity was
above 0.60 for all folds, with a mean of 0.7.

Figures 6 and 7 show the prediction accuracy using over-
lapping windows and gapped windows, respectively. Overall,
the prediction accuracies using the two different methods
resulted in very similar prediction accuracies. The TP rate,
or percentage of disordered amino acids that were predicted
as disordered, ranged from 79% to 87%, with a mean of 83%.
The TN rate, or percentage of ordered amino acids that were
predicted as ordered, ranged from 52% to 73%, with a mean of
63%. There appears to be a very slight increase in the overall
per-residue accuracy, computed as (TP + TN)/2, for the
overlapping windows method, given that the overall accuracy
of the most recent PONDR predictors [26] ranges from 79%
to 83% with a Win size of 41 and Wout sizes ranging from 1
to 121.

The FP rate, or percentage of ordered amino acids that
were predicted as disordered, ranged from 28% to 47%. The
FN rate, or percentage of disordered amino acids that were
predicted as ordered, ranged from 12% to 20%. The UD rate,

Fig. 8. The prediction accuracy plotted against the average confidence is
given for the attributes calculated using overlapping windows

Fig. 9. The prediction accuracy plotted against the average confidence is
given for the attributes calculated using gapped windows

(i.e., the number of residues from unknown regions predicted
to be in disordered regions) was typically higher than the
UO rate, (i.e., the number of residues from unknown regions
predicted to be in ordered regions) indicating that amino
acids in unknown regions are more likely to be predicted
as disordered. The actual counts for UD and UO are shown
in table IV. The UD and UO measures showed the most
variability across folds which may at least be partially due to
there being up to a 22% difference in the number of unknown
residues in different folds.

Figures 8 and 9 show the prediction rates plotted against
the average confidence. The TP had both a high prediction
accuracy and high average confidence compared to the others.
The TN , FP , UO, and FN had average confidence between
10% and 20%, but varying prediction accuracies. The UD
had a higher average confidence of being disordered, even
though the amino acids were in unknown regions. We note that
additional analysis of the confidence data is warranted based
on an initial review of a random sampling of the distribution
of confidence predictions for different proteins in the first fold.

Overall we note that although our system utilizes informa-
tion based on a single type of attribute, hydropathy, our residue
based prediction results are competitive with other disorder



predictors such as the PONDR series [26]. Perhaps the most
surprising result is that our system achieved higher prediction
accuracy for disorder region predictions, where as in general
disorder predictors typically achieve slightly higher accuracies
for ordered region predictions.

The prediction of disordered regions in proteins has become
an important sub-problem in determining protein structure
and function. Many computational techniques using different
properties of amino acids have been employed to aid in this
difficult task. This research using a feed-forward neural net-
work and the hydropathy values of amino acids as attributes,
confirms our hypothesis that hydropathy information can be
used to predict regions of disorder. With regards to the two
different windowing techniques tested, our results were not
conclusive as the overall prediction accuracies were within
the standard deviation of each other for the two windowing
techniques. More analysis is clearly needed including testing
for statistical significance between the results of these two
windowing approaches and over all results in general. Such
analysis is currently in process.

Future research includes plans to improve our training data
and investigate different window sizes. The training data will
be improved by replacing proteins containing unknown amino
acids with proteins for which the certainty of a disorder
or order class is already known. The current training set
contains large quantities of amino acids in unknown regions
as compared to amino acids in ordered/disordered regions
(see table I). Training using only clearly identified (i.e. or-
dered/disordered) attribute vectors would make the current
method for confidence measure more meaningful for residues
with known class labels by eliminating the unknown class. It
will be interesting to then compare the predictions obtained
for unknown residues to see how they differ from the current
system. Systematic investigation of different windowing sizes
may help elucidate important areas of interaction between
residues far apart from each other in the primary sequence.
Most importantly we are currently working on the analysis of
our results as computed on a per-protein basis in addition to
the per-residue basis presented here.
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