
1

Programming with POSIX* Threads 3
Based on

Multi-Core Programming –

increasing performance through software multi-threading

by Shameem Akhter and Jason Roberts

2

Programming with POSIX* Threads

Producer/Consumer Example – Condition
Variables

•Listing 5.13 from Ahkter
• progs\Ahkter\Ch5\PthreadConditionVariables.cpp

• Typical of producer/consumer codes

• Producer threads generate data – reading the file in this case

• Consumer threads are suspended pending a signal – sent
when data is ready to be consumed

• Signal is generated in this case by condition variable mechanism

• Note that manipulation of the condition variables is protected
by mutex
• Required – can be seen by presence of mutex in parameters of

pthread_cond_wait

2

3

Programming with POSIX* Threads

Producer/Consumer Example – Overview

• Code reads file specified on command line

• Creates two threads – each runs PrintCountRead
• This locks the mutex
• Loops waiting on the value of the flag
• Calls pthread_cond_wait to register to be awakened when the

condition variable is signaled
• The thread proceeds when the condition variable is signaled and

checks the flag value and prints the number of bytes read by the
main thread

• The main thread signals the condition variable when the flag
value is changed to 1 using pthread_cond_broadcast

• Ours when it has read one block of data

4

Programming with POSIX* Threads

Producer/Consumer Example – Details

• Code creates data structure

typedef struct {

pthread_mutex_t mutex; // the mutex

pthread_cond_t cv; // the condition variable

int data; // the data item used as a flag.

} flag;

• Initializes values of mutex and condition variable to defaults and flag
to 0

flag ourFlag = { // default initialization

PTHREAD_MUTEX_INITIALIZER,

PTHREAD_COND_INITIALIZER,

0 }; // data item set to 0

3

5

Programming with POSIX* Threads

Producer/Consumer Example – Semaphores

• Listing 5.14 from Ahkter
progs\Ahkter\Ch5\PthreadSemaphoreExample.cpp

• Similar to previous example

• Pthread semaphore is counter – part of POSIX specification
rather than pthreads

• When value is 0 threads wait
• When becomes nonzero thread is released – done in thread

priority and order of attachment to semaphore
• Semaphore value is decremented

6

Programming with POSIX* Threads

Producer/Consumer Example – Overview

• Code reads file specified on command line

• Creates threads –runs PrintCountRead
• This waits on the semaphore
• The thread proceeds when the semaphore is signaled and prints

the number of bytes read by the main thread

• The main thread signals the semaphore using sem_post
• Occurs when it has read one block of data

• Note that the thread never reports 0 bytes read since it is
blocked until the first block is read
• It may report one or more blocks depending on how long it takes

to wake after being signaled

• Semaphores valuable when have single consumer

4

7

Programming with POSIX* Threads

sem_wait and sem_trytwait Explained

Attempts to lock semaphore

• sem_wait() If the semaphore value is currently zero, then the
calling thread will not return from the call until it either locks
the semaphore or the call is interrupted by a signal.

• sem_trywait() locks the semaphore only if it is currently not
locked; that is, if the value is currently positive. Otherwise, it
does not lock the semaphore.

EINVAL EINVAL -- semaphore is invalidsemaphore is invalid
ENOSYSENOSYS -- operation not supportedoperation not supported

EAGAIN EAGAIN -- semaphore was already locked semaphore was already locked sem_trywaitsem_trywait()()
EDEADLKEDEADLK –– deadlock is detecteddeadlock is detected
EINTR EINTR -- signal interrupted this functionsignal interrupted this function

8

Programming with POSIX* Threads

sem_post Explained

Attempts to unlock the semaphore

•Increments the semaphore value

• If the semaphore value resulting from this operation is
positive, then no threads were blocked waiting for the
semaphore

• If the value of the semaphore resulting from this operation is
zero, then one of the threads blocked waiting for the
semaphore will be allowed to return successfully from its call to
sem_wait().

EINVAL EINVAL -- semaphore is invalidsemaphore is invalid
ENOSYSENOSYS -- operation not supportedoperation not supported

5

9

Programming with POSIX* Threads

sem_timedwait Explained

• Same as sem_wait(), except that abs_timeout specifies a
limit on the amount of time that the call should block if the
decrement cannot be immediately performed. The abs_timeout
argument points to a structure that specifies an absolute
timeout in seconds and nanoseconds since the Epoch

EINVAL EINVAL -- value of value of abs_timeout.tv_nsecsabs_timeout.tv_nsecs is less than 0, is less than 0,
or greater than or equal to 1000 million.or greater than or equal to 1000 million.
ETIMEDOUT ETIMEDOUT -- The call timed out before the semaphore The call timed out before the semaphore
could be locked.could be locked.

EAGAIN EAGAIN -- semaphore was already locked semaphore was already locked sem_trywaitsem_trywait()()
EINTR EINTR -- signal interrupted this functionsignal interrupted this function
ENOSYSENOSYS -- operation not supportedoperation not supported

